
What kind of a graphical model is the brain?

Geoffrey E. Hinton
Canadian Institute for Advanced Research &

Department of Computer Science, University of Toronto
10 Kings College Road

Toronto, Canada M5S 3G4
hinton@cs.toronto.edu

Abstract

If neurons are treated as latent variables, our vi-
sual systems are non-linear, densely-connected
graphical models containing billions of variables
and thousands of billions of parameters. Cur-
rent algorithms would have difficulty learning a
graphical model of this scale. Starting with an
algorithm that has difficulty learning more than
a few thousand parameters, I describe a series
of progressively better learning algorithms all of
which are designed to run on neuron-like hard-
ware. The latest member of this series can learn
deep, multi-layer belief nets quite rapidly. It turns
a generic network with three hidden layers and
1.7 million connections into a very good genera-
tive model of handwritten digits. After learning,
the model gives classification performance that is
comparable to the best discriminative methods.

1 Introduction
Our perceptual systems make sense of the visual input using
a neural network that contains about 1013 synapses. There
has been much debate about whether our perceptual abilities
should be attributed to a few million generations of blind evo-
lution or to a few hundred million seconds of visual experi-
ence. Evolutionary search suffers from an information bottle-
neck because fitness is a scalar, so my bet is that the main
contribution of evolution was to endow us with a learning
algorithm that could make use of high-dimensional gradient
vectors. These vectors provide millions of bits of informa-
tion every second thus allowing us to perform a much larger
search in one lifetime than evolution could perform in our
entire evolutionary history.

So what is this magic learning algorithm? I have been in-
volved in attempts to answer this question using undirected
graphical models [Hinton and Sejnowski, 1986], directed
graphical models [Hinton et al., 1995], or no graphical model
at all [Rumelhart et al., 1986]. These attempts have failed as
scientific theories of how the brain learns because they sim-
ply do not work well enough. They have, however, produced
two neat tricks, one for learning undirected models and one
for learning directed models. In this paper, I describe some

recent work in collaboration with Simon Osindero and Yee-
Whye Teh that combines these two tricks in a surprising way
to learn a hybrid generative model that was first proposed by
Yee-Whye Teh. In this model, the top two layers form an
undirected associative memory. The remaining layers form
a directed acyclic graph that converts the representation in
the associative memory into observable variables such as the
pixels of an image. In addition to working well, this hybrid
model has some other nice features:

1. The learning finds a fairly good model quickly even in
deep directed networks with millions of parameters and
many hidden layers. For optimal performance, how-
ever, a slower fine-tuning phase is required.

2. The learning algorithm builds a full generative model of
the data which makes it easy to see what the distributed
representations in the deeper layers have in mind.

3. The inference required for forming a percept is both fast
and accurate.

4. The learning algorithm is unsupervised. For labeled
data, it learns a model that generates both the label and
the data.

5. The learning is local: adjustments to a synapse strength
depend only on the states of the pre-synaptic and post-
synaptic neuron.

6. The communication is simple: neurons only need to
communicate their stochastic binary states.

Section 2 describes a simple learning algorithm for undi-
rected, densely-connected, networks composed of stochastic
binary variables some of which are unobserved. Section 3
shows how to make this simple algorithm efficient by re-
stricting the architecture of the network. Section 4 introduces
the idea of variational approximations for learning directed
graphical models in which correct inference is intractable
and describes the “wake-sleep” algorithm that makes use of a
variational approximation in a multi-layer, directed network
of stochastic binary variables. All of these sections can be
safely ignored by people already familiar with these ideas.

Section 5 introduces the novel idea of a “complementary”
prior. Complementary priors seem about as probable as father
Christmas because, by definition, they exactly cancel the “ex-
plaining away” phenomenon that makes inference difficult in

directed models. Section 5.1 includes a simple example of a
complementary prior and shows the equivalence between re-
stricted Boltzmann machines and infinite directed networks
with tied weights.

Section 6 introduces a fast, greedy learning algorithm
for constructing multi-layer directed networks one layer at
a time. Using a variational bound it shows that as each new
layer is added, the overall generative model improves. The
greedy algorithm resembles boosting in its repeated use of the
same “weak” learner, but instead of re-weighting each data-
vector to ensure that the next step learns something new, it
re-represents it. Curiously, the weak learner that is used to
construct deep directed nets is itself an undirected graphical
model.

Section 7 shows how the weights produced by the efficient
greedy algorithm can be fine-tuned using the “up-down” al-
gorithm which is a contrastive version of the wake-sleep al-
gorithm.

Section 8 shows the pattern recognition performance of
a network with three hidden layers and about 1.7 million
weights on the standard MNIST set of handwritten digits.
When no knowledge of geometry is provided and there is no
special preprocessing, the generalization performance of the
network is 1.25% errors on the official test set. This beats the
1.5% achieved by the best back-propagation nets when they
are not hand-crafted for this particular application, and it is
quite close to the 1.1% or 1.0% achieved by the best support
vector machines.

Finally, section 9 shows what happens in the mind of the
model when it is running without being constrained by visual
input. The network has a full generative model, so it is easy
to look into its mind – we simply generate an image from its
high-level representations.

Throughout the paper, we will consider nets composed of
stochastic binary variables but the ideas can be generalized to
other models in which the log probability of a variable is an
additive function of the states of its directly-connected neigh-
bours.

2 The Boltzmann machine learning algorithm
A Boltzmann machine (Hinton and Sejnowski, 1986) is a net-
work of stochastic binary units with symmetric connections.
It is usually divided into a set of “visible” units which can
have data-vectors clamped on them, and a set of hidden units
that act as latent variables (see figure 1). Each unit, i, adopts
its “on” state with a probability that is a logistic function of
the inputs it receives from other units, j:

p(si = 1) =
1

1 + exp(−bi −
∑

j sjwij)
(1)

where bi is the bias of unit i, and wij is the weight on the sym-
metric connection between i and j. The weights and biases of
a Boltzmann machine define an energy function over global
configurations (i.e. binary state vectors) of the net. Using α
as an index over configurations of the visible units, and β for
configurations of the hidden units:

Eαβ = −
∑

i

bis
αβ
i −

∑

i<j

s
αβ
i s

αβ
j wij (2)

Figure 1: A Boltzmann machine composed of stochastic
binary units with symmetric connections. When data is
clamped on the visible units, a simple stochastic updating
rule infers a configuration of states of the hidden units that
is a good interpretation of the data. If no data is clamped and
the same updating rule is used for all of the units, the network
generates visible vectors from its model.

where s
αβ
i is the binary state of unit i in the global binary

configuration αβ. If units are chosen at random and their
binary states are updated using the stochastic activation rule
in Eq. 1 the Boltzmann machine will eventually converge to
a stationary probability distribution in which the probability
of finding it in any global state is determined by the energy of
that state relative to the energies of all the other global states:

Pαβ =
exp(−Eαβ)

∑

γδ exp(−Eγδ)
(3)

If we sum over all configurations of the hidden units, we get
the probability, at thermal equilibrium, of finding the visible
units in configuration α

Pα =

∑

β exp(−Eαβ)
∑

γδ exp(−Eγδ)
(4)

A Boltzmann machine can be viewed as a generative
model that assigns a probability, via Eq. 4, to each possi-
ble binary state vector over its visible units. By changing
the weights and biases, we can change the probability that
the model assigns to each possible visible vector. So we can
model a set of training vectors by adjusting the weights and
biases to maximize the sum of their log probabilities. A nice
feature of Boltzmann machines is that the maximum likeli-
hood learning rule for the weights is both simple and local.
We can learn a locally optimal set of weights by collecting
two sets of statistics:

• In the positive phase we clamp a training vector on the
visible units and then repeatedly update the hidden units
in random order using Eq. 1. Once the distribution
over hidden configurations has reached “thermal” equi-
librium with the clamped data-vector, we sample the
hidden state and record which pairs of units are both

on. By repeating this for the entire training set, we can
compute <sisj >+, the average correlation between i
and j when data is clamped on the visible units.

• In the negative phase we let the network run freely with
the visible units unclamped. Their states are updated in
just the same way as the hidden units. Once the distri-
bution over global configurations has reached equilib-
rium, we sample the states of all the units and record
which pairs are both on. By repeating this many times,
we can compute <sisj>

−, the average correlation be-
tween i and j when the network is running freely and
therefore producing samples from its generative model.

We can then follow the gradient of the log probability of
the data by using the simple rule

∆wij = ε(<sisj>
+ − <sisj>

−) (5)

where ε is a learning rate. It is very surprising that the learn-
ing rule is so simple because the gradient of the log likeli-
hood with respect to one weight depends in complicated ways
on all the other weights. In the back-propagation algorithm,
these dependencies are computed explicitly in the backward
pass. In the Boltzmann machine they show up as the differ-
ence between the local correlations in the positive and nega-
tive phases.

Unfortunately, the simplicity and generality of the Boltz-
mann machine learning algorithm come at a price. It can take
a very long time for the network to settle to thermal equi-
librium, especially in the negative phase when it is uncon-
strained by data but needs to be highly multi-modal. Also,
the gradient used for learning is very noisy because it is the
difference of two noisy expectations. These problems make
the general form of the algorithm impractical for large net-
works with many hidden units.

3 Restricted Boltzmann machines and
contrastive divergence learning

If we are willing to restrict the architecture of a Boltzmann
machine by not allowing connections between hidden units,
the positive phase no longer requires any settling. With a
data-vector clamped on the visible units, the hidden units are
all conditionally independent, so we can apply the update rule
in Eq. 1 to all the units at the same time to get an unbiased
sample from the posterior distribution over hidden configura-
tions. This makes it easy to measure the first correlation in
Eq. 5.

If we also prohibit connections between visible units, we
can update all of the visible units in parallel given a hidden
configuration. So the second correlation in Eq. 5 can be found
by alternating Gibbs sampling as shown in figure 2. Unfortu-
nately we may need to run the alternating Gibbs sampling for
a long time before the Markov chain converges to the equilib-
rium distribution. Fortunately, if we start the Markov chain at
the data distribution, learning still works well even if we only
run the chain for a few steps [Hinton, 2002]. This gives an
efficient learning rule:

∆wij = ε(<sisj>
0 − <sisj>

n) (6)

Figure 2: This depicts a Markov chain that uses alternating
Gibbs sampling. In one full step of Gibbs sampling, the hid-
den units in the top layer are all updated in parallel by apply-
ing Eq. 1 to the inputs received from the the current states
of the visible units in the bottom layer, then the visible units
are all updated in parallel given the current hidden states. The
chain is initialized by setting the binary states of the visible
units to be the same as a data-vector. The correlations in the
activities of a visible and a hidden unit are measured after the
first update of the hidden units and again at the end of the
chain. The difference of these two correlations provides the
learning signal for updating the weight on the connection.

where the superscript 0 indicates that the correlation is mea-
sured at the start of the chain with a data-vector clamped on
the visible units and n indicates that the correlation is mea-
sured after n full steps of Gibbs sampling. The angle brack-
ets denote expectations over both the choice of data-vector
and the stochastic updating used in the Gibbs sampling. This
learning rule does not follow the gradient of the log like-
lihood, but it does closely approximate the gradient of an-
other function, contrastive divergence, which is the difference
of two Kullback-Leibler divergences [Hinton, 2002]. Intu-
itively, it is not necessary to run the chain to equilibrium in
order to see how the data distribution is being systematically
distorted by the model. If we just run the chain for a few steps
and then lower the energy of the data and raise the energy of
whichever configuration the chain preferred to the data, we
will make the model more likely to generate the data and
less likely to generate the alternatives. An empirical inves-
tigation of the relationship between the maximum likelihood
and the contrastive divergence learning rules can be found in
[Carreira-Perpinan and Hinton, 2005].

Contrastive divergence learning in a restricted Boltzmann
machine is efficient enough to be practical [Mayraz and Hin-
ton, 2001]. Variations that use real-valued units and differ-
ent sampling schemes are described in [Teh et al., 2003] and
have been quite successful for modeling the formation of to-
pographic maps [Welling et al., 2003] and for denoising nat-
ural images [Roth and Black, 2005]. However, it appears that
the efficiency has been bought at a high price: It is not pos-
sible to have deep, multilayer nets because these take far too
long even to reach conditional equilibrium with a clamped
data-vector. Also, nets with symmetric connections do not
give a causal model in which the data is explained in terms of
underlying causes.

The next section describes a simple learning algorithm for
an apparently quite different type of network that uses di-

rected connections. This learning algorithm also has defi-
ciencies, but it can be combined with contrastive divergence
learning in a surprising way to produce an algorithm that
works much better and is significantly more similar to the
real brain.

4 Variational learning
Inference in directed graphical models that use non-linear,
distributed representations is difficult because of a phe-
nomenon called “explaining away” [Pearl, 1988] which cre-
ates dependencies between hidden variables. This is illus-
trated in figure 3. Radford Neal [Neal, 1992] showed that it
was possible to use Gibbs sampling to perform inference cor-
rectly in multilayer directed networks composed of the same
type of binary stochastic units as are used in Boltzmann ma-
chines. The communication required is more complicated
than in a Boltzmann machine because in addition to seeing
the binary states of its ancestors and descendants, a unit needs
to see the probability that each of its descendants would be
turned on by the current states of all that descendant’s an-
cestors. However, once we have a sample from the poste-
rior distribution over configurations of the hidden units, the
maximum likelihood learning rule for updating the directed
connection from j to i is very simple:

∆wji = εsj(si − ŝi) (7)

where ε is a learning rate and ŝi is the probability that i would
be turned on by the current states of all its ancestors. There
is no need for a “negative phase” because directed models do
not require the awkward normalizing term that shows up in
the denominator of Eq. 3. Radford Neal showed that logistic
belief nets are somewhat easier to learn than Boltzmann ma-
chines, but the use of Gibbs sampling to get samples from the
posterior distribution still makes it very tedious to learn large,
deep nets.

Rich Zemel and I realised that it might still be possible
to learn a belief net that contained a layer of binary stochas-
tic hidden units even when the cost of computing the pos-
terior distribution, or sampling from it, was prohibitive. In-
stead of trying to perform maximum likelihood learning, we
adopted a coding perspective and attempted to learn a model
that would minimize the description length of the data [Zemel
and Hinton, 1995]. The idea is that the sender and receiver
both have access to the model and instead of communicating
a data-vector directly, the sender first communicates a hid-
den configuration of the model. This costs some bits, but it
also gives the receiver a good idea of what data to expect.
Given these expectations, the data-vector can be communi-
cated more cheaply1. So it appears that the expected cost of
communicating a data-vector is:

C(x) = −
∑

α

Q(yα|x) [log p(yα) + log p(x|yα)] (8)

1Shannon showed that, using an efficient block coding scheme,
the cost of communicating a discrete value to a receiver is asymp-
totically equal to the negative log probability of that value under
a probability distribution that has already been agreed upon by the
sender and the receiver.

Figure 3: A simple logistic belief net containing two inde-
pendent, rare causes that become highly anti-correlated when
we observe the house jumping. The bias of −10 on the earth-
quake node means that, in the absence of any observation, this
node is e10 times more likely to be off than on. If the earth-
quake node is on and the truck node is off, the jump node has
a total input of 0 which means that it has an even chance of
being on. This is a much better explanation of the observa-
tion that the house jumped than the odds of e−20 which apply
if neither of the hidden causes is active. But it is wasteful to
turn on both hidden causes to explain the observation because
the odds on them both happening are e−10 × e−10 = e−20.

where yα is a configuration of the hidden units, Q(yα|x) is
the probability that the sender will choose to use yα in order
to communicate data-vector x, log p(yα) is the cost of com-
municating yα to a receiver who already has the model and
log p(x|yα) is the cost of communicating x to a receiver who
has both the model and the hidden configuration yα. Rich
soon discovered that it was better to minimize a different
function and we eventually understood why.

Suppose there are two different hidden configurations that
give the same communication cost for a data-vector. The
sender can flip a coin to decide which one to use. After receiv-
ing the data-vector, the receiver can figure out what choices
were available to the sender and he can therefore figure out
the value of the random bit produced by the coin. So if there
are two equally good hidden configurations, the sender can
communicate one additional bit from a random bit stream by
his choice of configuration. In general, the number of extra
bits is equal to the entropy of the sender’s distribution across
hidden configurations. All of these extra bits can be used to
communicate some other bit string, so we need to subtract
them from the communication cost of the data-vector:

C(x) = −
∑

α

Q(yα|x) [log p(yα) + log p(x|yα)]

−

(

−
∑

α

Q(yα|x) log Q(yα|x)

)

(9)

If the sender picks hidden configurations from their true
posterior distribution, the communication cost is minimized
and is equal to the negative log probability of the data-vector

under the model. But if it is hard to sample from the true pos-
terior, the sender can use any other distribution he chooses.
The communication cost goes up, but it is still perfectly well-
defined. The sender could, for example, insist on using a fac-
torial distribution in which the states of the hidden units are
chosen independently. The communication cost will then be
an upper bound on the negative log probability of the data un-
der the model and by minimizing the communication cost we
will either push down the negative log probability of the data
or we will make the bound tighter. The looseness of the bound
is just the Kullback-Liebler divergence between the distribu-
tion used by the sender and the true posterior, P (yα|x).

− log p(x) = C(x) −
∑

α

Q(yα|x) log
Q(yα|x)

p(yα|x)
(10)

The use of an approximate posterior distribution to bound
log p(x) [Neal and Hinton, 1998] is now a standard way to
learn belief nets in which inference is intractable [Jordan et
al., 1999].

4.1 The wake-sleep algorithm
A simple way to make use of variational learning in a multi-
layer logistic belief net is to use a set of “recognition” con-
nections that compute a factorial approximation to the pos-
terior distribution in one layer when given the binary states
of the units in the layer below [Hinton et al., 1995]. These
recognition connections will not, in general, have the same
values as the corresponding generative connections. Given a
set of recognition weights, it is easy to update the generative
weights to follow the gradient of the description cost in Eq. 9.
We use a data-vector to set the states of the visible units and
then we use the recognition connections to compute a prob-
ability for each unit in the first hidden layer. Then we use
these probabilities to pick independent binary states for all
the units in that layer. This is repeated for each hidden layer
in turn until we have a sample from the approximate poste-
rior. Given this sample the learning rule for the generative,
top-down weights is given by Eq. 7. This is the “wake” phase
of the wake-sleep algorithm.

The “correct” way to learn the recognition weights is to
follow the derivative of the cost in Eq. 9. The recognition
weights only affect the Q terms; they do not affect the p terms.
However, the derivatives w.r.t the Q terms are messy because
Q comes outside the log. So we make a further approxima-
tion. In the “sleep” phase, we perform an ancestral pass to
generate a sample from the generative model. Starting at the
top layer, we pick binary states for the units from their inde-
pendent priors. Then we pick states for the units in each lower
layer using the probabilities computed by applying the gener-
ative weights to the states in the layer above. Once we have
completed an ancestral pass, we have both a visible vector
and its true hidden causes. So we can adjust the recognition
weights to be better at recovering the hidden causes from the
states of the units in the layer below:

∆wij = εsi(sj − ŝj) (11)

where ŝj is the probability that j would be turned on by the
current states of all its descendants.

The wake-sleep algorithm works quite well, but the sleep
phase is not exactly following the gradient of the variational
bound. As a result, it does the wrong thing when a data-
vector can be generated by two quite different hidden configu-
rations: Instead of picking one of these hidden configurations
and sticking with it, it averages the configurations to produce
a vague factorial distribution that gives significant probability
to many poor configurations.

5 Complementary priors
The phenomenon of explaining away makes inference diffi-
cult in directed networks. It is comforting that we can still
improve the parameters even when inference is done incor-
rectly, but it would be much better to find a way of eliminat-
ing explaining away altogether, even in models whose hidden
variables have highly correlated effects on the visible vari-
ables. Most people who use directed graphical models regard
this as impossible.

In a logistic belief net with one hidden layer, the prior dis-
tribution over the hidden variables is factorial because their
binary states are chosen independently when the model is
used to generate data. The non-independence in the posterior
distribution is created by the likelihood term coming from the
data. Perhaps we could eliminate explaining away in the first
hidden layer by using extra hidden layers to create a “com-
plementary” prior that has exactly the opposite correlations
to those in the likelihood term. Then, when the likelihood
term is multiplied by the prior, we will get a posterior that
is exactly factorial. This seems pretty implausible, but figure
4 shows a simple example of a logistic belief net with repli-
cated weights in which the priors are complementary at every
hidden layer. This net has some interesting properties.

5.1 An infinite directed model with tied weights
We can generate data from the infinite directed net by start-
ing with a random configuration at an infinitely deep hidden
layer and then performing an ancestral pass all the way down
to the visible variables. Clearly, the distribution that we will
get over the visible variables is exactly the same as the distri-
bution produced by the Markov chain in figure 2 so the infi-
nite directed net with tied weights is equivalent to a restricted
Boltzmann machine.2

We can sample from the true posterior distribution over all
of the hidden layers of the infinite directed net by starting with
a data vector on the visible units and then using the transposed
weight matrices to infer the factorial distributions over each
hidden layer in turn. At each hidden layer we sample from the
factorial posterior before computing the factorial posterior for
the layer above. This is exactly the same process as starting a
restricted Boltzmann machine at the data and letting it settle
to equilibrium. It is also exactly the same as the inference
procedure used in the wake-sleep algorithm, but in this net
it gives unbiased samples because the complementary prior
at each layer ensures that the posterior distribution really is
factorial.

2We can interpret any undirected model that uses Gibbs sampling
as an infinite directed model with tied weights.

Since we can easily sample from the true posterior, it is
easy to learn the weights in the infinite directed net. Let
us start by computing the derivative for a generative weight,
w00

ij , from a unit j in layer H0 to unit i in layer V0 (see figure
4). In a logistic belief net, the maximum likelihood learning
rule for a single data-vector, x, is:

∂ log p(x)

∂w00
ij

=<s0
j (s

0
i − ŝ0

i)> (12)

where < · > denotes an average over the sampled states
and ŝ0

i is the probability that unit i would be turned on if
the visible vector was stochastically reconstructed from the
sampled hidden states. Computing the posterior distribution
over the second hidden layer, V1, from the sampled binary
states in the first hidden layer, H0, is exactly the same process
as reconstructing the data, so s1

i is a sample from ŝ0
i and the

learning rule becomes:

∂ log p(x)

∂w00
ij

=<s0
j (s

0
i − s1

i)> (13)

Since the weights are replicated, the full derivative for a gen-
erative weight is obtained by summing the derivatives of the
generative weights between all pairs of layers:

∂ log p(x)

∂wij

= <s0
j (s

0
i − s1

i)>

+ <s1
i (s

0
j − s1

j)>

+ <s1
j (s

1
i − s2

i)>

+...

All of the vertically aligned terms cancel leaving the Boltz-
mann machine learning rule of Eq. 5. The same weights are
also used for inference and one might expect this to contribute
extra derivatives. Fortunately, all of these derivatives are zero.
The inference is exact so, to first order, small changes in the
inferred posteriors make no change in the log probability of
the data. The only reason the recognition weights ever change
is because they are tied to the generative weights.

6 A greedy learning algorithm for
transforming representations

An efficient way to learn a complicated model is to combine
a set of simpler models that are learned sequentially. To force
each model in the sequence to learn something different from
the previous models, the data is modified in some way af-
ter each model has been learned. In boosting [Freund, 1995],
each model in the sequence is trained on re-weighted data that
emphasizes the cases that the preceding models got wrong. In
one version of principal components analysis, the variance in
a modeled direction is removed thus forcing the next modeled
direction to lie in the orthogonal subspace. In projection pur-
suit [Friedman and Stuetzle, 1981], the data is transformed
by nonlinearly distorting one direction in the data-space to
remove all non-Gaussianity in that direction. The idea behind
our greedy algorithm is to allow each model in the sequence
to receive a different representation of the data. The model

Figure 4: An infinite logistic belief net with tied weights.

performs a non-linear transformation on its input vectors and
produces as output the vectors that will be used as input for
the next model in the sequence.

Figure 5 shows a multilayer generative model in which the
top two layers interact via undirected connections and all of
the other connections are directed. There are no intra-layer
connections and, to simplify the analysis, all layers have the
same number of units. It is possible to learn sensible (though
not optimal) values for the parameters W0 by assuming that
the parameters between higher layers will be used to construct
a complimentary prior for W0. This is equivalent to assuming
that all of the weight matrices are constrained to be equal. The
task of learning W0 under this assumption reduces to the task
of learning an RBM and although this is still difficult, good
approximate solutions can be found rapidly by minimizing
contrastive divergence (Hinton, 2002). Once W0 has been
learned, the data can be mapped through W T

0 to create higher-
level “data” at the first hidden layer.

If the RBM is a perfect model of the original data, the
higher-level “data” will already be modeled perfectly by the
higher-level weight matrices. Generally, however, the RBM
will not be able to model the original data perfectly and we
can make the generative model better using the following
greedy algorithm:

1. Learn W0 assuming all the weight matrices are tied.

2. Freeze W0 and commit ourselves to using W T
0 to infer

factorial approximate posterior distributions over the
states of the variables in the first hidden layer.

3. Keeping all the higher weight matrices tied to each
other, but untied from W0, learn an RBM model of the

Figure 5: A hybrid network. The top two layers have undi-
rected connections and form an associative memory. The lay-
ers below have directed, top-down, generative connections
that can be used to map a state of the associative memory
to an image. There are also directed, bottom-up, recognition
connections that are used to infer a factorial representation in
one layer from the binary activities in the layer below. In the
greedy initial learning the recognition connections are tied to
the generative connections.

higher-level “data” that is produced by using W T
0 to

transform the original data.

If this greedy algorithm changes the higher-level weight
matrices, it is guaranteed to improve the generative model.
The log probability of a single data-vector, x, under the mul-
tilayer generative model is bounded by

log p(x) ≥
∑

α

Q(yα|x) (log p(yα) + log p(x|yα))

−
∑

α

Q(yα|x) log Q(yα|x)

where yα is a binary configuration of the units in the first hid-
den layer, p(yα) is the prior probability of yα under the model
defined by the weights above H0 and Q(·|x) is any probabil-
ity distribution over y. The bound becomes an equality if and
only if Q(·|x) is the true posterior distribution.

When all of the weight matrices are tied together, the fac-
torial distribution over H0 produced by applying W T

0 to a
data-vector is the true posterior distribution, so at step 2 of
the greedy algorithm log p(x) is equal to the bound. Step 2
freezes both Q(·|x) and p(x|yα) and with these terms fixed,
the derivative of the bound is the same as the derivative of

∑

α

Q(yα|x) log p(yα) (14)

So maximizing the bound w.r.t. the weights in the higher lay-
ers is exactly equivalent to maximizing the log probability of

a dataset in which yα occurs with probability Q(yα|x). If
the bound becomes tighter, it is possible for log p(x) to fall
even though the lower bound on it increases, but log p(x) can
never fall below its value at step 2 of the greedy algorithm
because the bound is tight at this point and the bound always
increases.

The greedy algorithm can clearly be applied recursively,
so if we use the full maximum likelihood Boltzmann machine
learning algorithm to learn each set of tied weights and then
we untie the bottom layer of the set from the weights above,
we can learn the weights one layer at a time with a guar-
antee3 that we will never decrease the log probability of the
data under the full generative model. In practice, we replace
maximum likelihood Boltzmann machine learning algorithm
by contrastive divergence learning because it works well and
is much faster. The use of contrastive divergence voids the
guarantee, but it is still reassuring to know that extra layers
are guaranteed to improve imperfect models if we learn each
layer with sufficient patience.

To guarantee that the generative model is improved by
greedily learning more layers, it is convenient to consider
models in which all layers are the same size so that the higher-
level weights can be initialized to the values learned before
they are untied from the weights in the layer below. The same
greedy algorithm, however, can be applied even when the lay-
ers are different sizes.

7 Back-Fitting with the up-down algorithm
Learning the weight matrices one layer at a time is efficient
but far from optimal. Once the weights in higher layers
have been learned, neither the weights nor the simple infer-
ence procedure are optimal for the lower layers. The sub-
optimality produced by greedy learning is relatively innocu-
ous for supervised methods like boosting. Labels are often
scarce and each label may only provide a few bits of con-
straint on the parameters, so over-fitting is typically more of
a problem than under-fitting. Going back and refitting the
earlier models may, therefore, cause more harm than good.
Unsupervised methods, however, can use very large unla-
beled datasets and each case may be very high-dimensional
thus providing many bits of constraint on a generative model.
Under-fitting is then a serious problem which can be alle-
viated by a subsequent stage of back-fitting in which the
weights that were learned first are revised to fit in better with
the weights that were learned later.

After greedily learning good initial values for the weights
in every layer, we untie the “recognition” weights that are
used for inference from the “generative” weights that de-
fine the model, but retain the restriction that the posterior in
each layer must be approximated by a factorial distribution in
which the variables within a layer are conditionally indepen-
dent given the values of the variables in the layer below. A
variant of the wake-sleep algorithm described in section 4.1
can then be used to allow the higher-level weights to influ-
ence the lower level ones. In the “up-pass”, the recognition
weights are used in a bottom-up pass that stochastically picks

3The guarantee is on the expected change in the log probability.

a state for every hidden variable. The generative weights on
the directed connections are then adjusted using the maxi-
mum likelihood learning rule in Eq. 7. Because weights are
no longer tied to the weights above them, ŝi must be com-
puted using the states of the variables in the layer above i and
the generative weights from these variables to i. The weights
on the undirected connections at the top level are learned as
before by fitting the top-level RBM to the posterior distribu-
tion of the penultimate layer.

The “down-pass” starts with a state of the top-level asso-
ciative memory and uses the top-down generative connections
to stochastically activate each lower layer in turn. During
the down-pass, the top-level undirected connections and the
generative directed connections are not changed. Only the
bottom-up recognition weights are modified. This is equiva-
lent to the sleep phase of the wake-sleep algorithm if the as-
sociative memory is allowed to settle to its equilibrium distri-
bution before initiating the down-pass. But if the associative
memory is initialized by an up-pass and then only allowed to
run for a few iterations of alternating Gibbs sampling before
initiating the down-pass, this is a “contrastive” form of the
wake-sleep algorithm which eliminates the need to sample
from the equilibrium distribution of the associative memory.
The contrastive form also fixes several other problems of the
sleep phase. It ensures that the recognition weights are being
learned for representations that resemble those used for real
data and it also helps to eliminate the problem of mode aver-
aging. If, given a particular data vector, the current recogni-
tion weights always pick a particular mode at the level above
and ignore other very different modes that are equally good at
generating the data, the learning in the down-pass will not try
to alter those recognition weights to recover any of the other
modes as it would if the sleep phase used a pure ancestral
pass.

By using a top-level associative memory we also elimi-
nate a problem in the wake phase: Independent top-level units
seem to be required to allow an ancestral pass, but they mean
that the variational approximation is very poor for the top
layer of weights.

8 Performance on the MNIST database
8.1 Training the network
The MNIST database of handwritten digits contains 60,000
training images and 10,000 test images. Results for many
different pattern recognition techniques are already published
for this database so it is ideal for evaluating new pattern
recognition methods. The network4 shown in figure 6 was
trained on 44,000 of the training images that were divided
into 440 balanced mini-batches each containing 10 examples
of each digit class. The weights were updated after each mini-
batch.

In the initial phase of training, the greedy algorithm de-
scribed in section 6 was used to train each layer of weights

4Preliminary experiments with 16 × 16 images of handwritten
digits from the USPS database showed that a good way to model
the joint distribution of digit images and their labels was to use an
architecture of this type, but for 16 × 16 images, only 3/5 as many
units were used in each hidden layer.

Figure 6: The network used to model the joint distribution of
digit images and digit labels.

separately, starting at the bottom. Each layer was trained for
30 sweeps through the training set (called “epochs”). Dur-
ing training, the units in the “visible” layer of each RBM had
real-valued activities between 0 and 1. These were the nor-
malized pixel intensities when learning the the bottom layer
of weights. For training higher layers of weights, the real-
valued activities of the visible units in the RBM were the ac-
tivation probabilities of the hidden units in the lower-level
RBM. The hidden layer of each RBM used stochastic binary
values when that RBM was being trained. The greedy train-
ing took a few hours in Matlab on a 3GHz Xeon processor
and when it was done, the error-rate on the test set was 2.49%
(see below for details of how the network is tested).

When training the top layer of weights (the ones in the
associative memory) the labels were provided as part of the
input. The labels were represented by turning on one unit in a
“softmax” group of 10 units. When the activities in this group
were reconstructed from the activities in the layer above, ex-
actly one unit was allowed to be active and the probability of
picking unit i was given by:

pi =
exp(xi)

∑

j exp(xj)
(15)

where xi is the total input received by unit i. Curiously,
the learning rules are unaffected by the competition between
units in a softmax group, so the synapses do not need to know
which unit is competing with which other unit. The competi-
tion affects the probability of a unit turning on, but it is only
this probability that affects the learning.

After the greedy layer-by-layer training, the network was
trained, with a different learning rate and weight-decay, for
300 epochs using the up-down algorithm described in section
7. The learning rate, momentum, and weight-decay5 were

5No attempt was made to use different learning rates or weight-
decays for different layers and the learning rate and momentum were

Figure 7: All 49 cases in which the network guessed right but
had a second guess whose probability was within 0.3 of the
probability of the best guess. The true classes are arranged in
standard scan order.

chosen by training the network several times and observing
its performance on a separate validation set of 10,000 im-
ages that were taken from the remainder of the full training
set. For the first 100 epochs of the up-down algorithm, the
up-pass was followed by three full iterations of alternating
Gibbs sampling in the associative memory before perform-
ing the down-pass. For the second 100 epochs, six iterations
were performed, and for the last 100 epochs, ten iterations
were performed. Each time the number of iterations of Gibbs
sampling was raised, the error on the validation set decreased
noticeably.

The network that performed best on the validation set was
then tested and had an error rate of 1.39%. This network was
then trained on all 60,000 training images6 until its error-rate
on the full training set was as low as its final error-rate had
been on the initial training set of 44,000 images. This took
a further 59 epochs making the total learning time about a
week. The final network had an error-rate of 1.25%. The
errors made by the network are shown in figure 8. The 49
cases that the network gets correct but for which the second
best probability is within 0.3 of the best probability are shown
in figure 7.

The error-rate of 1.25% compares very favorably with the
error-rates achieved by discriminative, feed-forward neural
networks that have one or two hidden layers and are trained
by back-propagation. When the detailed connectivity of these
networks is not hand-crafted for this particular task, the best
reported error-rate for stochastic on-line learning with a sep-
arate squared error on each of the 10 output units is 2.95%.
These error-rates can be reduced to 1.51% by using small

always set quite conservatively to avoid oscillations. It is highly
likely that the learning speed could be considerably improved by a
more careful choice of learning parameters, though it is possible that
this would lead to worse solutions.

6The training set has unequal numbers of each class, so images
were assigned randomly to each of the 600 mini-batches.

Figure 8: The 125 test cases that the network got wrong. Each
case is labeled by the network’s guess. The true classes are
arranged in standard scan order.

initial weights, “softmax” output units, a cross-entropy error
function, and either very gentle learning (John Platt, personal
communication) or a regularizer that penalizes the squared
weights by an amount that is carefully chosen using a valida-
tion set. For comparison, nearest neighbor has a reported er-
ror rate (google MNIST) of 3.1% if all 60,000 training cases
are used (which is extremely slow) and 4.4% if 20,000 are
used. This can be reduced to 2.8% and 4.0% by using an L3
norm.

The only standard machine learning algorithm that outper-
forms the generative model is support vector machines which
give error rates of 1.1% or 1.0%. But it is hard to see how
support vector machines can make use of the domain-specific
tricks, like weight-sharing and sub-sampling, which LeCun
et.al. use to improve the performance of discriminative neu-
ral networks from 1.5% to 0.95%. There is no obvious reason
why weight-sharing and sub-sampling cannot be used to re-
duce the error-rate of the generative model. Further improve-
ments can always be achieved by averaging the opinions of
multiple networks or by enhancing the training set with dis-
torted data, but these techniques are available to all methods,
though data enhancement can seriously slow-down methods
that do not scale sub-linearly with the size of the training set.

Figure 9: Each row shows 10 samples from the generative
model with a particular label clamped on. The top-level asso-
ciative memory is run for 1000 iterations of alternating Gibbs
sampling between samples.

8.2 Testing the network
One way to test the network is use a stochastic up-pass from
the image to fix the binary states of the 500 units in the lower
layer of the associative memory. With these states fixed, the
label units are given initial real-valued activities of 0.1 and a
few iterations of alternating Gibbs sampling are then used to
activate the correct label unit. This method of testing gives
error rates that are almost 1% higher than the rates reported
above.

A better method is to first fix the binary states of the 500
units in the lower layer of the associative memory and to then
turn on each of the label units in turn and compute the ex-
act free energy of the resulting 510 component binary vector.
Almost all the computation required is independent of which
label unit is turned on [Teh and Hinton, 2001] and this method
computes the exact conditional equilibrium distribution over
labels instead of approximating it by Gibbs sampling which
is what the previous method is doing. This method gives er-
ror rates that are about 0.5% higher than the ones quoted be-
cause of the stochastic decisions made in the up-pass. We
can remove this noise in two ways. The simplest is to make
the up-pass deterministic by using probabilities of activation
in place of stochastic binary states. The second is to repeat
the stochastic up-pass twenty times and average either the la-
bel probabilities or the label log probabilities over the twenty
repetitions before picking the best one. The two types of av-
erage give almost identical results and these results are also
very similar to using a deterministic up-pass, which was the
method used for the reported results.

9 Looking into the mind of a neural network
To generate samples from the model, we perform alternating
Gibbs sampling in the top-level associative memory until the
Markov chain converges to the equilibrium distribution. Then

Figure 10: Each row shows 10 samples from the generative
model with a particular label clamped on. The top-level as-
sociative memory is initialized by an up-pass from a random
binary image in which each pixel is on with a probability of
0.5. The first column shows the results of a down-pass from
this initial high-level state. Subsequent columns are produced
by 20 iterations of alternating Gibbs sampling in the associa-
tive memory.

we use a sample from this distribution as input to the layers
below and generate an image by a single down-pass through
the generative connections. If we clamp the label units to a
particular class during the Gibbs sampling we can see im-
ages from the model’s class-conditional distributions. Figure
9 shows a sequence of images for each class that were gener-
ated by allowing 1000 iterations of Gibbs sampling between
samples.

We can also initialize the state of the top two layers by
providing a random binary image as input. Figure 10 shows
how the class-conditional state of the associative memory
then evolves when it is allowed to run freely, but with the
label clamped. This internal state is “observed” by perform-
ing a down-pass every 20 iterations to see what the associa-
tive memory has in mind. This use of the word “mind” is
not metaphorical. A mental state is the state of a hypotheti-
cal world in which a high-level internal representation would
constitute veridical perception. That hypothetical world is
what the figure shows.

10 Conclusion
The network in figure 6 has about as many parameters as
0.002 cubic millimeters of mouse cortex. Several hundred
networks of this complexity would fit within a single voxel of
a high resolution fMRI scan. Learning algorithms are getting
better, but they still have a long way to go.

Acknowledgments
The ideas presented in this paper came from research col-
laborations with Terry Sejnowski, Yann LeCun, Jay McClel-
leand, Radford Neal, Rich Zemel, Peter Dayan, Michael Jor-
dan, Brendan Frey, Zoubin Ghahramani, Yee-Whye Teh, Max
Welling, Simon Osindero and many other researchers. An-
driy Mnih helped to prepare the manuscript. The research
was supported by NSERC, the Gatsby Charitable Founda-
tion, CFI and OIT. GEH holds a Canada Research Chair in
machine learning.

References
[Carreira-Perpinan and Hinton, 2005] M. A. Carreira-

Perpinan and G. E. Hinton. On contrastive divergence
learning. In Artificial Intelligence and Statistics, 2005,
2005.

[Freund, 1995] Y. Freund. Boosting a weak learning al-
gorithm by majority. Information and Computation,
12(2):256 – 285, 1995.

[Friedman and Stuetzle, 1981] J.H. Friedman and W. Stuet-
zle. Projection pursuit regression. Journal of the American
Statistical Association, 76:817–823, 1981.

[Hinton and Sejnowski, 1986] G. E. Hinton and T. J. Se-
jnowski. Learning and relearning in Boltzmann machines.
In D. E. Rumelhart and J. L. McClelland, editors, Paral-
lel Distributed Processing: Volume 1: Foundations, pages
282–317. MIT Press, Cambridge, 1986.

[Hinton et al., 1995] G. E. Hinton, P. Dayan, B. J. Frey, and
R. Neal. The wake-sleep algorithm for self-organizing
neural networks. Science, 268:1158–1161, 1995.

[Hinton, 2002] G. E. Hinton. Training products of experts by
minimizing contrastive divergence. Neural Computation,
14(8):1711–1800, 2002.

[Jordan et al., 1999] M. I. Jordan, Z. Ghahramani, T. S.
Jaakkola, and L. K. Saul. An introduction to variational
methods for graphical models. In M. I. Jordan, editor,
Learning in Graphical Models. MIT Press, Cambridge,
MA, 1999.

[Mayraz and Hinton, 2001] G. Mayraz and G. E. Hinton.
Recognizing hand-written digits using hierarchical prod-
ucts of experts. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 24:189–197, 2001.

[Neal and Hinton, 1998] R. M. Neal and G. E. Hinton. A
new view of the EM algorithm that justifies incremental,
sparse and other variants. In M. I. Jordan, editor, Learning
in Graphical Models, pages 355—368. Kluwer Academic
Publishers, 1998.

[Neal, 1992] R. Neal. Connectionist learning of belief net-
works. Artificial Intelligence, 56:71–113, 1992.

[Pearl, 1988] J. Pearl. Probabilistic Inference in Intelligent
Systems: Networks of Plausible Inference. Morgan Kauf-
mann, San Mateo, CA, 1988.

[Roth and Black, 2005] S. Roth and M. J. Black. Fields of
experts: A framework for learning image priors. In IEEE

Conf. on Computer Vision and Pattern Recognition, June
2005.

[Rumelhart et al., 1986] D. E. Rumelhart, G. E. Hinton,
and R. J. Williams. Learning representations by back-
propagating errors. Nature, 323:533–536, 1986.

[Teh and Hinton, 2001] Y.W. Teh and G. E. Hinton. Rate-
coded restricted Boltzmann machines for face recognition.
In Advances in Neural Information Processing Systems,
volume 13, 2001.

[Teh et al., 2003] Y.W. Teh, M. Welling, S. Osindero, and
G. E. Hinton. Energy-based models for sparse overcom-
plete representations. Journal of Machine Learning Re-
search, 4:1235–1260, Dec 2003.

[Welling et al., 2003] M. Welling, G. Hinton, and S. Osin-
dero. Learning sparse topographic representations with
products of Student-t distributions. In S. Thrun S. Becker
and K. Obermayer, editors, Advances in Neural Informa-
tion Processing Systems 15, pages 1359–1366. MIT Press,
Cambridge, MA, 2003.

[Zemel and Hinton, 1995] R. S. Zemel and G. E. Hinton.
Learning population codes by minimizing description
length. Neural Computation, 7:549–564, 1995.

