
Learning Nonlinear Constraints with Contrastive
Backpropagation

Andriy Mnih and Geoffrey Hinton
Department of Computer Science

University of Toronto

Abstract— Certain datasets can be efficiently modelled in terms
of constraints that are usually satisfied but sometimes are strongly
violated. We propose using energy-based density models (EBMs)
implementing products of frequently approximately satisfied
nonlinear constraints for modelling such datasets.

We demonstrate the feasibility of this approach by training an
EBM using contrastive backpropagation on a dataset of idealized
trajectories of two balls bouncing in a box and showing that
the model learns an accurate and efficient representation of
the dataset, taking advantage of the approximate independence
between subsets of variables.

I. INTRODUCTION

Some datasets are well characterized by representing the
ways in which the data can vary. For such datasets, models that
use hidden causes are often appropriate [Pearl, 1988]. Other
datasets are better characterized by representing constraints
that correspond to ways in which the data does not vary
[Williams and Agakov, 2002]. Many datasets contain both
types of structure [Welling et al., 2004]. A particularly chal-
lenging type of data for density modeling contains multiple
constraints that are usually satisfied fairly accurately but occa-
sionally violated by a large amount. In this paper we describe
a type of density model that can deal with such “frequently
approximately satisfied” (FAS) constraints [Hinton and Teh,
2001] and apply it to the task of modeling the trajectories of
two balls bouncing inside a box. When a ball is in free flight,
there are simple constraints on its positions at three adjacent
times and these constraints are satisfied very accurately. When
a ball bounces off a wall, the free flight constraints are wildly
violated, but other constraints come into play, and these other
constraints are relatively easy to model if the walls remain in
fixed locations. When the two balls collide with each other,
there are still constraints on their joint momentum and kinetic
energy but these constraints are harder to discover in the
sequence of x and y coordinates of the two balls.

A good density model of the sequences of x and y coor-
dinates needs to capture the independent tight constraints that
apply in free flight despite their violation during bounces and
collisions. It also needs to capture the different independent
constraints that apply during bounces and the strong interac-
tion that occurs during collisions. There is no efficient way
to do this with commonly used density models like Gaussian
mixture models. If all the constraints ceased to apply at the
same time it would be easy to split the dataset into two
subsets that could be modeled separately, but this is not what
happens. We need a method that can handle large sets of

FAS constraints that are often independent but occasionally
coupled. We propose an energy-based model that implements
a product of nonlinear constraints for modelling this type of
data.

II. LEARNING IN ENERGY-BASED MODELS

A deterministic energy-based model (EBM) defines a proba-
bility distribution over data vectors by specifying a parametric
energy function E(x|w) and defining the probability of a data
vector as

p(x|w) =
e−E(x|w)∫
e−E(y|w)dy

, (1)

where the integral is over all vectors in the data space. In
order for inference and learning in the model to be tractable,
we require the energy function and its derivative w.r.t. its
parameters to be easy to compute. In addition to that, for the
distribution to be proper, the integral must converge.

Energy-based models can be trained by maximizing the log
likelihood of the training set under the model using gradient
ascent. The derivative of the log likelihood w.r.t. a model
parameter wi, averaged over the training set, is given by〈

∂ log p(x|w)
∂wi

〉
D0

= −
〈

∂E(x|w)
∂wi

〉
D0

+
〈

∂E(x|w)
∂wi

〉
D∞

.

(2)
Here the angle brackets denote expectation w.r.t. a distribu-
tion, and D0 and D∞ refer to the data distribution and the
model distribution respectively. Since we require the energy
function to have a tractable derivative, the first term is easy
to compute. Computing the second term is much harder,
because it requires evaluating an integral over the space of
all possible data vectors, which cannot be done exactly for
most interesting energy-based models. We can approximate it
by sampling from the model distribution using Markov chain
Monte Carlo and averaging ∂E(x|w)/∂wi over the samples.
However, MCMC can take a long time to reach the equilibrium
distribution making the process of generating samples very
slow. Since the expectation over the model distribution has to
be approximated at least once per parameter update, maximum
likelihood (ML) learning in EBMs is impractically slow. To
make matters worse, estimates computed using MCMC can
have high variance, which can lead to unreliable learning
[Hinton, 2002].

However, it has been demonstrated that running the Markov
chain until the equilibrium distribution is reached is unneces-
sary [Hinton, 2002] for training EBMs. Starting the chain at

the data vectors from the training set and running it for only a
few steps produces confabulations, which can be used in place
of the true equilibrium samples in Eq. 2 to approximate the
derivative. This approach results in the contrastive divergence
learning rule for learning model parameters:

∆wi ∝ −
〈

∂E(x|w)
∂wi

〉
D0

+
〈

∂E(x|w)
∂wi

〉
Dn

. (3)

Here Dn stands for the distribution of confabulations produced
by running MCMC for n steps starting at the data, where n is
small. Confabulations can be viewed as data vectors slightly
perturbed by the model in such a way that, on average, the
model finds them more probable than the original vectors. The
learning rule in Eq. 3 tries to make the training cases more
probable, on average, than their confabulations by lowering
the energy of the training cases while raising the energy of
the confabulations.

The main advantage of CD learning is that it is much faster
than ML learning. This is a consequence of not having to
wait for the Markov chain to reach its equilibrium distribution.
Also, it has been argued [Hinton, 2002] that, for the same
number of samples, CD learning often is more reliable than
ML learning since the variance of the gradient estimate in
CD learning is lower because the confabulations are typically
much closer to the corresponding data vectors than the equi-
librium samples are.

In this paper, we use a feed-forward neural network with
a single output unit as a parametric function for assigning
energy to data vectors. Neural networks are suitable for this
task because they can represent a large class of parametric
mappings and the derivatives required to fit them can be effi-
ciently computed with the backpropagation algorithm. When
the gradient of the energy function with respect to the input
vector is available, as it is when a neural network is used for
energy assignment, confabulations can be generated efficiently
using the Hybrid Monte Carlo algorithm [Neal, 1993], which
simulates the dynamics of a particle that represents a data
vector x, on a frictionless surface the height of which is given
by E(x|w). Because the dynamics is simulated in discretized
time, the simulation results are not exact and the total energy
of the particle is not conserved. To avoid introducing a bias
into the simulation, the endpoint of the particle’s trajectory is
accepted with probability min(1, exp(−∆E)), where ∆E in
the change in the combined potential and kinetic energy be-
tween the starting point and the endpoint of the trajectory. We
use the “leapfrog” discretization that eliminates the numerical
errors up to the second order [Neal, 1993]. A confabulation is
generated by a making small number of leapfrog steps, starting
at a data vector, and accepting or rejecting the trajectory
endpoint. If the endpoint is rejected, the particle is returned
to the position given by the data vector. The confabulation
is given by the final position of the particle. Contrastive
divergence learning that uses backpropagation to compute
the gradient of the energy function and HMC to generate
confabulations is called contrastive backpropagation (CBP)
[Teh et al., 2003].

III. EXPERIMENTAL RESULTS

A. The problem

We applied contrastive backpropagation to the problem of
modelling the distribution of trajectories of two interacting
balls bouncing in a two-dimensional box. The trajectories are
generated by simulating the idealized billiard-ball dynamics
in continuous time, with no friction, air resistance, or gravity,
treating all ball-ball collisions as perfectly elastic, and record-
ing the coordinates of ball centers at evenly-spaced times. The
box is an axis-aligned square of side length 2, centered at the
origin. The first ball has a radius of 0.2 and half the mass of the
second ball, which is of radius 0.283. The initial coordinates
of the balls are chosen uniformly at random so that both balls
are entirely inside the box and are not in contact with each
other. Ball velocity in each dimension is initialized from the
uniform distribution on the interval [0.2, 0.45] and is made
negative with probability 1

2 .
Each trajectory is represented by a finite sequence

(x1
1, y

1
1 , x2

1, y
2
1 , ..., x1

n, y1
n, x2

n, y2
n) of the balls’ coordinates,

where the subscript indicates the time when the coordinate
was recorded and the superscript indicates the ball to which
the coordinate belongs. We will refer to the system state
(x1

t , y
1
t , x2

t , y
2
t) recorded at time t as the frame t and to the

number of frames in a trajectory as its length.
We visualize the trajectory of each ball by drawing a

point showing its location for each frame and connecting the
points corresponding to pairs of consecutive frames with line
segments. A line segment shows the true path taken by the ball
between the frames if no bounce occurred during that time. If
a bounce did occur, the line segment indicates only that the
points connected by it correspond to consecutive frames. We
indicate which frame a point corresponds to by showing the
time index t of the frame next to the point. The trajectory of
the first ball is drawn using a solid line, while a broken line
is used for the trajectory of the second ball. To make it easier
to evaluate the accuracy of a trajectory visually, we also draw
two squares inside the box, which mark the valid range of
coordinates for the ball centers. The line style of a square is
the same as the line style of the ball trajectory to which it
applies.

B. Network architecture

We used a deterministic feed-forward neural network with
two hidden layers and a single output unit as an energy-
based model. Since a network has a fixed number of input
units, it can be used to model the density of only fixed-length
trajectories directly. We chose to model trajectories of length
5 because it is sufficient to capture the essential structure of
trajectories without making the model unnecessarily cumber-
some. As a result, the network has 20 input units, representing
the four coordinates of the two balls in each of the five frames.

We found that the network worked well when the first
and the second hidden layers contained 200 and 80 units
respectively. The activation function of the units in the hidden
layers is f(x) = log(1 + x2), which is the energy function

corresponding to the Cauchy distribution, while the output unit
is linear.

In a network with this architecture, each unit in the first
hidden layer implements a linear constraint, with the input to
each unit being the amount by which the constraint is violated
by the input vector. The output of such a unit is the penalty
for violating this constraint. The units in the second hidden
layer implement nonlinear constraints on the input vector by
imposing linear constraints on the outputs of the units in
the first hidden layer, which allows the network to capture
the dependencies between the violations of the constraints
implemented by the first hidden layer. It can, for example,
make the cost of violating several constraints at the same time
be much less than the sum of the individual violation costs.
Since the output unit is linear and the activation function of
each unit in the second hidden layer is an energy function for
a heavy-tailed distribution, the EBM implements a product of
nonlinear FAS constraints.

Even though the network can directly model trajectories of
length 5 only, it can be used to induce probability distributions
over trajectories of any fixed length greater than 4. We define
the energy of a trajectory of length n to be be the sum
of the energies of the n − 4 subtrajectories of length 5
contained in it. When the energy of a trajectory is converted
to probability using Eq. 1, the normalization is carried out
over the space of trajectories of the same length, leading to a
separate probability distribution for each trajectory length.1

C. Training

The network was trained on a dataset consisting of 10000
trajectories of length 5. Training took 2000 passes through the
training set with parameters updated after each 100 trajecto-
ries. Each confabulation was generated by performing one step
of HMC consisting of 10 leapfrog steps, with the leapfrog step
size dynamically adjusted to keep the acceptance rate around
90%.

The synthetic noise-free nature of the dataset requires very
tight constraints to model it well. Such constraints pose a
problem for HMC-based learning because they force HMC
to use a very small leapfrog step size to keep the acceptance
rate reasonable, which makes learning unacceptably slow. The
problem is made worse by the tendency of CBP to learn some
constraints much faster than others, leading to models that
never manage to learn most of the constraints. We worked
around the problem by adding Gaussian noise of standard
deviation 0.01 to the original training set before each pass
and using the noisy dataset during that pass. This technique
prevents HMC from being trapped by very tight constraints,
since the noise effectively imposes a limit on their tightness.

1This approach does not have the desirable property thatR
pn(f1, ..., fn)dfn = pn−1(f1, ..., fn−1), where fi is the ith frame. That

is, the marginal distribution resulting from marginalizing out the last frame in
the distribution of trajectories of length n, pn, in general will not be identical
to the distribution of trajectories of length n − 1, pn−1, as defined by the
model. However, this is not a flaw of EBMs, but simply a consequence of
defining the probability of a long trajectory to be proportional to the product
of probabilities of its (overlapping) subtrajectories.

In order for the distribution defined by the network to
be normalizable, the weights to the output unit have to be
non-negative. We did not enforce this requirement explic-
itly because initializing these weights to 1 was sufficient to
prevent them from becoming negative during training. All
other weights were initialized from a zero-mean Gaussian
distribution of small variance.

We used a learning rate of 0.01 and a momentum of
0.9 for all weights. Each weight had an adaptive gain that
was additively increased if the current weight increment had
the same sign as the last one and multiplicatively decreased
otherwise. L1 weight decay2 of 10−3 was applied to the
weights from the input layer to the first hidden layer and from
the first to the second hidden layer. Such a high value of weight
decay delays the appearance of high energy barriers that
prevent HMC from exploring the energy landscape efficiently.

D. Inspecting the weights

After training the network, we inspected its weights. Almost
every unit in the first hidden layer implements a (linear)
constraint on coordinates of the same type (x or y). The
majority of the constraints apply to coordinates of both balls,
but some of them involve coordinates of only one of the balls.
Five of the constraints involve both coordinate types for both
balls and appear to be used for modelling collisions between
the balls. An inspection of the weights between the hidden
layers reveals that most of the input to each unit in the second
hidden layer comes from the units in the first hidden layer that
implement constraints on coordinates of the same type. This
means that the nonlinear constraints implemented by the units
in the second hidden layer apply mostly to coordinates of the
same type, but for both balls. Some of the second hidden layer
units specialize further by implementing nonlinear constraints
on the coordinates of the same type for a single ball. This
means that the network takes advantage of the fact that parts
of trajectories of different balls are often independent of each
other.

E. Sampling from the model

We used HMC to generate 200 samples from the model
to see what it had learned. Each sample was obtained by
performing 1000 steps of HMC with each step consisting of
a sequence of 50 leapfrog steps. Simulated annealing was
used to reduce the time required to reach the equilibrium
distribution. The leapfrog step size was adjusted after each
step of HMC to keep the acceptance rate around 90%.

Since the radius of the first ball is 0.2, the range of its x
and y coordinates in perfect trajectories is [−0.8, 0.8]. The
corresponding range for the coordinates of the second ball is
[−0.717, 0.717]. Comparing these ranges to the ones computed
from the samples reveals that the largest violation of the range
constraint is about 0.09. However, only 8 of the 200 samples
violate the range constraints by 0.05 or more, which means
that significant range constraint violations are rare.

2Using L1 weight decay of c corresponds to adding a penalty term
c

P
i |wi| to the objective function being minimized.

We inspected the samples visually to determine how well
different trajectory segment types were modelled. The wall
bounces and free-flight segments were handled quite well.
The ball-ball collisions, however, were modelled with lower
accuracy. The balls bounced off each other almost every time
they should have, but the direction and the magnitude of the
resulting velocities were sometimes clearly inaccurate. Also,
most of the significant range constraint violations occurred
around the time of a ball-ball bounce. It appears that the
model captured the essence of ball-ball bounces but had some
difficulty modelling them with high accuracy.

F. Super-resolution

To determine how well the EBM models the distribution
of trajectories, we used it to compute the super-resolution
versions of test trajectories. We generated a test set of 100
trajectories of length 9 and made a low-resolution version of
it by setting the coordinates in the even-numbered frames to
zero. A super-resolution version of each low-resolution trajec-
tory was computed by performing gradient descent in energy
w.r.t. the missing coordinates until the norm of the gradient fell
below 10−3. To avoid poor local minima, the procedure was
repeated 10 times, starting with different initializations of the
even-numbered frames, and the solution with the lowest energy
was kept. Each time the missing coordinates were initialized
from a uniform distribution on the interval [-0.8, 0.8]. Figure
1 shows an example of a test trajectory, its low-resolution
version, and the corresponding super-resolution version found
using the EBM.

As a baseline for comparison, we used a simple linear
interpolation method that fills each missing even-numbered
frame ft of a high-resolution trajectory by the average of the
two neighboring odd-numbered frames ft−1 and ft+1. Note
that if there is no bounce between time t − 1 and time t + 1,
this approach computes the correct value for ft. However, if
there is a bounce in that time interval, ft computed by the
method is incorrect.

The mean squared distance from a test trajectory to the
super-resolution reconstruction of its low-resolution version
computed using the EBM is 0.0928. The corresponding dis-
tance for the super-resolution trajectories computed using the
linear interpolation method is 0.4361. These numbers clearly
show that using the EBM for doubling the time resolution of
trajectories produces much better results than simple frame
averaging. This indicates that the EBM models trajectories
both with and without bounces quite accurately.

A visual comparison of the test trajectories to the corre-
sponding super-resolution trajectories indicates that the net-
work has the most difficulty filling in the frames that are
near ball-ball bounces. Frames that are a part of free-flight
trajectory segments or wall bounces are usually filled in with
high accuracy. It should be noted, however, that the ball-ball
collisions are difficult to model, as the position and velocity
of the balls after a collision are a complicated and sensitive
function of those attributes before the collision. Estimating
such a function accurately can require large amounts of

training data. Moreover, it is likely that the network used is
not powerful enough to model this mapping accurately.

G. Denoising

We tested the model further by using it as a prior for denois-
ing noisy trajectories. We consider trajectories corrupted by
additive i.i.d. zero-mean Gaussian noise of standard deviation
σ. Let y be the trajectory obtained by corrupting a noiseless
trajectory x with noise. Then the MAP estimate of the original
trajectory x is given by

xMAP = argmin
x

(− log p(y|x) − log p(x))

= argmin
x

(∑
i

(yi − xi)2

2σ2
+ E(x|w)

)
. (4)

We can estimate the original trajectory by performing gradient
descent on the cost function in Eq. 4, where the first term is
the energy contribution from the Gaussian noise model while
the second term in the energy assigned to x by the EBM.

We generated a test set of 200 trajectories of length 10 and
corrupted it using i.i.d. Gaussian noise of standard deviation
of 0.1. The MAP estimates of the original trajectories were
computed by performing gradient descent on the cost function
in Eq. 4 until the L2 gradient norm fell below 10−3. Since our
goal was to evaluate the EBM as a model of trajectories, we
used the true value of σ in Eq. 4. In practice, σ is usually
unknown and has to be estimated from data. An example
of a test trajectory along with its noisy version and the
corresponding denoised trajectory is shown on Figure 2.

The mean squared distance from a test trajectory to its noisy
version is 0.4049. The mean squared distance from a test
trajectory to the corresponding denoised trajectory is 0.3352,
which is a small but significant improvement. Note that even
if a perfect trajectory model was used as a prior for denoising,
the denoised trajectory would not, in general, be identical to
the trajectory that was corrupted by noise. As a result, it is
not clear what value for the mean squared error corresponds
to the perfect performance.

A visual inspection of the original/noisy/denoised trajectory
triples showed that the denoised trajectories were significantly
closer to the original trajectories than the noisy trajectories
were, especially when the trajectories contained no ball-ball
collisions. More importantly, the denoised trajectories were
much more trajectory-like than than the corresponding noisy
trajectories.

H. Comparison to a Gaussian mixture model

We compared the EBM to a Gaussian mixture model
(GMM) trained on the same training set. The mixture models
were fitted using the implementation of the EM algorithm from
the Netlab toolbox [Nabney and Bishop, 2003]. Before running
EM, the mixture components, which had full covariance
matrices, were initialized by running the K-means algorithm.
To prevent the matrices from becoming singular in the course
of training, their eigenvalues were constrained to stay above
10−5.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8 99

(a)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1

1

2

2

3

3

4

4
55

(b)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8 99

(c)

Fig. 1. Super-resolution example: (a) a test trajectory from the test set; (b)
its low-resolution version; (c) the super-resolution version of the trajectory in
(a).

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

(a)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

99 10

10

(b)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

(c)

Fig. 2. Denoising example: (a) a test trajectory from the test set; (b) trajectory
(a) corrupted by noise; (c) trajectory (b) after denoising.

1 2 3 4 5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Frame

M
ea

n
sq

ua
re

d
di

st
an

ce

EBM
GMM

Fig. 3. Mean squared distance over a test set of 2000 trajectories between
a test trajectory and the corresponding predicted trajectory for the frame
prediction task.

To avoid choosing the number of mixture components
explicitly, we considered the 6 possible values {20, 30, 40,
50, 60, 70}. Since the EM algorithm often gets trapped in
poor local minima, we fitted 10 models for each number of
components considered. The resulting sixty mixture models
were compared based on the probability they assigned to
a validation set consisting of 1000 trajectories of length 5.
The winning model, which had 30 mixture components, was
compared to the EBM.

Since the normalization term in Eq. 1 is hard to compute,
we cannot compare the EBM to the mixture based on the
probability they assign to a test set. Instead, our comparison
of the two models is based on the idea that, given a perfect
trajectory with a small number of coordinates missing, a
good trajectory model should be able to predict the missing
coordinates values accurately. We used the models to predict
the coordinate values in a missing frame given all other frames
of a trajectory.

The predictions were made by performing local mini-
mization, starting at a test trajectory, of the energy of the
trajectory under the model w.r.t. coordinates to be predicted,
while keeping the other coordinates fixed. The accuracy of
predictions was measured by the squared distance between
the test trajectory and the local minimizer. Local minimization
was performed using steepest descent with an adaptive step
size until the norm of the gradient w.r.t. free coordinates fell
below 10−4.

The models were compared on a test set of 2000 trajectories
of length 5. The results are shown on Figure 3, where
the values plotted are the averages over the test set. The
mean squared distance from a test trajectory to the trajectory
predicted by the EBM was 4 to 10 times smaller than that the
corresponding distance for the GMM. This indicates that the
predictions made by the EBM are, on average, significantly
more accurate than the ones made by the GMM, which shows
that the EBM has a better model of the trajectories.

IV. DISCUSSION

Frequently approximately satisfied constraints provide an
efficient way of modelling certain types of datasets that are
difficult to model using other methods. This approach to data
modelling was introduced in Hinton and Teh [2001], where a
model implementing a product of linear FAS constraints was
applied to image patches. In this paper, we have shown that the
nonlinear version of this approach is also feasible by applying
an EBM implementing a product of nonlinear FAS constraints
to trajectories of two balls bouncing in a two-dimensional
box. The EBM’s performance on the denoising and super-
resolution tasks demonstrated the high quality of the resulting
model. A comparison of the EBM to a Gaussian mixture model
of the dataset showed that the EBM modeled trajectories
with a significantly higher accuracy than the mixture model
did. The fact that some of the nonlinear constraints learned
by the EBM specialized on a single ball and/or coordinate
type, indicates that the model takes advantage of the near-
independence of between x and y coordinates as well as
the loose coupling between coordinates of different balls.
This suggests that EBMs with similar architecture should
be efficient at modelling distributions in which subsets of
variables are approximately independent.

REFERENCES

G. E. Hinton. Training products of experts by minimizing
contrastive divergence. Neural Computation, 14(8):1711–
1800, 2002.

G. E. Hinton and Y.W. Teh. Discovering multiple constraints
that are frequently approximately satisfied. In Proceedings
of the International Conference on Uncertainty in Artificial
Intelligence, volume 17, 2001.

I. Nabney and C. Bishop. Netlab neural network software,
2003.

R. M. Neal. Probabilistic inference using Markov chain Monte
Carlo methods. Technical Report CRG-TR-93-1, University
of Toronto, 1993.

J. Pearl. Probabilistic Inference in Intelligent Systems. Net-
works of Plausible Inference. Morgan Kaufmann, San
Mateo, CA, 1988.

Y.W. Teh, M. Welling, S. Osindero, and G. E. Hinton. Energy-
based models for sparse overcomplete representations. Jour-
nal of Machine Learning Research, 4:1235–1260, Dec 2003.

M. Welling, F. Agakov, and C. K. I. Williams. Extreme
components analysis. In Sebastian Thrun, Lawrence Saul,
and Bernhard Schölkopf, editors, Advances in Neural In-
formation Processing Systems 16. MIT Press, Cambridge,
MA, 2004.

C. K. I. Williams and F. V. Agakov. Products of Gaussians
and probabilistic minor component analysis. Neural Com-
putation, 14(5), 2002.

