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Abstract

We describe a way of learning matrix representations ofagjend relationships.
The goal of learning is to allow multiplication of matricesrepresent symbolic
relationships between objects and symbolic relationshgigieen relationships,
which is the main novelty of the method. We demonstrate thiatleads to ex-
cellent generalization in two different domains: moduldthenetic and family
relationships. We show that the same system can learn falst-@ropositions
such as(2,5) € -+3 or (Christopher, Penelope) € haswife, and higher-order
propositions such a3, +3) € plus and (+3, —3) € inverse or (has_husband,

has wife) € higher_oppsex. We further demonstrate that the system understands
how higher-order propositions are related to first-ordexsdoy showing that it can
correctly answer questions about first-order propositiomslving the relations

-+3 or has.wife even though it has not been trained on any first-order example
involving these relations.

1 Introduction

Itis sometimes possible to find a way of mapping objects ins&®tidomain into objects in a “target”
domain so that operations in the data domain can be modefiegérations in the target domain.
If, for example, we map each positive number to its logarithmaltiplication in the data domain can
be modelled by addition in the target domain. When the objedise data and target domains are
more complicated than single numbers, it may be difficultiid fjood mappings using inspiration
alone. If we consider a continuous space of possible mapgingd if we define a smooth measure of
how well any particular mapping works, it is possible to ussdgent search to find good mappings
between the data and target domains.

Paccanaro and Hinton [10] introduced a method called “Lifreational Embedding” (LRE) that
uses multiplication of vectors by matrices in the target dionto model pairwise relations between
objects in the data domain. LRE applies to a finite set of dbj@cand a finite set of relations
‘R where every relatiom® € R is a set of pairs of objects, sB C Q x Q. Given the objects
and relations, LRE finds a column-vector representafionf each objectd € 2, and a matrix
representatiolR of each relationR € R, such that the produd® A is close toB for all pairs
(A, B) that are members of the relatidt) and far fromC for all pairs(A, C') that are not members
of R. LRE learns the vectors and matrices by performing gradieatent in a cost functiah that
measures the similarities betweBrA and allB such that(A, B) € R relative to the similarities
betweerR A and the vector representations of all the objects in thefdetavn objects2:

exp(—||RA — BJ|?)
C=- log Q)
2 2 S (- [RA—CTP)

The cost function in Eq. 1 is “discriminative” because it qguares the distance frolR A to each
correct answer with the distances frdA to all possible answers. This prevents trivial solutions



in whichRA andB are always zero, but it also causes the cost function to beamyex, making

it hard to optimize. We can viewxp(—| RA — BJ|?) as the unnormalized probability density of
B under a spherical Gaussian centere®#. The cost function then represents the sum of the
negative log probabilities of picking the correct answergjtestions of the formA,?) € R if we
pick answers stochastically in proportion to their proligbilensities under the spherical Gaussian
centered aRA.

We say that LRE accurately models a set of objects and rekatfdts answers to queries of the
form (A,?) € R are correct, which means that for each objécind relationk such that there are
k objectsX satisfying(A4, X) € R, each vector representatidd of each such objeck must be
among the; closest vector representationsRa\. The definition of correctness implies that LRE’s
answer to a queryA, ?) € R that has no solutions is always trivially correct. More reirversions
of LRE handle such unsatisfiable queries more explicitly [9]

It may not be obvious how to determine if the representatamé by LRE is good. One way is
to check if LRE’s representation generalizes to test datareMpecifically, if LRE has not been
informed thatB is an answer to the quefy, 7) € R that hast correct answers (that iSA, B) was
removed fromR during LRE’s learning), yet LRE answers the quédy ?) € R correctly by placing

B among thet closest object representationsRa\, then we can claim that LRE’s representation
generalizes. Such generalization can occur only if LREnedrthe “right” representation&, B,
andR from the other propositions, which can happen only if the telation is plausible according
to LRE’s inductive bias that determines the subjective gilaility of every possible set of objects
and relations (see, e.g., [6]). If the representation ibtignensional, then LRE can easily represent
any set of relations that is not too large, so its inductiesifinds all sets of relations plausible, which
prevents generalization from being good. However, if thresentation is low-dimensional, then
LRE must make use of regularities in the training set in otdeaccurately model the data, but if
it succeeds in doing so, generalization will be good. Pameaand Hinton [10] show that low-
dimensional LRE exhibits excellent generalization on sesisuch as the family relations task. In
general, the dimensionality of the representation shordd gvith the total numbers of objects and
relations, because when there are few objects and relatidnigh-dimensional representation easily
overfits, but if the number of objects and relations is latgentthe dimensionality can be higher,
without overfitting. The best dimensionality depends on“fltébetween LRE and the data, and is
mainly an empirical question.

A drawback of LRE is that the square matrices it uses to reptaglations are quadratically more
cumbersome than the vectors it uses to represent objedtscalses the number of free parameters
to grow rapidly when the dimensionality of the representatiis increased. More importantly, it
also means that relations cannot themselves be treatedestsolPaccanaro and Hinton [10], for
example, describe a system that learns propositions obthe {2, 5) € +3 where+3 is a relation
that is represented by a learned matrix, but their systera doeunderstand that the learned matrix
for +3 has anything in common with the learned vector that is useshadel the numbeB in
propositions likg5,3) € —2.

In this paper we describe “Matrix Relational Embedding” (E)Rwhich is a version of LRE that
uses matrices as the representation for objects as well aslétions MRE optimizes the same
cost function as LRE (equation 1), with the difference tRaA — C is now a matrix rather than a
vector and|RA — CJ|? denotes the sum of the squares of the entries of the matrils choice
of matrix norm makes MRE a direct generalization of LRE. Aitdnces between matrices will be
computed using this norm.

Although MRE is a simple variation of LRE, it has two importaavantages.

The first advantage of MRE is that when using &nx N matrix to represent each object it is
possible to maké' much smaller than when using afrdimensional vector, so MRE can use about
the same number of parameters as LRE for each object but reamr parameters than LRE for
each relation, which is useful for “simple” relations.

We have also experimented with a version of LRE that leargerierate a learned matrix representation of
arelation from a learned vector representation of the relation. This toesiiigiossible to treat relations as ob-
jects because they both have vector representations. However, itssrieghtforward than simply representing
objects by matrices and it does not generalize quite as well.



The second advantage of MRE, which is also the main noveltthisf paper, is that MRE is
capable of representing higher-order relations, instmfewhich are(+3, —3) € inverse or
(has_husband, has_wife) € higher_oppsex. It can also represent relations involving an object
and a relation, for instand@, +3) € plus. Formally, we are given a finite set of higher-order rela-
tionsR, where a higher-order relatidf € R is a relation whose arguments can be relations as well
as objects, which we formalize @& C R x R or R C Q x R (R is the set of the basic relations).
The matrix representation of MRE allows it to treat relatiam (almost) the same way it treats basic
objects, so there is no difficulty representing relation®@seharguments are also relations.

We show that MRE can answer questions of the f@¢dy?) € 43 even though the training set
contains no examples of the basic relatigh It can do this because it is told wha8 means by
being given higher-order information abot. It is told that(3, +3) € plus and it figures out what
plus means from higher-order examples of the fq2y+2) € plus and basic examples of the form
(3,5) € +2. This enables MRE to understand a relation from an “anafbglefinition”: if it is
told thathas_father to has_mother is like has_brother to has_sister, etc., then MRE can answer
queries involvinghas_father based on this analogical information alone. Finally, wevslioat
MRE can learn new relations after an initial set of object$ mahations has already been learned and
the learned matrices have been fixed. This shows that MREdinew knowledge to previously
acquired propositions without the need to relearn the maigdropositions. We believe that MRE
is the first gradient-descent learning system that can leannrelations from definitions, including
learning the meanings of the terms used in the definitionss Jignificantly extends the symbolic
learning abilities of connectionist-type learning algioms.

Some of the existing connectionist models for represerding) learning relations and analogies
[2, 4] are able to detect new relations and to representraigical relations of high complexity.
They differ by using temporal synchrony for explicitly regenting the binding of the relations to
object, and, more importantly, do not use distributed regméations for representing the relations
themselves.

2 Themodular arithmetic task

Paccanaro and Hinton [10] describe a very simple modul#trastic task in which thé0 objects

are the numbers fror to 9 and the9 relations are+0 to +4 and —1 to —4. Linear Relational
Embedding easily learns this task using two-dimensionetiors for the numbers aritix 2 matrices

for the relations. It arranges the numbers in a circle cedtat the origin and uses rotation matrices
to implement the relations. We used ba8emodular arithmetic, thus there are 12 objects, and made
the task much more difficult by using both the twelve reladief to +11 and the twelve relationg0

to x11. We did not include subtraction and division because in nrardarithmetic every proposition
involving subtraction or division is equivalent to one itwing addition or multiplication.

There are288 propositions in the modular arithmetic ntask. We tried ima# of various sizes and
discovered that x 4 matrices gave the best generalization when some of the aeségld-out. We
held-out30, 60, or 90 test cases chosen at random and used the remaining casamtthie real-
valued entries of th&2 matrices that represent numbers andXhenatrices that represent relations.
The learning was performed by gradient descent in the costiftn in Eq. 1. We repeated this five
times with a different random selection of held-out caseheene. Table 1 shows the number of
errors on the held-out test cases.

3 Detailsof thelearning procedure

To learn the parameters, we used the conjugate gradiemhiaption algorithm available in the
“scipy” library of the Python programming language with thefault optimization parameters. We
computed the gradient of the cost function on all of the trgjicases before updating the parameters,
and initialized the parameters by a random sample from arggh&aussian with unit variance
on each dimension. We also included “weight-decay” by agldinl >, w? to the cost function,
where: indexes all of the entries in the matrices for objects andtimis. The variance of the
results is due to the nonconvexity of the objective functidrhe implementation is available in
[www.cs.utoronto.catilya/code/2008/mre.tar.gz].



Test results for the basic modular arithmetic.

errors on 5 test sets | mean test errot
@) 0J0]O0]0]O 0.0
60)[29] 4 [0 | 1|0 6.8
(90) [ 27 [ 23| 16 | 31| 23 240

Table 1: Test results on the basic modular arithmetic tagichEentry shows the number of errors
on the randomly held-out cases. There were no errors ondfrértg set. Each test query has 12
possible answers of which 1 is correct, so random guessimgjgive incorrect on at least 90% of
the test cases. The number of held-out cases of each runtismiri brackets.

Christopher = Penelope Andrew = Christine
Margaret = Arthur Victoria = James Jennifer = Charles
RA
Colin Charlotte
Aurelio = Maria Bortolo = Emma
Grazia = Pierino Giannina = Pietro Doralice = Marcello Be
Alberto Mariemma Ce De
@) (b)

Figure 1: (a) Two isomorphic family trees (b) An example oftaation in which the discriminative
cost function in Eg. 1 causes the matRxA produced by MRE to be far from the correct answer,
B (see section 5).

In an attempt to improve generalization, we tried consingjrall of the4 x 4 matrices by setting
half of the elements of each matrix to zero so that they wech eguivalent to two independent
2 x 2 matrices. Separate experiments showed2ha matrices were sufficient for learning either
the mod 3 or the mod 4 version of our modular arithmetic taskthe mod 12 version can clearly be
done using a pair df x 2 matrices for each number or relation. However, the gradiptitmization
gets stuck in poor local minima.

4 Thestandard family treestask

The “standard” family trees task defined in [3] consists @ ttvo family trees shown in figure
1(a) where the relations afas_husband, has_wife, has_son, has_daughter, has_father, has_mother,
has_brother, has sister, has_nephew, has_niece, has_uncle, has_aunt}. Notice that for the last four
relations there are people in the families in figure 1(a) ftiom there are two different correct
answers to the questidm,?) € R. When there aréV correct answers, the best way to maximize
the sum of the log probabilities of picking the correct ansame each of théV cases is to produce
an output matrix that is equidistant from teé correct answers and far from all other answers. If
the designated correct answer on such a case is not among thesest, we treat that case as an
error. If we count cases with two correct answers as twomiffecases the family trees task has 112
cases.

We used precisely the same learning procedure and weightydes for the modular arithmetic
task. We held-out 10, 20, or 30 randomly selected cases tasasss, and we repeated the random
selection of the test cases five times. Table 2 shows the nuhbeors on the test cases wher 4
matrices are learned for each person and for each relatid®*E §eneralizes much better than the



Test results for the basic family trees task.

errors on 5 test sets mean test errof
(0)[0[0]0[0] 2 0.4
(20)[6[0[0[0] 0 1.2
@0)[0|2[4[0] 4 2.0

Table 2: Test results on the basic family trees task. Eaaly shbws the number of errors on the
randomly held-out cases. There were no errors on the tgageh The same randomly selected test
sets were used for thex 4 matrices. Each test query has 24 possible answers, of whitlhst 2
objects are considered correct. As there are 24 objectdonaguessing is incorrect on at least 90%
of the cases.

feedforward neural network used by [3] which typically gete or two test cases wrong even when
only four test cases are held-out. It also generalizes metterbthan all of the many variations
of the learning algorithms used by [8] for the family treeskia These variations cannot achieve
zero test errors even when only four test cases are heldroluthe cases are chosen to facilitate
generalization.

5 Thehigher-order modular arithmetic task

We used a version of the modular arithmetic task in which tihéy dasic relations were
{+40,42,...,+11}, but we also included the higher-order relatigulas, minus, inverse consist-
ing of 36 propositions, examples of which dfe +3) € plus; (3,49) € minus, (+3,49) € inverse.
We then held-out all of the examples of one of the basic riatand trained x 4 matrices on all
of the other basic relations plus all of the higher-ordeatiehs.

Our first attempt to demonstrate that MRE could generaliaenfhigher-order relations to basic
relations failed: the generalization was only slightlytbethan chance. The failure was caused by
a counter-intuitive property of the discriminative objeetfunction in Eqg. 1 [9]. When learning the
higher-order training cag@, +3) € plusit is not necessary for the product of the matrix representin
3 and the matrix representirgus to be exactly equal to the matrix representiyy The product
only needs to be closer t8 than to any of the other matrices. In cases like the one shoigure
1(b), therelative probability of the poinB under a Gaussian centered®A is increased by moving
R A up, because this lowers the unnormalized probabilitigs ahdD by a greater proportion than
it lowers the unnormalized probability 8. The discriminative objective function prevents all of the
representations collapsing to the same point, but it doefonme the matrix products to be exactly
equal to the correct answer. As a result, the representatiefi produced by the product ¢fand
plus does not work properly when it is applied to a number.

To overcome this problem, we modified the cost function faining the higher-order relations so
that it is minimized wheR A is exactly equal t@3

c=Y Y |RA-BJ ()

ReR (A,B)ER

whereR ranges oveRR, the set of all higher-order relations, addand B can be either relations or
basic objects, depending dtis domain.

Even when using this non-discriminative cost function faining the higher-order relations, the
matrices could not all collapse to zero because the discaitivie cost function was still being used
for training the basic relations. With this modificationettnaining caused the product®ndplus

to be very close ter3 and, as a result, there was often good generalization tc belsitions even
when all of the basic relations involvingg were removed from MRE’s training data and all it was
told about+3 was that(3, +3) € plus, (9, +3) € minus, and(+9, +3) € inverse (see table 3).



Test results for higher-order arithmetic task.

errors on 5 test sets mean test erro
(@2 |[5]0[0[0] 0 1.0
(12) [0]0[6]6] 1 26
6(2) [0]6[4[4[0 238
10(12) 3800 7 36

Table 3: Test results on the higher-order arithmetic tagichEow shows the number of incorrectly
answered queries involving a relation (i.ed, +4, 46, or +10) all of whose basic examples were
removed from MRE’s training data, so MRE’s knowledge of thétation was entirely from the
other higher-order relations. Learning was performed ®sistarting from different initial random
parameters. There were no errors on the training set for fgaouns. The number of test cases is
written in brackets.

Test results for the higher-order family trees task.

errors on 5 test sets mean test erro
has father (12) |0 [ 12| 0[O0 O 2.4
has_aunt (8) 41 8|40/ 4 4.0
has_sister (6) 2/ 0]0J0]O 0.4
has.nephew(8) [ 0| O [ 80| O 1.6

Table 4: Test results for the higher-order family trees tabk each row, all basic propositions
involving a relation are held-out (i.ehas father, has_aunt, has_sister, or has_nephew). Each row
shows the number of errors MRE makes on these held-out gtmmsson 5 different learning runs
from different initial random parameters. The only infotinoa MRE has on these relations is in the
form of a single higher-order relatiohigher_oppsex. There were no errors on the training sets for
any of the runs. The number of held-out cases is written iokais.

6 Thehigher-order family treestask

To demonstrate that similar performance is obtained onljaneies task when higher-order relations
are used, we included in addition to the 112 basic relatibasigher-order relatiohigher_oppsex.

To definehigher_oppsex we observe that many relations have natural male and ndemsle
versions, as in: mother-father, nephew-niece, uncle;aanather-sister, husband-wife, and son-
daughter. We say thdt4d, B) < higher_oppsex for relationsA and B if A and B can be seen as
natural counterparts in this sense. Four of the twelve elesygihigher_oppsex are given below:

1. (has_father, has_mother) € higher_oppsex
2. (has_mother, has_father) € higher _oppsex
3. (has_brother, has_sister) € higher_oppsex
4. (has_sister, has_brother) € higher_oppsex

We performed an analogous test to that in the previous seatiche higher order modular arithmetic
task, using exactly the same learning procedure and lepparameters. For the results, see table
4.

The family trees task and its higher-order variant may apg#ficult for systems such as MRE or
LRE because of the logical nature of the task, which is magargmt by hard rules such @4, B) €
has_father, (A4, C') € has_brother = (C, B) € has_father. However, MRE does not perform any ex-
plicit logical deduction based on explicitly inferred rajeas would be done in an Inductive Logic
Programming system (e.g., [7]). Instead, it “precomputesanswers” to all queries during training,
by finding the matrix representation that models its trajrsit. Once the representation is found,
many correct facts become “self-evident” and do not regex@icit derivation. Humans may be
using a somewhat analogous mechanism (thought not neibgsser with matrix multiplications),
since when mastering a new and complicated set of concepte Bumans start by relying heavily
on relatively explicit reasoning using the definitions. NVéxperience, however, many nontrivial
correct facts may become intuitive to such an extent thaggan make true conjectures whose
explicit derivation would be long and difficult. New theorgmre easily discovered when the repre-
sentations of all the concepts make the new theorem ingugtnd self-evident.



The sequential higher-order arithmetic task.
errors on 5 test sets| mean test erro

H(12) 0ojoj0] 2] 4 1.2
1 (12) 1088 0] 3 5.8
16 (12) 0[0([4]9 0 26
110 (12) 0 [4(8| 010 44

The sequential higher-order family trees task.
errors on 5 test sets| mean test erro

hasfather (12) | 0 [0| 0| 10] O 2.0
has_aunt (8) o|o0[0| 8]0 1.6
has_sister (6) ojojo[O0]O 0.0
has nephew(8) | 0 (O[O0 | O | O 0.0

Table 5: Test results for the higher-order arithmetic tasg)(and the higher-order family trees task
(bottom) when a held-out basic relation is learned from igbrder propositions after the rest of the
objects and relations have been learned and fixed. Therenmexgors on the training propositions.
Each entry shows the number of test errors, and the numbestotases is written in brackets.
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Figure 2: A neural network that is equivalent to Matrix Redatl Embedding (see text for details).

This is analogous to the idea that humans can avoid a lot dfcéxgpearch when playing chess
by “compiling” the results of previous searches into a maymplex evaluation function that uses
features which make the value of a position immediately awi

This does not mean that MRE can deal with general logical afatas kind, because MRE will fail
when there are many relations that have many special casesspecial cases will prevent MRE
from finding low dimensional matrices that fit the data weltlaxause it to generalize much more
poorly.

7 Adding knowledge incrementally

The previous section shows that MRE can learn to apply a belsition correctly even though the
training set only contains higher-order propositions aliee relation. We now show that this can be
achieved incrementally. After learning some objects,esations, and higher-order relations, we
freeze the weights in all of the matrices and learn the médrixa new relation from a few higher-
order propositions. Table 5 shows that this works about disaséearning all of the propositions at
the same time.

8 An equivalent neural network

Consider the neural network shown in Figure 2. The inputorsd® and A represent a relation and
an object using a one-of-N encoding. If the outgoing weidhdm the two active input units are
set toR and A, these localist representations are converted into cptterns in the first hidden
layer that represent the matricRsand A. The central part of the network consists of “sigma-pi”
units [12], all of whose incoming and outgoing connectioasehfixed weights of. The sigma-pi
units perform a matrix multiplication by first taking the pects of pairs of activities in the first
hidden layer and then summing the appropriate subsets s fhr@ducts. As a result, the activities
in the next layer represent the matiA. The output layer uses a “softmax” function to compute
the probability of each possible answer and we now show thia weights and biases of the output



units are set correctly, this is equivalent to picking answeth a probability that is proportional to
their probability density under a spherical Gaussian cedtatRA. Consider a particular output
unit that represents the answ@r If the weights into this unit are set @B and its bias is set to
—[|B||?, the total input to this unit will be:

Total input = —||B|* + 2> (RA);;By; (3)
The probability that the softmax assignsRBaowill therefdfe be:
e—HBH2+2 >, (RA);B;
S o CIZ+2 ZM(RA)MCM
o IBIP 4230 (RA),; By, —|RA|® o—IRA-B|”

_ 2 O 2 —||RA—-C]|2
See [te]] +22U(RA)”C” IRA]| Yo e Il I

p(B|A,R)

4
Maximizing the log probability op(B| R, A) is therefore equivalent to minimizing the cost fufﬁc)tion
givenin Eq. 1.
The fact that MRE generalizes much better than a standadébfieeard neural network on the family
trees task is due to two features. First, it uses the samegepiational scheme (i.e., the same
matrices) for the inputs and the outputs, which the standatdioes not; a similar representational
scheme was used in [1] to accurately model natural languageond, it uses “sigma-pi” units that
facilitate multiplicative interactions between represgions. It is always possible to approximate
such interactions in a standard feedforward network, bistaften much better to build them into
the model [13, 5, 11].
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