
Gatsby Computational Neuroscience Unit 17 Queen Square, London
University College London WC1N 3AR, United Kingdom
http://www.gatsby.ucl.ac.uk +44 20 7679 1176

Funded in part by the Gatsby Charitable Foundation.

March 18, 2000

GCNU TR 2000–002

Learning Distributed Representations
of Concepts using Linear Relational

Embedding

Alberto Paccanaro Geoffrey Hinton

Gatsby Unit

Abstract

In this paper we introduce Linear Relational Embedding as a means of learn-
ing a distributed representation of concepts from data consisting of binary
relations between concepts. The key idea is to represent concepts as vectors,
binary relations as matrices, and the operation of applying a relation to a
concept as a matrix-vector multiplication that produces an approximation to
the related concept. A representation for concepts and relations is learned by
maximizing an appropriate discriminative goodness function using gradient
ascent. On a task involving family relationships, learning is fast and leads to
good generalization.



Learning Distributed Representations of Concepts using
Linear Relational Embedding

Alberto Paccanaro Geoffrey Hinton

Gatsby Unit

1 Introduction

Given data which consists of concepts and relations among concepts, our goal is to correctly pre-
dict unobserved instances of relationships between concepts. We do this by representing each
concept as a vector in a Euclidean space and the relationships between concepts as linear opera-
tions.

To illustrate the approach, we start with a very simple task which we call the number prob-
lem. The data consists of integers and operations among integers. In the modular number prob-
lem the numbers are integers in the set V = [0 : : : m � 1] and the set of operations is R =

f+1;�1;+2;�2;+3;�3;+4;�4;+0gm , where the subscript indicates that the operations are per-
formed modulo m. The data then consists of all or some of the triplets (num1; op; num2) where
num1; num2 2 V , op 2 R, and num2 is the result of applying operation op to number num1; for
example, for m = 10, f(1;+1; 2); (4;+3; 7); (9;+3; 2); � � �g.

The main idea in Linear Relational Embedding (LRE) is to represent concepts using n-dimensional
vectors, relations as (n� n) matrices, and the operation of applying a relation to a concept (to ob-
tain another concept) as a matrix-vector multiplication. Within this framework, one could easily
hand-code a solution for the number problem with n = 2 and m = 10, where the numbers are
represented by vectors having unit length and disposed as in fig.1a, while relations are represent-
ed by rotation matrices R(�), where the rotation angle � is a multiple of 2�=10 (first row of table
1). The result of applying, for example, operation +3 to number 4, is obtained by multiplying
the corresponding matrix and vector, which amounts to rotating the vector located at 144 degrees
by 108 degrees, thus obtaining the vector at 252 degrees, which corresponds exactly to the vector
representing the number 7.

In this paper, we show how LRE finds an equivalent solution, which is presented in fig. 1b and
in the second row of table 1. LRE can find this solution when many of the triplets are omitted from
the training set and once it has learned this way of representing the concepts and relationships it
can complete all of the omitted triplets correctly. Moreover, LRE works well not only on toy
problems like the one presented above, but also in other symbolic domains where the task of
generalizing to unobserved triplets is non-trivial.

In the next section we briefly review related work on learning distributed representations. LRE
is then presented in detail in section 3. Section 4 presents the results obtained using LRE on the
number problem and the family tree task (Hinton, 1986), as well as the results obtained on a much

y The authors would like to thank Peter Dayan, Sam Roweis, Zoubin Ghahramani, Carl van Vreeswijk, Hagai Attias
and Marco Buiatti for many useful discussions.

1



1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1

1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

0

1

23

4

5

6

7
8

9

(a)

6 5 4 3 2 1 0 1 2 3 4 5 6
6

5

4

3

2

1

0

1

2

3

4

5
0 7

4

1

8

52

9

6

3

(b)

Figure 1: (a) vectors of the hand-coded solution for the number problem when n = 2 and m =

10 (b) vectors of the solution found by Linear Relational Embedding. Only 70 out of the 90
possible triplets were used for training. During testing, the system was able to correctly complete
all the triplets.

OPERATION -4 -3 -2 -1 +0 +1 +2 +3 +4

Hand-coded Solution -144 -108 -72 -36 0 36 72 108 144
LRE Solution 72.00 -35.97 -144.01 108.01 0.00 -108.02 144.02 35.98 -71.97

Table 1: Angles, expressed in degrees, of the rotation matrices of the solutions to the number
problem with n = 2 and m = 10, corresponding to the vectors in fig.1. The rotations in the LRE
solution differ very slightly from multiples of 36 because only 70 triplets randomly chosen out of
the 90 were used during training.

larger version of the family tree problem that uses data from a real family tree. We also compare
these results to the results obtained using Principal Components Analysis. In section 5 we examine
how a solution obtained from an impoverished data set can be modified to include information
about new concepts and relations. Section 6 indicates ways in which LRE could be extended and
section 7 presents a final discussion of the method.

2 Related work

Several methods already exist for learning sensible distributed representations from relational
data. Multidimensional Scaling (Kruskal, 1964; Young and Hamer, 1987) finds a representation
of concepts as vectors in a multi-dimensional space, in such a way that the dissimilarity of two
concepts is modeled by the Euclidean distance between their vectors. Unfortunately, dissimilarity
is the only relationship used by multidimensional scaling so it cannot make use of the far more
specific information about concepts contained in a triplet like “John is the father of Mary”.

Latent Semantic Analysis (LSA) (Deerwester et al., 1990; Landauer and Dumais, 1997; Lan-

2



Victoria = JamesMargaret = Arthur Jennifer = Charles

Colin

Christopher = Penelope Andrew = Christine

Charlotte

Bortolo = Emma

Giannina = Pietro

Aurelio = Maria

Grazia = Pierino Doralice = Marcello

Alberto Mariemma

Figure 2: Two isomorphic family trees. The symbol “=” means “married to”

dauer et al., 1998) assumes that the meaning of a word is reflected in the way in which it co-occurs
with other words. LSA finds features by performing singular value decomposition on a large
matrix and taking the eigenvectors with the largest eigenvalues. Each row of the matrix corre-
sponds to a paragraph of text and the entry in each column is the number of times a particular
word occurs in the paragraph or a suitably transformed representation of this count. Each word
can then be represented by its projection onto each of the learned features and words with similar
meanings will have similar projections. Again, LSA is unable to make use of the specific relational
information in a triplet.

Hinton (1986) showed that a multilayer neural network trained using backpropagation (Rumel-
hart et al., 1986) could make explicit the semantic features of concepts and relations present in the
data. Unfortunately, the system had problems in generalizing when many triplets were missing
from the training set. This was shown on a simple task called the family tree problem. In this
problem, the data consists of persons and relations among persons belonging to two families, one
Italian and one English, shown in figure 2. All the information in these trees can be represented
in simple propositions of the form (person1, relation, person2). Using the relations father, moth-
er, husband, wife, son, daughter, uncle, aunt, brother, sister, nephew, niece there are 112 of such
triplets in the two trees. The network architecture used by Hinton is shown in fig.3. It had two
groups of input units, one for the role person1 and one for the role relation, and one group of out-
put units to represent person2. Inputs and outputs were coded so that only one unit was active at
the time, standing for a particular person or relation. The idea was that the groups of 6 units on
the second and fourth layer should learn important features of persons and relations that would
make it easy to express regularities of the domain that were only implicit in the examples given.
Figure 4 shows the activity level for input Colin aunt in the network after learning. Notice how
there are 2 units with a high activation in the output layer, marked by black dots, corresponding
to the 2 correct answers, because Colin has 2 aunts (Jennifer and Margaret). Figure 5 shows the
diagrams of the weights on the connections from the 24 input units to the 6 units that were used
for the network’s internal, distributed representation of person1, after learning. It is clear that unit
number 1 is primarily concerned with the distinction between English and Italian. Unit 2 encodes
which generation a person belongs to. Unit 6 encodes which branch of the family a person belongs
to. Notice how these semantic features are important for expressing regularities in the domain,
but were never explicitly specified. Similarly, relations were encoded in terms of semantic features

3



INPUT

local encoding of person 1

OUTPUT

local encoding of person 2

local encoding of relation

INPUT

6 units
learned distributed

encoding of person 1

6 units
learned distributed 
encoding of relation

6 units
learned distributed 
encoding of relation

Figure 3: The architecture of the network used for the family tree task. It has three hidden layers
of 6 units in which it constructs its own internal representations. The input and output layers are
forced to use localist encodings.

Figure 4: The activity levels in the network after it has learned. The bottom layer has 24 input
units on the left for representing person1 and 12 units on the right for representing the relation.
The white squares inside these two groups show the activity levels of the units. There is one active
unit in the first group (representing Colin) and one in the second group (representing aunt). Each
of the two groups of input units is totally connected to its own group of 6 units in the second
layer. These two groups of 6 must encode the input terms as distributed pattern of activity. The
second layer is totally connected to the central layer of 12 units, and this layer is connected to the
penultimate layer of 6 units. The activity in the penultimate layer must activate the correct output
units, each of which stands for a particular person2. In this case, there are two correct answers
(marked by black dots) because Colin has two aunts. Both the input and the output units are laid
out spatially with the English people in one row and the isomorphic Italians immediately below.
From Hinton (1986).

4



Figure 5: Diagrams of the weights from the 24 input unit that represent people to the 6 units in the
second layer that learn distributed representations of people. White rectangles stand for excitatory
weights, black for inhibitory weights, and the area of the rectangle encodes the magnitude of the
weight. The weights from the 12 English people are in the top row of each unit. Beneath of each
of these weights is the weight from the isomorphic Italian. From Hinton (1986).

in the other group of 6 units of layer 2.
The discovery of these semantic features, gave the network some degree of generalization.

When tested on four triplets which had not been shown during training, the network was usually
able to find the correct answers. Notice how any learning procedure which relied on finding
direct correlations between the input and the output vectors, would generalize very badly on the
family tree task: the structure that must be discovered to generalize correctly, is not present in the
pairwise correlations between input and output units.

The biggest limitation of the system was that generalization was limited, and the system had
problems in generalizing when more than 4 triplets were missing from the training set. Moreover
there was no guarantee that the semantic features learned for person1 in the second layer would
be the same as the ones found in the fourth layer for person2.

The network used by Hinton (1986) is restricted to completing triplets from their first two
terms. A more flexible way of applying the backpropagation learning procedure is to have a
recurrent network which receives a sequence of words, one at a time, and continually predicts the
next word. The states of the hidden units must then learn to capture all the information in the
word string that is relevant for predicting the next word. Elman (1990) presented a version of this
approach in which the backpropagation through time that is required to get the correct derivatives
is curtailed after one time step to simplify the computation. Bridle (1990) showed that the forward
dynamics of a particular type of recurrent neural network could be viewed as a way of computing
the posterior probabilities of the hidden states of an HMM, and the relationship between recurrent
neural networks and Hidden Markov Models has been extensively studied by Cleermans et. al.
(1989) , Giles et. al. (1992) and others.

Hidden Markov Models are interesting because it is tractable to compute the posterior distri-
bution over the hidden states given an observed string. But as a generative model of word strings,
they assume that each word is produced by a single hidden node and so they do not seem ap-

5



propriate if our goal is to learn real-valued distributed representations of the concepts denoted by
words.

Linear dynamical systems seem more promising because they assume that each observation
is generated from a real-valued vector in the hidden state space. However, the linearity of linear
dynamical systems seems very restrictive. This linearity shows up in both the dynamics and the
output model:

x(t+ 1) = Rx(t) + � (1)

y(t) = Cx(t) + � (2)

where x is the hidden state, y is the visible state,R is the linear dynamics, C is the linear output
model, � is the noise in the dynamics and � is the noise in the output model.

Linear Relational Embedding can be viewed as a way of overcoming these apparent restric-
tions so that linear dynamical systems can be profitably applied to the task of modeling discrete
relational data. First, we eliminate the linear output model by using a discrete observation space
and assuming that there is a noise-free table that relates vectors in the hidden state space to dis-
crete observations. The entries in this table change during learning, but with the table fixed the
“hidden” state is precisely specified by the observed discrete symbol.

The linearity in the dynamics can be made far less restrictive by using a switching linear dy-
namical system. Instead of treating the relational term in a triplet as an observation produced by
the hidden state, we treat it as a completely different kind of observation that provides informa-
tion about the dynamics, R, rather than the hidden state, x. Again, there is a learned, noise-free
table that exactly specifies the linear dynamics associated with each relational term. We allow
an additional Gaussian noise process in the dynamics, �. This ensures that there is always some
probability density of arriving at any point in the hidden space wherever we start and whatever
the dynamics. In particular it ensures that, starting from the point in the hidden space specified
by the first term in a triple and using the dynamics specified by the relational term there is some
probability of arriving at the point in the hidden space specified by the third term. Learning can
then adjust the tables so that the probability of arriving at the point specified by the third term is
much greater than the probability of arriving at any of the points that would be specified by other
possible third terms.

The linear dynamical systems perspective is useful in understanding how Linear Relational
Embedding relates to recurrent neural networks as a proposal for learning from relational data,
but LRE is sufficiently different from a standard linear dynamical system that this perspective can
also be confusing. In the next section we therefore present LRE as a technique in its own right.

3 Linear Relational Embedding

Let us assume that our data consists of C triplets (concept1, relation, concept2) containing N

distinct concepts and M binary relations. As anticipated in section 1, the main idea of Linear
Relational Embedding is to represent each concept with an n-dimensional vector, and each relation
with an (n � n) matrix. We shall call: V = fv1; :::;vNg the set of vectors, R = fR1; :::; RMg the
set of matrices and D = f(a

c; Rc;bc)gC
c=1

the set of all the triplets, where ac;bc 2 V and Rc 2 R .
The operation that relates a pair (ac; Rc) to a vector bc is the matrix-vector multiplication, Rc � ac,
which produces an approximation to bc.

6



The goal of learning is to find suitable vectors and matrices such that for each triplet (ac; Rc;bc) 2
D, bc is the vector closest to Rc

� a
c. The obvious approach is to minimize the squared distance be-

tween Rc � ac and b
c, but this is no good because it causes all of the vectors or matrices to collapse

to zero. In addition to minimizing the squared distance to bc we must also maximize the squared
distances to other concept vectors that are nearby. This can be achieved by imagining that Rc

� a
c

is a noisy version of one of the concept vectors and maximizing the probability that it is a noisy
version of the correct answer, bc, rather than any of the other possibilities. If we assume spherical
Gaussian noise with a variance of 1=2 on each dimension, the probability that concept i would
generate Rc � ac is proportional to exp(�jjRc � ac � vijj

2
) so a sensible discriminative goodness

function is:

G =

CX

c=1

1

Kc

log
e�kR

c
�a

c
�b

c
k
2

X

vi2V

e�kR
c
�a

c
�vik

2
(3)

where Kc is the number of triplets in D having the first two terms equal to the ones of c, but
differing in the third term. To understand why we need to introduce this factor, let us consider
a set of K triplets, each having the same first two terms, a and R, but differing in the third term,
which we shall call bi with i = 1 : : : K . We would like our system to assign equal probability
to each of the correct answers, and therefore the discrete probability distribution that we want to
approximate can be written as:

Px =
1

K

KX

i=1

Æ(bi � x) (4)

where Æ is the discrete delta function and x ranges over the vectors in V . Our system implements
the discrete distribution:

Qx =
1

Z
exp(�kR � a� xk

2
) (5)

where
Z =

X

vi2V

exp(�kR � a� vik
2
) (6)

is the normalization factor. The Kullback-Leibler divergence between Px and Qx, can be written
as:

KL(PkQ) =

X

x

Px � log
Px

Qx

=

X

x

1

K

KX

i=1

Æ(bi � x) � log

1

K

KX

i=1

Æ(bi � x)

1

Z
exp(�kR � a� xk

2)
(7)

Thus, minimizing KL(PkQ) amounts to minimizing:

�

X

u

1

K
� log(

1

Z
exp(�kR � a� uk

2
)) (8)

for every u that is a solution to the triplet, which is exactly what we do when we maximize eq.3.
The results which we present in the next section were obtained by maximizing G using gradi-

ent ascent. All the vector and matrix components were updated simultaneously at each iteration.
One effective method of performing the optimization is scaled conjugate gradient (Møller, 1993).
Learning was fast, usually requiring only a few hundred updates and learning virtually ceased as

7



the probability of the correct answer approached 1 for every data point. We have also developed
an alternative optimization method which is less likely to get trapped in local optima when the
task is difficult. The objective function is modified to include a temperature that divides the ex-
ponents in eq. 3. The temperature is annealed during the optimization. This method uses a line
search in the direction of steepest ascent of the modified objective function. A small amount of
weight decay helps to ensure that the exponents in eq. 3 do not cause numerical problems when
the temperature becomes small.

In general, different initial configurations and optimization algorithms caused the system to
arrive at different solutions, but these solutions were almost always equivalent in terms of gener-
alization performance.

4 Results

We shall first present the results obtained applying LRE to the number problem and to the fam-
ily tree problem. After learning a representation for matrices and vectors, we checked, for each
triplet c, whether the vector with the smallest Euclidean distance from Rc

� a
c was indeed b

c. We
checked both how well the system learned the training set and how well it generalized to unseen
triplets. Unless otherwise stated, in all the experiments we optimized the goodness function using
scaled conjugate gradient. Two conditions had to be simultaneously met in order for the algorith-
m to terminate: the absolute difference between the values of the solution at two successive steps
had to be less than 10

�4 and the absolute difference between the objective function values at t-
wo successive steps had to be less than 10

�8. All the experiments presented here were repeated
several times, starting from different initial conditions and randomly splitting training and test
data. In general the solutions found were equivalent in terms of generalization performance. The
algorithm usually converged within a few hundred iterations, and rarely got stuck in poor local
minima.

4.1 Results on the number problem

Let us consider the modular number problem which we saw in section 1. With numbers [0 : : : 9]

and operations f+1;�1;+2;�2;+3;�3;+4;�4;+0g10 , there exist 90 triplets (num1, op, num2).
LRE was able to learn all of them correctly using 2-dimensional vectors and matrices (n = 2).

Figure 1 shows a typical solution that we obtained after training with 70 triplets randomly chosen
out of the 90. The scaled conjugate gradient algorithm converged within the desired tolerance
in 125 iterations. We see that all the vectors have about the same length, and make an angle of
about 2�=10 with each other. The matrices turn out to be approximately orthogonal, with all their
row and column vectors having about the same length. Therefore each can be approximately de-
composed into a constant factor which multiplies an orthonormal matrix. The degrees of rotation
of each orthonormal matrix are shown in the second row of table 1. The matrices’ multiplicative
factor causes the result of the rotation to be longer than the second vector of the triplet. Because
the concept vectors lie at the vertices of a regular polygon centered at the origin, this lengthening
increases the squared distance from the incorrect answers by more than it increases the squared
distance from the correct answer, thus improving the discriminative goodness function in Eq. 3.

A 2-dimensional matrix has 4 degrees of freedom. The matrices we obtain after learning have
only 2 degrees of freedom: the extent of the rotation and the multiplication factor. It is interesting
to see how, for this simple problem, LRE often finds appropriate vectors and matrices just by
using rotation angles, without having to use the extra degree of freedom offered by the matrices

8



−30 −20 −10 0 10 20 30
−25

−20

−15

−10

−5

0

5

10

15

20
0

1

2

3

4

5

6

7

8
9

10

11

12 13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33
34

35

36

37
38

39

40

4142

43

44

45

46

47

48

49

Figure 6: Vectors obtained after learning the modular number problem with numbers [0 : : : 49],
operations f+1;�1;+2;�2;+3;�3;+4;�4;+0g50 in two dimensions. The dots are the result of
the multiplication Rc � ac for each triplet, c. This solution was obtained optimizing the goodness
function (eq.3) using scaled conjugate gradient for 2050 iterations. 350 triplets randomly chosen
out of 450 were used for training.

multiplicative factor - which is kept the same for every matrix (all the vectors can then also be kept
of the same length). But as the problem becomes more complicated, the system will typically make
use of this extra degree of freedom. For example if we try to solve the modular number problem
with numbers [0 : : : 49] and operations f+1;�1;+2;�2;+3;�3;+4;�4;+0g50 in two dimensions,
we shall usually find a solution similar to the one in fig. 6, which was obtained training the system
using 350 triplets randomly chosen out of the 450 constituting the data set. The optimization
algorithm met the convergence criteria after 2050 iterations.

Let us now consider a non-modular version of the number problem with numbers [1 : : : 50]

and operations f+1;�1;+2;�2;+3;�3;+4;�4;+0g. When the result of the operation is outside
[1 : : : 50] the corresponding triplet is simply omitted from the data set. In two dimensions LRE was
able to find the correct solution for all the 430 valid triplets of the problem, after training on 330

randomly chosen triplets for few hundred iterations. Figure 7 shows a typical vector configuration
after learning. For the non-modular number problem, LRE increases the separation between the
numbers by using different lengths for the concept vectors so that the numbers lie on a spiral.
In the figure we also indicated with a cross the result of multiplying R � a when the result of the
operation is outside [1 : : : 50]. Notice how the crosses are clustered, on the “ideal” continuation
of the spiral - the answer to 49 + 3 is located at almost exactly the same point as the answers to
48 + 4, 50 + 2, and so on. The system anticipates where the vectors representing numbers outside
the given interval ought to be placed, if it had some information about them. We shall discuss this
in the next section.

Now consider the non-modular numbers problem with numbers [1 : : : 50] and operations
f+1;�1;+2;�2;+3;�3;+0;�3;�2;�1;�2;�3g. When we tried to solve it in 2 dimensions LRE

9



30 20 10 0 10 20 30

20

15

10

5

0

5

10

15

20

25

Figure 7: Vectors obtained after learning the non-modular number problem with numbers
[1 : : : 50], operations f+1;�1;+2;�2;+3;�3;+4;�4;+0g in two dimensions. Vector endpoints are
marked with stars and a solid line connects the ones representing consecutive numbers. Smaller
numbers are in the center of the spiral. The dots are the result of the multiplication Rc

� a
c for

each triplet, c. The crosses are the result of the multiplication R � a when the result of the opera-
tion is outside [1 : : : 50]. This solution was obtained optimizing the goodness function (eq.3) using
scaled conjugate gradient for 1485 iterations. 330 triplets randomly chosen out of 430 were used
for training

could not find a solution that satisfied all the triplets. Using gradient ascent to optimize the mod-
ified goodness function while annealing the temperature, LRE found a solution that gave the
correct answer for all the addition and subtraction operations but the matrices representing mul-
tiplications and divisions mapped all vectors to the origin. In 3 dimensions, however, LRE is able
to find a perfect solution. For numbers in [1 : : : 30] the solution found optimizing eq.3 using scaled
conjugate gradient, is shown in Figure 8. The optimization algorithm met the convergence criteria
after 726 iterations. 1.

Generalization results

LRE is able to generalize well. In 2 dimensions, with numbers [0 : : : 9], and operations
f+1;�1;+2;�2;+3;�3;+4;�4;+0g10 we were able to train the system with just 70 of the 90
triplets in the training set, and yet achieve perfect results during testing on all the 90 cases. On
the same problem, but using numbers [0 : : : 49] and training with 350 triplets randomly chosen
out of the 450, we usually got very few errors during testing, and occasionally no errors. The
solution shown in fig.6, gave correct answers in 446 cases. The solution to the non-modular num-
ber problem, with numbers [1 : : : 50] and operations f+1;�1;+2;�2;+3;�3;+4;�4;+0g shown
in fig.7, was trained on 330 out of the total 430 triplets, and yet is able to achieve perfect results
during testing. It is worth pointing out that in order to do these generalizations the system had to
discover structure implicit in the data.

1A similar result is obtained with numbers in [1 : : : 50], but the figure is more cluttered

10



−10

0

10

20

−10

0

10

−15

−10

−5

0

5

10

15

19

25

22

1613

28

10
7

27

41

9

14

21

17

3

11

30

2
5

6

23
20

8

15
12

29

24

18

26

Figure 8: Vectors obtained after learning the non-modular number problem with numbers
[1 : : : 30], operations f+1;�1;+2;�2;+3;�3;+0;�3;�2;�1;�2;�3g in three dimensions. The
dots are the result of the multiplication Rc

� a
c for each triplet, c. This solution was obtained

optimizing the goodness function (eq.3) using scaled conjugate gradient for 726 iterations.

4.2 Results on the Family Tree Problem

Our first attempt was to use LRE on a modified version of the family tree problem, which used the
same family trees as fig.2, but only 6 sexless relations instead of the original 12 of Hinton (1986).
These relations were: spouse, child, parent, sibling, nipote, zii (the last 2 being the Italian words
for “either nephew or niece” and “either uncle or aunt”). As before there were 112 triplets.

Using 2 dimensions LRE was not able to complete all the 112 triplets, while it obtained a perfect
solution using 3 dimensions. However, the 2-dimensional solution is quite interesting, so let us
analyzing that. Fig.9a,b show the weight diagrams of matrices and vectors found after training
on all the data, and fig.9c is a drawing of the concept vectors in 2-space, with vectors representing
people in the same family tree being connected to each other.

We can see that nationality is coded using the sign of the second component of each vector,
negative for English people, and positive for Italian people. The first component of each vector
codes the generation to which that person belongs (a three valued feature): for the English people
the first generation has negative values, the third generation has large positive values, while the
second generation has intermediate positive values. The representations of the two families are
linearly separable, and the two families are exactly symmetric with respect to the origin. An
interesting fact is that some of the people were coded by identical vectors (for the English people,
Christopher and Penelope, Andrew and Christine, Colin and Charlotte). This is clever if you
notice that these people have the same children, same nephews and nieces and same uncles and
aunts. Clearly this has as side effect that each of them is spouse or sibling of the correct person,
but also of himself. This fact, together with the fact that the other people of each family are very
close to each other, causes 14 errors when the 112 triplets were tested.

11



C
hr

is
to

ph
er

A
nd

re
w

A
rt

hu
r

Ja
m

es

C
ha

rle
s

C
ol

in

P
en

el
op

e

C
hr

is
tin

e

M
ar

ga
re

t

V
ic

to
ria

Je
nn

ife
r

C
ha

rlo
tte

A
ur

el
io

B
or

to
lo

P
ie

rin
o

P
ie

tr
o

M
ar

ce
llo

A
lb

er
to

M
ar

ia

E
m

m
a

G
ra

zi
a

G
ia

nn
in

a

D
or

al
ic

e

M
ar

ie
m

m
a

spouse child parent sibling nipote zii

ENGLISH ITALIAN

(a)

(b)

25 20 15 10 5 0 5 10 15 20 25

20

15

10

5

0

5

10

15

20

ITALIAN

ENGLISH

Alberto & 
Mariemma

Bortolo &
Emma

Aurelio
& Maria

Christopher
& Penelope

Colin &
Charlotte

Andrew &
Christine

(c)

Figure 9: (a) Diagrams of the matrices and (b) the vectors obtained for the modified family tree
problem. (c) Layout of the vectors in 2D space. Vectors are represented by *, the ones in the same
family tree are connected to each other. The dots are the result of the multiplication Rc

�a
c for each

triplet c. The solution shown here was obtained using gradient ascent to optimize the modified
goodness function while the temperature was annealed.

12



4
2

0
2

4

5

0

5

6

4

2

0

2

4

6

ITALIAN

ENGLISH

Figure 10: Layout of the vectors in 3D space obtained for the family tree problem. Vectors are
represented by *, the ones in the same family tree are connected to each other. The dots are the
result of the multiplication Rc � ac for each triplet, c. The solution shown here was obtained using
gradient ascent to optimize the modified goodness function while the temperature was annealed.

We used LRE in 3 dimensions on the family tree problem. When trained on all the data, LRE
could correctly complete all 112 triplets and the resulting concept vectors are shown in figure 10.
We can see that the Italian and English families are symmetric with respect to the origin and are
linearly separable. When more than one answer was correct (as in the aunts of Colin) the two
concept vectors corresponding to the two correct answers were always the two vectors closest to
Rc �ac. Table 2 reports the distances of the each vector from the result of multiplying concept Colin
and relation aunt.

Generalization results

On the modified version of the family tree problem, in 3 dimensions the system generalized per-
fectly on 8 new cases, while it got 1 wrong when it was tested on 12 new cases. On the original
family tree problem, in 3 dimensions LRE generalized perfectly when 12 triplets were held out
during training. In particular, even when all the information on “who are the aunts of Colin” (i.e
both triplets (Colin, aunt, Jennifer) and (Colin, aunt, Margaret)) was held out during training, the
system was still able to answer correctly. Notice how, in order to do this, the system had first to
use the implicit information in the other triplets to figure out both the meaning of the relation aunt
and the relative position of Colin, Margaret and Jennifer in the tree, and then use this information
to make the correct inference.

The generalization achieved by LRE is much better than the neural networks of Hinton (1986)
and O’Reilly (1996) which typically made one or two errors even when only 4 cases were held out
during training.

13



PERSON DISTANCE
Jennifer 1.6064
Margaret 1.6549
Emma 3.0603

Charlotte 3.0865
Penelope 3.2950
Bortolo 3.7471

Christopher 3.9597
Giannina 4.1198
Marcello 4.4083
Alberto 5.1281
Arthur 5.2167
Colin 5.2673
Pierino 5.4619
James 5.4858
Charles 5.5943
Pietro 5.6432
Andrew 6.3581
Aurelio 6.3880
Mariemma 6.5021
Victoria 6.6853
Christine 6.6973
Maria 6.7626
Grazia 7.1801

Doralice 7.4230

Table 2: Distance of each concept vector from the result of multiplying concept Colin and relation
aunt for the solution to the family tree problem shown in figure 10.

4.3 Results of Principal Components Analysis on number and family tree problems

We have used Principal Components Analysis (PCA) to complete the triplets of the modular and
non-modular number problem and of the family tree problem, in order to see how it compares
with LRE. For the number problems, we used numbers [0 : : : 9] and operations f+1;�1;+2;�2;+3;�3;+4;�4;+0g

For each concept and relation we used a one-out-of-n codification, thus each triplet for the number
problems was a point in 10 + 9 + 10 dimensions, while a triplet for the family tree problem was a
point in 24+12+24 dimensional space. Having chosen a certain number of principal components,
we tried to complete the triplets. For each triplet c, given the first 2 terms (a c, Rc) we choose as
completion the concept b such that the point (ac; Rc;b) was the closest to the PCA plane for every
possible choice of b. 2 Figure 11 shows the number of triplets which were correctly completed vs.
the number of principal components which were used for the modular, non-modular and family
tree problem respectively when 0, 10 and 20 triplets were omitted from the training set. Notice
how PCA had an excellent performance on the non-modular numbers problem but not on the
modular version. In general the performance of this method is much worse than LRE.

2We also tried to reconstruct the third term of a triplet by setting all its components to zero, then projecting the
resulting triplet into principal components space, and then back into the original space, but the results that we obtained
were not as good.

14



0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

20

number of Principal Components

nu
m

be
r 

of
 c

or
re

ct
 tr

ip
le

ts

0 
10
20

(a)

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

number of Principal Components

nu
m

be
r 

of
 c

or
re

ct
 tr

ip
le

ts

0 
10
20

(b)

0 10 20 30 40 50 60
0

20

40

60

80

100

120

number of Principal Components

nu
m

be
r 

of
 c

or
re

ct
 tr

ip
le

ts

0 
10
20

(c)

Figure 11: Number of triplets which were correctly completed vs. the number of principal com-
ponents used. The solid lines were obtained when all triplets were used for training; the dashed
lines were obtained omitting 10 triplets from the training set; the dash-dotted lines were obtained
omitting 20 triplets from the training set. (a) modular number problem with numbers [0 : : : 9],
operations f+1;�1;+2;�2;+3;�3;+4;�4;+0g10 (b) number problem with numbers [0 : : : 9], op-
erations f+1;�1;+2;�2;+3;�3;+4;�4;+0g (c) family tree problem.

15



Figure 12: Diagram of the components of the vectors, obtained after learning the family tree prob-
lem with real data for 2000 iterations using scaled conjugate gradient. All 644 triplets were used
during training. When testing, the system correctly completed 635 triplets. Each column repre-
sents a person. The first 22 vectors represent the males and the others the females in the family
tree. The numbers denote the generation of the tree they belong to.

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

number of triplets omitted during training

nu
m

be
r 

of
 e

rr
or

s

Figure 13: Plot of the errors made by the system when tested on the whole set of 644 triplets vs. the
number of triplets which were omitted during training. Omitted triplets were chosen randomly.

4.4 Results on the Family Tree Problem with real data

We have used LRE to solve a much bigger family tree task. The tree is a branch of the real family
tree of one of the authors containing 49 people. Using the 12 relations seen earlier it generates a
data set of 644 triplets. LRE was able to learn the tree with as few as 6 dimensions using scaled
conjugate gradient.

When we used a small number of dimensions, it was sometimes possible to recognize some
of the semantic features in the learned representation. Figure 12 shows the diagram of the com-
ponents of the vectors, each column represents a person. The first 22 vectors represent the males
and the others the females in the family tree. The numbers denote the generation of the tree they
belong to. We can see that the sign and magnitude of the third component of each vector codes
the generation that person belongs to: the first, third and fifth generation have negative sign, and
decreasing magnitudes; the second and forth have positive sign and decreasing magnitude.

The generalization performance was very good. Figure 13 is the plot of the number of errors
made by the system when tested on the whole data set after being trained on a subset of it using
10 dimensions.

Triplets were extracted randomly from the training set and the system was run for 5000 itera-
tions, or until the convergence criteria were met. The results shown are the median of the number

16



of errors over 3 different runs, since the system very occasionally failed to converge. We can see
that the performance degrades slowly as an increasing number of triplets is omitted from the
training data.

5 Generalization to new concepts and relations

As pointed out earlier, the system anticipates where the vectors for the numbers outside the
learned range ought to be placed, if it had some information about them. In this section we in-
vestigated how a solution we obtain after learning on a set of data, can be modified to include
information about new concepts and relations.

Let us start by training a system using LRE on the non-modular number problem, with num-
bers [1 : : : 15] and operations f+1;�1;+2;�2;+3;�3;+4;�4;+0g but omitting all the information
about a certain number from the training set, i.e. omitting all the triplets which contain that num-
ber either as the first or third term. Figure 14a shows the vectors which are found after 242 itera-
tions of scaled conjugate gradient when learning in two dimensions after having eliminated all the
information about number 10 from the training data. Notice how a point is clearly “missing” from
the spiral in the place where number 10 should go. If we now add some information about the
missing number to the training data and continue the training, we see that in very few iterations
the vector representing that number is placed exactly where it is supposed to go. It is interest-
ing that a single triplet containing information about a new number is enough for the system to
position it correctly. This happens both when we allow all the vectors and matrices to continue
learning after we have added the extra data point, or when we keep all vectors and matrices fixed,
and we allow only the new vector to learn. Figure 14b,c shows the solution obtained starting from
the solution shown in fig.14a and training using only triplet (10;+1; 11). After having learned
the position of the new number from that one triplet, the system is then able to generalize, and
answers correctly to all the triplets in the complete data set.

We also tried to learn a new relationship. Clearly this is more difficult since a new matrix to
be learned has more degrees of freedom. In general we saw that in the number problem several
triplets were necessary in order to learn a new matrix that would be able to correctly complete all
the triplets in the data.When we trained a system using LRE on the non-modular number problem
in 2 dimensions, with numbers [1 : : : 15] and operations f+1;�1;+2;+3;�3;+4;�4;+0g, it was
usually possible to learn the matrix for the �2 operation using four triplets when all the vectors
and matrices were allowed to learn. Six triplets were usually necessary if only the new matrix was
allowed to learn, while everything else was kept fixed.

Finally we tried the same experiment on the family tree with real data. Here the situation
is not as straightforward as for the numbers, since not all triplets contain the same amount of
information about a concept or a relation. The triplet “Pietro has wife Giannina” makes it possible
to locate Pietro exactly on the family tree. But the triplet “Pietro has nephew Giulio” leaves a lot of
uncertainty about Pietro, who could be a sibling of one of Giulio’s parents or someone married to
one of the sibling of Giulio’s parents. Similarly, “Giannina has son Alberto” has more information
about relation son than “Giannina has aunt Virginia” has about relation aunt. For these reason the
performance of the system after learning a new person vector or a new relation matrix depended
on which triplets were added for training.

The father of one author is mentioned in 14 triplets in the data set. If such information was
omitted, LRE was able to complete all the remaining triplets correctly after having been trained
for 1501 iterations. Then it was sufficient to add a single triplet stating who that person is married
to, in order to locate him correctly in the family tree. On the other hand it made 5 errors if it

17



−20 −15 −10 −5 0 5 10 15

−15

−10

−5

0

5

10

1 

2 

3 

4 
5 

6 

7 

8 

9 

11 

12 

13 

14 

15 

(a)

−20 −15 −10 −5 0 5 10 15

−15

−10

−5

0

5

10

1 

2 

3 

4 5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

(b)

−20 −15 −10 −5 0 5 10 15

−15

−10

−5

0

5

10

1 

2 

3 

4 
5 

6 

7 

8 
9 

10 

11 

12 

13 

14 

15 

(c)

Figure 14: Vectors obtained after learning the number problem with numbers [1 : : : 15], operations
f+1;�1;+2;�2;+3;�3;+4;�4;+0g. Vector endpoints are marked with stars and a solid line con-
nects the ones representing consecutive numbers. The dots are the result of the multiplication
Rc � ac for each triplet, c. (a) The information about number 10 was omitted. The optimization
algorithm met the convergence criteria after 242 iterations using scaled conjugate gradient. Triplet
(10;+1; 11) was then added to the data set and the system was trained starting from this config-
uration. (b) all matrices and vectors were allowed to learn, the algorithm met the convergence
criteria after 239 iterations (c) only the vector representing number 10 was allowed to learn, while
everything else was kept fixed, the algorithm met the convergence criteria after 2 iterations

18



was trained adding only a triplet that specified one of his nephews. When we tried to learn a
new matrix, the high dimensionality required by the problem means that a very high number of
triplets was necessary for learning.

6 Further developments

A minor modification, which we have not tried yet, should allow the system to make use of nega-
tive data of the form “Christopher is not the father of Colin”. This could be handled by minimizing
G instead of maximizing it, while using Christopher as the “correct answer”.

One limitation of the version of LRE presented here is that it always picks some answer to any
question even if the correct answer is not one of the concepts presented during training. This lim-
itation can be overcome by using a threshold distance so that the system answers “don’t know”
if the vector it generates is further than the threshold distance from all known concepts. Prelimi-
nary experiments with the non-modular number problems have been very successful. Instead of
ignoring triplets in which the operation produces an answer outside the set of known numbers,
we include these triplets, but make the correct answer “don’t know”. If, for example, the largest
known number is 10, LRE must learn to make the answer to 9 + 3 be further than the threshold
distance from all the known numbers. It succeeds in doing this and it locates the answer to 9 + 3

at almost exactly the same point as the answers to 10 + 2 and 8 + 4. In a sense, it has constructed
a new concept. See figure 15.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Figure 15: Vectors obtained after learning the number problem with numbers [1 : : : 10], operations
f+1;�1;+2;�2;+3;�3;+4;�4;+0g. Vector endpoints are marked with stars and a solid line con-
nects the ones representing consecutive numbers. The dots are the result of the multiplication
Rc � ac for each triplet c such that the answer is among the known concepts. The crosses are the
result of the multiplication Rk � ak for each triplet k such that the correct answer is “don’t know”.
In all cases the system answered correctly to all the questions in the data set. All the triplets were
used for training.

Another limitation is that a separate matrix is needed for each relation. This requires a lot of
parameters because the number of parameters in each matrix is the square of the dimensionality

19



of the concept vector space. When there are many different relations it may be advantageous to
model their matrices as linear combinations of a smaller set of learned basis matrices. This has
some similarity to the work of Tenenbaum and Freeman (1996).

In this paper, we have assumed that the concepts and relations are presented as arbitrary sym-
bols so there is no inherent constraint on the mapping from concepts to the vectors that represent
them. LRE can also be applied when the “concepts” already have a rich and informative represen-
tation. Consider the task of mapping pre-segmented intensity images into the pose parameters of
the object they contain. This mapping is non-linear because the average of two intensity images is
not an image of an object at the average of the positions, orientations and scales of the objects in
the two images. Suppose we have a discrete sequence of images I(1) : : : I(t) : : : I(T ) of a station-
ary object taken with a moving camera and we know the camera motion M(t; t+1) between each
successive image pair.

In an appropriately parameterized space of pose parameters, the camera motion can be repre-
sented as a transformation matrix, R(t; t+ 1), that converts one pose vector into the next:

R(t; t+ 1)v(t) = v(t+ 1) (9)

The central assumption of LRE is therefore exactly satisfied by the representation we wish to learn.
So it should be possible to learn a mapping from intensity images to pose vectors and from sensory
representations of camera motions to transformation matrices by backpropagating the derivatives
obtained from Eq. 3 through a non-linear function approximator such as a multilayer neural net-
work. Preliminary simulations by Sam Roweis (personal communication) show that it is feasible
to learn the mapping from preprocessed intensity images to pose vectors if the mapping from
camera motions to the appropriate transformation matrices is already given.

7 Discussion

Linear Relational Embedding is a new method for discovering distributed representations of con-
cepts and relations from data consisting of binary relations between concepts. On the task on
which we tried it, it was able to learn sensible representations of the data, and this allowed it to
generalize well.

In the family tree task with real data, the great majority of the generalization errors were of a
specific form. The system appears to believe that “brother of” means “son of parents of”. It fails to
model the extra restriction that people cannot be their own brother. This failure nicely illustrates
the problems that arise when there is no explicit mechanism for variable binding.

A key technical trick that was required to get LRE to work was the use of the discriminative
goodness function in Eq. 3. If we simply minimize the squared distance between Rc

� a
c and

b
c all the concept vectors rapidly shrink to 0. It may be possible to apply this same technical

trick to other ways of implementing relational structures in neural networks. Pollack’s RAAM
(Pollack, 1990) and Sperduti’s LRAAM’s (Sperduti, 1994) minimize the squared distance between
the input and the output of an autoencoder and they also learn the representations that are used
as input. They avoid collapsing all vectors to 0 by insisting that some of the symbols (terminals
and labels) are represented by fixed patterns that cannot be modified by learning. It should be
possible to dispense with this restriction if the squared error objective function is replaced by a
discriminative function which forces the output vector of the autoencoder to be closer to the input
than to the alternative input vectors.

20



References

Bridle, J. (1990). Probabilistic interpretation of feedforward classification network outputs, with relation-
ships to statistical pattern recognition. In Soulié, F. F. and Hérault, J., editors, Neurocomputing: Algo-
rithms, Architectures and Applications, pages 227–236. Springer-Verlag, New York.

Cleeremans, A., Servan-Schreiber, D., and McClelland, J. (1989). Finite state automata and simple recurrent
neural networks. Neural Computation, 1(3):372–381.

Deerwester, S., Dumais, S. T., Furnas, G., Landauer, T. K., and Harshman, R. (1990). Indexing by latent
semantic analysis. Journal of the American Society for Information Science, 41:391–407.

Elman, J. (1990). Finding structure in time. Cognitive Science, 14:179–211.

Giles, C., Miller, C., Chen, D., Chen, H., Sun, G., and Lee, Y. (1992). Learning and extracting finite state
automata with second order recurrent neural networks. Neural Computation, 4(3)::380.

Hinton, G. E. (1986). Learning distributed representations of concepts. In Proceedings of the Eighth Annual
Conference of the Cognitive Science Society, pages 1–12. Erlbaum, NJ.

Kruskal, J. B. (1964). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis.
Psychometrika, 29, 1:1–27.

Landauer, T. K. and Dumais, S. T. (1997). A solution to Plato’s problem: The latent semantic analysis theory
of acquisition, induction and representation of knowledge. Psychological Review, 104, 2:211–240.

Landauer, T. K., Laham, D., and Foltz, P. (1998). Learning human-like knowledge by singular value de-
composition: A progress report. In Jordan, M. I., Kearns, M. J., and sara A. Solla, editors, Advances in
Neural Processing Information Systems 10, pages 45–51. The MIT Press, Cambridge Massachusetts.

Møller, M. (1993). A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks,
6:525–533.

O’Reilly, R. C. (1996). The LEABRA model of neural interactions and learning in the neocortex. PhD thesis,
Department of Psychology, Carnegie Mellon University.

Pollack, J. B. (1990). Recursive distributed representations. Artificial Intelligence, 46:77–105.

Rumelhart, D. E., Hinton, G. E., and Williams, R. (1986). Learning internal representation by error propa-
gation. In Rumelhart, D. E., McClelland, J. L., and the PDP research Group, editors, Parallel Distributed
Processing, volume 1, pages 283–317. The MIT Press.

Sperduti, A. (1994). Labeling RAAM. Connection Sci., 6:429–459.

Tenenbaum, J. B. and Freeman, W. T. (1996). Separating style and content. In Mozer, M. C., Jordan, M. I.,
and Petsche, T., editors, Advances in Neural Processing Information Systems 9, pages 662–668. The MIT
Press, Cambridge Massachusetts.

Young, F. W. and Hamer, R. M. (1987). Multidimensional Scaling: History, Theory and Applications. Hillsdale,
NJ: Lawrence Erlbaum Associates, Publishers,.

21


