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1. INTRODUCTION 

1.1. Motivation for this Study 

In the last few years, statistical recognition algo- 
rithms using hidden Markov models have replaced 
dynamic time warping as the dominant technology 
in speech recognition (Bahl, Jelinek, & Mercer, 1983, 
Baker, 1975). The great advantage of this approach 
is that performance can be automatically optimized 
based on the information in a corpus of training data. 
Although a hidden Markov model is a simplistic model 
of speech production compared to the knowledge 
possessed by human experts in acoustic phonetics, it 
has proven to be difficult to formalize the knowledge 
of these experts into an automatic speech recognition 
algorithm, and so the simplistic but tunable hidden 
Markov model is more powerful in practice. 
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Nevertheless, most speech recognition systems 
based on hidden Markov models are deficient in two 
respects. One is that information is discarded when 
vector quantization is used to convert the system's 
real-valued acoustic input vectors into discrete to- 
kens which can be matched against the output tokens 
of the hidden Markov model. Another problem is 
caused by the fact that the model itself contains sim- 
plifications such as the Markov assumption and the 
output independence assumption. While simplifica- 
tions are always necessary when modeling complex 
natural phenomena, in this case they invalidate the 
justification for the commonly used maximum like- 
lihood training procedure, which implicitly assumes 
that the parameters of a correct model are being 
estimated. 

In his 1987 Carnegie Mellon thesis, Peter Brown 
showed that the performance of the standard IBM 
hidden Markov model on a particular subset of a 
noisy 100-speaker alphabet recognition task could be 
improved if the acoustic input vectors were modeled 
directly using continuous probability densities, and 
if the model were trained so that the mutual infor- 
mation between the acoustic input and the corre- 
sponding word sequence was maximized. This train- 
ing procedure causes explicit discrimination to occur 
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between competing sounds regardless of the cor- 
rectness of the underlying acoustic model. 

Brown's research focused on the "E-set" of letters 
(whose names all end with the vowel "E"),  on which 
the standard IBM system had been found to generate 
errors at about 4 times its usual rate. These words 
are difficult because the distinguishing sounds are 
short in duration and low in energy. His best system, 
which modeled continuous acoustic parameters using 
a special mixture of Gaussians, and which was trained 
using maximum mutual information estimation, 
committed less than half as many errors as the stan- 
dard, vector quantized, maximum likelihood version 
of the IBM recognition system. 

While this demonstration of the value of enhance- 
ments to the standard hidden Markov model was 
under way, a powerful connectionist learning algo- 
rithm became available: error back-propagation 
(Rumelhart, Hinton, & Williams, 1986). J This algo- 
rithm repeatedly adjusts the weights in a feed-for- 
ward network of nonlinear perceptron-like units so 
as to minimize a measure of the difference between 
the actual output vector of the network and a desired 
output vector given a particular input vector. The 
simple and efficient weight adjusting rule is derived 
by propagating partial derivatives of the error back- 
wards through the network using thechain rule. It 
was shown that starting from random initial weights, 
back-propagation networks can learn to use their hid- 
den (intermediate layer) units to efficiently represent 
structure that is inherent in their input data, often 
discovering intuitively pleasing features. Moreover, 
an experiment with a toy, speech-like problem showed 
that back-propagation networks can learn to make 
fine distinctions between input patterns in the pres- 
ence of noise (Plaut, Nowlan, & Hinton, 1986). 

Back-propagation networks learn mappings be- 
tween real-valued vectors, so it would be easy to 
build an n-word discrimination system by training a 
network to map spectrograms to n-tuples represent- 
ing confidence levels for the various words. When a 
spectrogram was presented on the input units of such 
a network, activation would flow up through the con- 
nections from layer to layer until each output unit 
was turned on by an amount that indicated its con- 
fidence that the spectrogram was an instance of its 
own word. During training, the target activation of 
the output unit corresponding to the correct word 
would be set to 1.0 and the target activation of the 
other output units would be set to 0.0. For testing 
purposes, the most activated output unit would de- 
termine the classification of the input pattern. 

This straightforward method of using a back-prop- 
agation network to perform word recognition pos- 

Versions of back-propagation were independently derived in 
Parker (1985) and Werbos (1974). 

sessed both of the crucial featur~:,~ of Brown~ iris- 
proved hidden Markov model: the input to the system 
consisted of vectors of real-valued acoustic param- 
eters, and the training algorithm explicitly caused 
discrimination between all pairs of output classe~. 
Therefore, it seemed likely that t~. back-propagation 
network would be able to exceed the performance 
of a standard hidden Markov model on a task m 
which fine discrimination of highly confusable, short 
duration sounds is critical. 

1.2. Summary of Results 

The heart of this paper is a study of network archi- 
tectures for performing spoken letter recognition. As 
in Peter Brown's pilot experiments, the four words, 
"bee," "dee," "ee," and "vee ''2 were used; earlier 
IBM research had shown that these four words were 
the most confusable members of the E-set of the 
alphabet. The data set for our architectural experi- 
ments consisted of a 144 ms salient section of each 
utterance, which contained the consonant-vowel 
transition as determined by a Viterbi alignment with 
the standard IBM hidden Markov model (Viterbi, 
1967). The waveforms were processed by a standard 
DFT program and then collapsed into spectrograms 
containing 16 mel-scaled frequency bands and t2 ms 
time frames. 

A 2-layer network (in which the input units are 
directly connected to the output units) provided a 
performance baseline for the design effort. This net- 
work was able to correctly classify as many as 87% 
of the testing tokens when it was trained for right 
number of iterations on the training tokens. The 
problem of deciding when to stop training a network 
was factored out of the architectural experiments by 
declaring that the highest level of generalization at- 
tained by a network is a good measure of the net- 
work's worth, regardless of when that generalization 
level occurred. 

While the addition of hidden units to the baseline 
network improved its performance slightly, this ap- 
proach to higher performance was hindered by the 
small size of the training corpus, which limited the 
number of connections which could be properly 
trained. A solution was found in sparsely connected 
network topologies that made use of small receptive 
fields. A further reduction in the number of weights 
was attained by tying together the weight patterns 
of successive receptive fields, resulting in a network 
that extracted features by repeatedly convolving a 
set of narrow weight patterns with the contents of a 
sliding window into the input: However, the network 
still constructed a spatialized history of the activa- 

2 These words will henceforth be denoted by B, D, E, and V. 
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tions of these feature detectors, and so it failed to 
deal with input registration errors which existed in 
spite of the fact that the speech patterns had been 
selected by a Viterbi alignment with a hidden Mar- 
kov model. 

Because the discrimination cues in the task were 
short in duration, it was possible to build a tempo- 
rally replicated "time-delay" network that could rec- 
ognize an input pattern regardless of its alignment. 
Because they didn't have to account for temporal 
shifts of the patterns, the weight patterns learned by 
the new network were more sharply tuned than those 
of the earlier networks, and the network was able to 
generalize to 91% of the 144-ms word sections of the 
test set after being trained for the right amount of 
time. 

While this recognition accuracy was not much 
higher than that of the baseline 2-layer network, there 
was reason to believe that the time-delay network 
was overqualified for the job of classifying pre-ex- 
tracted salient sections of the utterances. The fact 
that the network had learned to locate and analyze 
the single most predictive moment contained in each 
section of speech (and conversely, to ignore the rest 
of the pattern) suggested that it might be possible to 
perform recognition on complete words after training 
only on salient sections, provided that the sections 
were long enough to be representative of the acoust- 
ical content of the complete utterances. 

To test this idea, the length of the training sections 
was increased from 144 ms to 216 ms. To emphasize 
the fact that the network did not require carefully 
aligned training patterns, an ad hoc energy-based 
rule was used to select this new set of salient sections, 
rather than a Viterbi alignment. In addition, the new 
segmenter randomly selected a "counter-example'" 
section from the leftover portion of each word, on 
which the network was trained to output a vector of 
zeros. Full-word recognition was performed by ap- 
plying the network to an utterance in every possible 
position using a sliding window. The utterance's clas- 
sification was determined by the maximum network 
output value observed during this procedure. 

When trained and tested under these conditions, 
the time-delay network was able to correctly classify 
94% of the full-length training utterances after learn- 
ing to recognize 92% of those utterances based on 
216 ms salient sections extracted by the ad hoc seg- 
mentation rule. This improvement in accuracy when 
moving from salient sections to the complete versions 
of the words indicated that a segmentation-free rec- 
ognition system for this task was not only possible 
using a time-delay network, but desirable. 

Before using this network and training method- 
ology to build a real recognition system, it was nec- 
essary to address the question of when to halt the 
back-propagation learning procedure. A modified 
check set procedure was devised which permitted 

generalization to be estimated without the loss of 
training data. The method required the network to 
be trained twice, once with a divided training set so 
that the location of the network's generalization peak 
could be estimated, and then again with all of the 
training data, stopping after the amount of learning 
which had led to the best estimated generalization. 

With this final piece of machinery in place, it was 
possible to build a recognition system whose per- 
formance could be compared to earlier results on the 
BDEV task. A 3-layer time-delay network with six 
hidden units was trained on the 216 ms vowel-onset 
and counter-example segments selected by the en- 
ergy-based vowel finding heuristic, stopping at the 
high generalization point predicted by a preliminary 
check set run. At that point, the network could cor- 
rectly classify 90.9% of the full-length versions of the 
BDEV test cases. This accuracy is much better than 
the 80% performance that the IBM recognition sys- 
tem achieved on these recordings, and is close to the 
94% human performance measured by IBM. It is 
even slightly better than the 89% BDEV perform- 
ance estimated for Peter Brown's continuous acous- 
tic parameter, maximum mutual information hidden 
Markov model? This is surprising because Brown's 
enhanced model possessed the beneficial character- 
istics of a back-propagation network, plus the ad- 
vantage of being able to integrate evidence from dis- 
tant portions of the input in a principled manner. 
The fact that the time-delay network performed so 
well without knowledge of the global structure of the 
utterances shows that it had acquired exceptional 
powers of local feature discrimination from its una- 
ligned training examples. 

2. THE TASK 

The data set used in these experiments was created 
by the speech recognition group at the IBM T. J. 
Watson Research Center, and was used by Peter 
Brown as the domain for his thesis research on im- 
proved acoustic modeling (Brown, 1987). Using a 
remote pressure-zone microphone and a 12 bit A/D 
converter running at 20,000 Hz, digital recordings 
were made in an office environment of 100 speakers 
saying the letters of the alphabet twice, one time for 
training, and one time for testing. The alphabet was 
spoken in 3 randomized sentences, and the speakers 
were told to leave spaces between the words. Be- 
cause of obvious speaking errors, some of the sen- 
tences had to be thrown away. When the words B, 
D, E, and V were extracted from the remaining sen- 
tences, there were 372 recordings available for train- 

It was necessary to estimate the performance of Brown's 
model because it had been actually been trained on the E-set task 
of which the BDEV task is a subset. 
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ing, and 396 for testing, ranging in length from 0.3 
to 6.4 s with an average of 1.1 s. While this is a 
multispeaker task rather than a speaker independent 
one, the confusability of the words and the noisiness 
of the recordings make the task very difficult. 4 The 
recordings consist mostly of vocalic and background 
noise regions that are full of variability which is un- 
related to the identity of the words, while the actual 
discrimination cues are weak and short in duration. 

In an IBM study prior to Brown's work, it was 
found that human BDEV discrimination perform- 
ance was 94%? The standard IBM hidden Markov 
model could only recognize 80% of the BDEV to- 
kens in this data set correctly, although the average 
word accuracy of the system on a 20,000 word speaker- 
dependent isolated word natural language dictation 
task was 96.5%. It is not possible to give an exact 
figure for the BDEV performance of the best version 
of Brown's enhanced acoustic model because his main 
experiments were performed on the full 9-member 
alphabetic E-set after exploratory experiments with 
BDEV proved successful. However, Brown did cal- 
culate an estimate of 89% for the BDEV perform- 
ance of his best model by examining the E-set con- 
fusion matrix rows for the words B, D, E, and V, 
and counting only those mistakes for which the wrong 
answer was also in the 4 word subtask. Thus a D 
identified as a T would be counted as correct. This 
counting rule was intended to offset the disadvantage 
of being tuned for a larger version of the task. 

2.1. Viterbi Alignment 

Out of concern for the computational requirements 
of the then-new back-propagation procedure, our in- 
itial experiments were based on a simplified version 
of the task which Peter Brown had created for an 
expensive waveform modeling experiment contained 
in his thesis. Using the standard IBM hidden Markov 
model, a Viterbi search was performed to determine 
the most likely path through the stochastic model 6 

The signal-to-noise ratio of the data set was estimated to be 
16.4 dB by using a hidden Markov model to label the utterances 
and then dividing the average signal power in the consonant and 
vowel regions by the average signal power in the background noise 
regions. This figure is much lower than the 50 dB signal-to-noise 
ratio of typical lip-mike speech data. 

5 Human performance dropped to 75% on BDEV tokens that 
were resynthesized after being run through the IBM signal pro- 
cessor. 

6 In the IBM system, the words B,D, and V are modeled by 
a concatenation of the state machines for noise, voiced consonant 
onset, {B,D,V}, E, E trail-off, and noise. The word E is modeled 
by a concatenation of the state machines for noise, E onset, E, 
E trail-off, and noise. The state machines contain 3 main states 
with associated transitions to model the beginning, middle, and 
end of each phone. The consonant and vowel machines include 
self-loops to model steady-state portions of the acoustic signal, 
and all of the machines include null transitions to model short 
durations. 

corresponding to each utterance, the identity of which 
was known in advance. This path made it possible 
to assign a label to each frame of an utterance based 
on the identity of the phone machine which lined up 
with that frame. These labels were used to extract a 
150 ms salient section of each utterance which in- 
cluded 100 ms before the first frame that was labeled 
"E" (this region should contain the consonant), plus 
50 ms of the vowel. It was important to include the 
initial part of the vowel because the shape of the 
format tracks in this region help to identify the ar- 
ticulation point of the consonant. On average~ ~95 s 
of irrelevant noise and trailing vowel were removed 
from each utterance, while hopefully, the informa- 
tive consonant-vowel transition region remainedl ~ 
Column 1 of Figure 1 shows the waveform sections 
which were extracted from 4 sanlple words. 

While easier to tackle than the full-length record- 
ings, the Viterbi-aligned speech fragments contained 
enough alignment errors to motivate a shift-invariant 
neural network that turned out to be capable of good 
performance on the original, full-length recordings. 
The demonstration of this fact in section 4 is the main 
result of this paper. 

2.2. Signal Processing 

The IBM digital recordings were downsampled from 
20,000 samples per second to the Carnegie-Mellon 
standard of 16,000 samples per second. Then, the 
CMU makedft program was used to extract the spec- 
tral characteristics of these recordings. This program 
employs a 320 point Hamming window which covers 
20 ms and is advanced by 48 samples, or 3 ms, per 
frame. The last 64 data points from the 320 point 
window are folded into the first 64, yielding a 256 
point real valued input vector which is processed by 
a 128 point complex DFT which treats the even 
numbered samples as real values and the odd num- 
bered samples as imaginary values. The last compo- 
nent of the resulting 129 dimensional complex-valued 
vector is discarded. The remaining components 
are converted to decibels by the function 20 * 
log~0(sqrt(r 2 + i2)). 

Thus, the program converted our 150 ms wave- 
form samples into spectrograms containing 128 log 
energies ranging up to 8 kHz, and 49 time frames of 
3 ms each. 8 The first frame of each spectrogram was 
then discarded so that there would be 48 time steps 
(a highly factorizable number), and the DC bias com- 
ponent of each frame was set to zero. Because each 

7 The phrase "consonant-vowel transitiow ~ is being applied uni- 
formly to these words for convenience, even though E doesn' t  
really begin with a consonant (except for an occasional glottal 
stop). In the case of E, this phase is being used to refer to the 
vowel onset of the word. 

8 Windowing effects accounted for the fact that there weren't 
50 time frames in these spectrograms. 
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FIGURE 1. The waveforms shown in column 1 are 144 ms slices extracted from around the consonant-vowel transition in 
the words B, D, F, and V by a Viterbi alignment with the IBM hidden Markov model. Column 2 shows the 12 x 16 input 
spectrograms derived from these waveforms by the signal processing procedures described in section 2. Column 3 contains 
the hidden unit activation patterns triggered by these spectrograms in a 3-layer network with replicated hidden units. The 
10 copies of 8 hidden units show the presence or absence of 8 features in 10 successive time positions. Column 4 contains 
output unit activation patterns from a 3-layer network with replicated output units. These patterns show the confidence levels 
of the network at successive t ime positions. Observe how the D and B detection events are localized in time. 

of the 48 time frames represented 3 ms, the final 
duration of the spectrograms was 144 ms. 

2.3. Spectrogram Post-processing 

The input spectrograms which resulted from our sig- 
nal processing contained 48 x 128 = 6144 points. 
A network must have at least one connection to each 
of its input units, and every connection contains a 
weight that must be trained. 9 Clearly, 372 training 
examples are insufficient to train a model with some 
multiple of 6144 parameters (see section 2.4), so it 
was necessary to decrease the size of the network, 
and hence the size of the input spectrograms. This 
was accomplished by combining adjacent columns 

In section 3.5, we will describe a constrained learning pro- 
cedure that effectively reduces the number  of free parameters  in 
a network. 

and rows of the raw spectrograms to generate smaller, 
less detailed spectrograms to feed into the network. 
It was also necessary to scale the energy values to a 
range that back-propagation networks find palata- 
ble, namely between 0.0 and 1.0. l" 

There are many plausible sounding methods of 
compressing a spectrogram and normalizing its com- 
ponent values. The peak generalization of a simple 
2-layer back-propagation network was used to em- 
pirically compare the various alternatives. A 2-layer 
network is particularly useful in this sort of role not 
only because it converges rapidly, but because its 
solutions are always the best possible for the given 

"' Actually, it might increase the speed of learning to use input 
values between - 1 and + 1 with a mean value of 0. The advantage 
of using an ensemble of input vectors with zero-mean components  
is that randomly related vectors are roughly orthogonal,  which 
minimizes interference (Hinton & Plaut, 1987). 
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network with a particular environment; there is no 
chance of falling into a local minimum that would 
result in an unfair measure of the quality of the en- 
vironment. ~ 

Following common speech recognition practice, 
the frequency resolution of the network was fixed at 
16 bands. Its time resolution was temporarily set to 
6 frames while the other processing options were 
evaluated. The best level of time resolution was then 
determined empirically, as described in the next sec- 
tion. 

Although the frequency resolution had been fixed 
at 16 bands, a choice needed to be made as to the 
method for condensing the 128 points contained in 
each time step of the raw spectrograms. One possi- 
bility was to create a linear frequency scale by cot- 
lapsing adjacent bands. The alternative was to use a 
mel scale with variable-width, overlapping bands. The 
mel scale, which is linear up to about 2 kHz, and 
logarithmic above that, was motivated by the coch- 
lea, which has good frequency resolution at low fre- 
quencies and good temporal resolution at high fre- 
quencies. Unlike a cochlear model, fixed window 
DFTs cannot make that tradeoff, but one might ex- 
pect the mel-scaled spectrograms to work better than 
the linearly scaled ones because they provide more 
resolution in the more informative low frequency 
regions. 

Two possibilities were evaluated for an energy 
normalization method. The casewise method was to 
find the lowest and highest energies in a given spec- 
trogram and then scale them to 0.0 and 1.0, respec- 
tively. The alternative was to make a global choice 
for energies to map to 0.0 and 1.0; after examining 
the overall distribution of energies in our data set. 
we selected the values of - 5  and 105 dB ~2 and then 
clipped any peaks that exceeded those bounds. One 
would expect the global method to yield better per- 
formance if the total energy in a spectrogram was a 
clue to the identity of the word. 

Finally, shaping functions were tested that would 
drive the input values towards the boundaries of 0.0 
and 1.0. Three alternatives were considered: doing 
nothing to the values, squashing them with a sigmoid 
function, and squaring them and then multiplying by 
1.4. 

When training and testing environments were con- 
structed using linear frequency bands, casewise input 
scaling, and no shaping function, the generalization 

~ Strictly speaking, the convergence theorems for 2-layer net- 
works do not apply when a perfect solution doesn' t  exist (our 
training set contained conflicting evidence), but in practice, mul- 
tiple runs from different starting points converge to the same 
solution on this task. 

~z The absolute size of these log energy values are a meaning- 
less artifact of  the IBM digital recording system and the scaling 
factors employed by the CMU makedft program. 

of the simple 2-layer network peaked at 82%. After 
trying the other spectrogram post-processing options 
in various combinations, it was found that 86% peak 
generalization was possible with an input format that 
employed mel-scaled frequency bands, global (ver- 
sus casewise) energy normalization, and input values 
reshaped by squaring. A linear frequency scale re~ 
duced this figure to 83%, as did casewise normali- 
zation. Not squaring the components of the com- 
pressed spectrograms reduced the network's peak 
performance by 1:7c. 

2.4. Determi~iag the Optimum Level of 
Tempornl Resolution 

The number of components in a network's input pat- 
tern affects the number of weights in the network, 
which in turn affects the network's information ca- 
pacity and hence its ability to learn and generalize 
from a given number of training cases. Because there 
were approximately 400 training cases available for 
this task, each of which requires an output choice 
that can be specified with 2 bits, a network would 
need to learn 800 bits of information to perform the 
task by table lookup. According to CMU folklore, 
each weight in a back-propagation network can com- 
fortably store approximately one and a half bits of 
information, so a network with more than about 500 
weights would have a tendency to memorize the 
training cases and thus fail to generalize to the test 
set. Given the fact that the network's frequency res- 
olution was fixed at 16 bands, this limit of 500 weights 
indicated that the network's input format shouldn't 
contain more than about 8 time steps. However, this 
generic information capacity argument doesn't take 
into consideration the specific properties of the do- 
main; it is easy to imagine that compressing a spec- 
trogram to a small number of wide time steps could 
destroy all traces of some important but fleeting ar- 
ticulatory event. 

To test the validity of this estimate, we generated 
spectrograms with a range of different temporal res- 
olutions (24. 12.6. and 3 ms frames) and then used 
them to train appropriately sized 2-layer networks 
for 1000 epochs of the batch back-propagation pro- 
cedure.13 Because the higher resolution networks ap- 
peared to have an excessive number of weights given 
the size of the training set. weight decay was used in 
hopes of giving them a chance to stay in the game 
long enough to exploit the additional information 
that was available to them. For all of the networks. 
peak parameters of about {s = .005. a = .95. fi - 
.001} were employed, where e is the factor by which 

~ In batch back-propagation, weight updates are based on the 
sum of the gradient vectors of all of the cases in the training set. 
The simulator used for these experiments does not normalize the 
accumulated gradient by dividing by the size of the training corpus. 
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the gradient is multiplied before modifying the weights, 
c~ is the momentum term defined in Rumelhart,  Hin- 
ton, and Williams (1986), and 6 is the factor by which 
each weight is decayed after each iteration.14 After 
every 200 iterations, each network's generalization 
to the test set was measured by counting the number 
of cases that the network classified correctly accord- 
ing to the "best guess" rule, which states that the 
network is voting for the word whose output unit is 
most active. Peak generalization was defined to be 
the largest value in the resulting sequence of gen- 
eralization scores. 

It turned out that the networks were indistinguish- 
able using the best-guess metric, which was initially 
somewhat surprising considering the large number 
of weights which some of the networks possessed. 
The explanation for this performance parity is that 
2-layer networks are poor table lookup devices be- 
cause they can only memorize linearly independent 
patterns. Thus an oversized 2-layer network doesn't 
suffer as much in generalization as an oversized mul- 
tilayer network would. In order to get some clue as 
to the relative advantages of the various input for- 
mats, we resorted to a tougher, threshold-based 
counting rule which only scores a case as correct 
when the correct output unit has an activation of 
more than 0.5 and the other three have activations 
of less.than 0.5. The results of these measurements 
are summarized in Table 1. The spectrogram format 
with 12 time steps (each representing 12 ms) was the 
winner by a slim margin. Column 2 of Figure 1 shows 
four sample words in this format. Similar experi- 

TABLE 1 
Peak generalization performance of a 2-layer network as a 
function of input resolution. Accuracy was computed using 
a strict, threshold-based counting rule that requires the cor- 
rect output unit to be more active than 0.5 and the other three 

to be less active than 0.5. 

Temporal Resulting peak 
resolution generalization 

24 ms 71.0% 
12 ms 73.5% 
6 ms 71.0% 
3 ms 70.7% 

~4 Rather than using fixed values for the learning parameters, 
we started each run with small parameter values and increased 
them by hand when the learning procedure located and began to 
follow a ravine in weight space (it is possible to track this process 
by looking at the cosine of the angle between successive weight 
steps.) Since the shape of the network's weight space was deter- 
mined by the training set, multiple learning runs on the task re- 
quired similar sequences of parameters, and so our initial "hand 
flying" of the learning parameters evolved into the following fixed 
parameter schedule for 2-layer networks: initially, {~: = .001, c~ 
- .5}; after 50 epochs, {e = .001, a = .9}; after 100 epochs, {c 
= .002, a = .95}; and after 200 epochs, {e = .005, a = .95}. 
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FIGURE 2. This plot shows how k-nearest neighbor classi- 
fication performance on the 144 msec Viterbi-aligned BDEV 
vowel-onset spectrograms varied with k. The lower curve 
(which was artificially smoothed for clarity) was generated 
by a cross-validation experiment on the training set, while 
the higher curve shows generalization from the training set 
to the testing set. The cross-validation experiment indicated 
that k = 9 would work well, but in fact, the very best gen- 
eralization rate of 82% occurred with k = 1. 

ments with more sophisticated network architectures 
have confirmed that, on this task, the input format 
utilizing 12-ms frames is in fact the best at providing 
enough resolution while minimizing the number of 
connections that have to be trained. 

2.5. K-nearest Neighbor Results 

The simple but powerful k-nearest neighbor algo- 
rithm (Duda & Hart,  1973) was used to measure the 
difficulty of the 144-ms Viterbi-aligned version of the 
task. When a test input vector is presented to this 
algorithm, the output vectors associated with the k- 
nearest input vectors from the training set are used 
to determine the classification of the test vector. Be- 
cause the performance of k-nearest neighbor is a 
function of k, the algorithm was tested using every 
possible value of k, yielding the jagged curve shown 
in Figure 2. The highest point on the curve was the 
82% generalization spike at k = 1. 

It can be shown that the error rate of an optimal 
linear bayesian classifier is no less than half that of 
a nearest neighbor classifier. Because nearest neigh- 
bor yielded an 18% error rate on the 144-ms Viterbi- 
aligned spectrogram segments, an optimal linear 
bayesian classifier would suffer from a 9% error rate. 
Coincidentally, that is the accuracy of the time-delay 
neural network that will be described in the next 
section. 

3. ARCHITECTURAL EXPERIMENTS 

This section contains a sequence of increasingly com- 
plicated networks that were evaluated on the Viterbi- 
aligned version of the BD EV  recognition task. Each 
network in the sequence resulted from a modification 
to the previous network. The first modifications were 
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motivated by generic issues as information capacity 
and computational power, but the final and most 
useful modification was motivated by a priori knowl- 
edge about the task. 

3.1. A Baseline Network 

Column 2 of Figure 1 shows a sample spectrogram 
of each word in the 12 x 16 format that was selected 
in section 2. A 2-layer network designed for pro- 
cessing these patterns is shown in Figure 3. The net- 
work has four output units which represent the four 
words of this task. Each of the output units has 192 
connections to the input layer, so the network con- 
tains 768 weights that must be tuned. After undergo- 
ing 1000 iterations of the back-propagation learning 
procedure (consuming about 5 minutes of CPU time 
on a Convex C-l), the network answered correctly 
on 93% of the training set tokens and on 86% of the 
test set tokens, which is better than k-nearest neigh- 
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FIGURE 3. A 2-layer network with 4 output units, each of 
which is connected to the entire 12 × 16 array of Input units. 
Each output unit also has an unshown link to a "true" unit 
to implement Its bias. The 4 rectanguiM patterns on the right 
show the weights that the learning prooedum chose for con- 
necting each of the 4 output units to the Input array. White 
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bor had done on the same 144-ms Viterbi-aligned 
spectrograms. 

More interesting than the network's performance 
is the fact that the learning procedure managed to 
extract sensible looking weight patterns from noisy~ 
hard to read spectrograms. Each of the four rectan- 
gular patterns on the right side of Figure 3 shows the 
weights that the network developed for transmitting 
activation from the rectangular input array to the 
output unit corresponding to a particular word. Each 
of the black and white blobs pictured on these ret> 
tangles shows the sign and magnitude of a single 
weight by means of the color and size of the blob. 
A positive weight (represented by a white Nob) is 
excitatory, and causes the output unit to become 
activated when energy is present in the component 
of the input pattern to which the weight is connected. 
A negative weight (represented by a black blob) is 
inhibitatory, and causes the output unit to become 
deactivated when energy is present in the corre- 
sponding component of the input pattern. A zero 
weight (represented by a blank spot in the pattern) 
causes the output unit to ignore the contents of the 
corresponding component of the input pattern. Time 
is represented by the horizontal axis of the weight 
displays, and frequency by the vertical axis. 

Because all four of the patterns change character 
near the 9th time frame, it appears that the vowel 
onset typically occurs in that position. The white blobs 
near the top of the 8th, 9th, and 10th frames of the 
weight pattern of the D unit show that it is stimulated 
by the high frequency energy burst which occurs at 
the vowel onset of that word. The white blobs in the 
highest frequency band during the first half of the 
weight pattern of the V unit show that it is stimulated 
by frication. The black blobs in the two lowest fre- 
quency bands at the beginning of the weight pattern 
of the E unit show that it is inhibited by pre-voicing. 

While each of these features only votes for or 
against a single word, the sloped pattern occurring 
in the middle frequency bands at the vowel onset in 
the weight patterns of the B and E units shows that 
the network is using the presence or absence of a 
rising F2 to perform pairwise discrimination of these 
two words. The weights in the corresponding region 
of the D unit's pattern all have small magnitudes, 
indicating that this feature has little predictive power 
for D on this task. 

3.2. Temporm'ily Allocating More Training Data 

The ceiling of 500 weights hypothesized in section 
2.4 seemed like a serious impediment to the con- 
struction of interesting networks, especially since the 
generalization penalty for exceeding the ceiling in- 
creases as the sophistication and computational power 
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TABLE 2 
A comparison of the learning trajectories of a 2-layer network and a 3-layer network with 4 hidden units. This table shows 
the error rates of the networks on the training and testing sets at selected times during the training process. Two error 
metrics were used: the mean squared error per case and the number of erroneously classified utterances (out of 668 training 
cases and 100 testing cases). The 3-layer network learned more of the training cases, but took longer to do so. It achieved 

a lower mean squared error on the test set, but didn't actually classify any more of the test cases correctly. 

2-layers 3-layers 
no hidden units four hidden units 

training testing training testing 
epochs errors mse errors epochs errors mse errors 

200 90 .120 20 2000 97 .113 18 
400 53 .117 16 4000 49 .110 16 
800 45 .120 14 6000 16 .128 14 

of a network's  architecture grows. In order to raise 
this ceiling, all but 25 randomly selected examples 
of each word were transferred from the testing set 
to the training set during the following experiments. 
While this redistribution provided more freedom to 
investigate complicated network architectures, it also 
invalidated comparisons with experiments conducted 
on the task in its original form. Moreover,  it turned 
out to be unnecessary in the end because our final 
network had a complex structure but only a small 
number  of weights, and hence was trainable with a 
limited amount  of data. Therefore,  in section 3.11, 
the training and testing sets will be reverted to their 
original forms. 

3.3. Adding a Hidden Layer 

Although the 86% peak generalization achieved by 
the 2-layer network of Figure 3 was better than the 
82% performance of k-nearest neighbor on the same 
Viterbi-aligned segments, 15 it still fell short of the 
94% human B D E V  accuracy measured by the IBM 
speech group. 

By adding layers to a back-propagation network, 
one can increase the complexity of the decision func- 
tions that it can compute.  Hopefully the expanded 
family of computable functions will then permit a 
more natural fit to the training data. To measure the 
effect of adding a layer to the network separately 

J' It is surprising that a simple 2qayer network can outperform 
k-nearest neighbor on this task for any value of k. The k-nn 
algorithm has all 372 training patterns available for reference pur- 
poses, while the 2-layer network has only four weight patterns 
(each as large as an input pattern) with which to represent all of 
the information in the training set. In (Lippmann & Gold, 1987), 
k-nn outperformed 2-, 3-, and 4-layer networks with various num- 
bers of hidden units on a digit recognition task. Its poor perform- 
ance here may be due to the fact that the discriminative infor- 
mation in a word from the E-set makes up only a small portion 
of the input pattern. The back-propagation network can learn 
small weights which allow it to ignore input components to which 
k-nn must give equal weight when computing euclidean distances. 

from the effect of changing the number  of weights 
in the network, a 3-layer containing only 4 hidden 
units was built and trained. 

This network was not very different from the 2- 
layer network discussed in section 3.1. The two net- 
works had nearly the same number  of connections 
(792 vs. 772), and in their second layers, both net- 
works were forced to represent all of the relevant 
information using only four activation values. The 
similarity between the two networks is reflected by 
their similar learning trajectories, which are sum- 
marized in Table 2. The distinguishing characteristics 
of the 3-layer version are a longer training time, the 
ability to learn more of the training cases, and slightly 
better test scores according to the mean squared er- 
ror metric which has more of an analog character 
than the best-guess metric. The additional layer helps 
the 3-layer network squeeze the activations of its 
output units closer to their target values, regardless 
of whether the rank order of the various activations 
is correct. 

The second multilayer network that was tried had 
a better  chance for improved performance.  This net- 
work contained twice as many (8) hidden units, which 
doubled both the network's  information capacity and 
the bandwidth of its hidden layer. The learning tra- 
jectory of this network is shown in the left half of 
Table 3. The network easily consumed the training 
set, mastering 99% of the cases in 2400 epochs. At 
that point, the network was able to correctly classify 
89% of the test cases. An examination of the net- 
work's  weights, which are pictured in Figure 4, shows 
that the network used four of its hidden units as 
templates for the four words (much like those de- 
veloped by the 2-layer network). The remaining hid- 
den units represented the disjunctions {BD}, {BE}, 
and {EV} and an alternate form of D. 

3.4. Receptive Fields 

The 3-layer networks described in the previous sec- 
tion are of the unsophisticated "bag-of-hidden-units" 
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TABLE 3 
A comparison of the learning trajectories of two 3-layer networks, each of which contained about 1500 weights. In the first 
network, all of the hidden units were connected to the entire input. In the second, each hidden unit was connected to a 
window of 3 time steps out of 12. Both networks were able to M m  99% of the treining c a m ,  a n d ~  at 89% generalization. 
The first network began to overtrain after 2400 epochs. The second network took twice as long to ~ m  thetask, but produced 

lower mean squared error values on the test set. 

8 fully connected 
hidden units 

30 narrow receptive held 
hidden units 

training testing training testing 
epochs errors mse errors epochs errors mse errors 

800 65 .110 18 1000 88 ,120 21 
1200 43 .115 14 2000 43 ! 08  t6 
1600 23 .118 13 3000 27 ,110 13 
2000 16 .116 14 4000 17 , I t0  13 
2400 9 .112 11 5000 9 .109 12 
2800 6 .115 14 6000 6 . ! !0  11 

variety. Every hidden unit is connected to all of the 
input units and to all of the output units. The weight 
patterns of Figure 4 show that each hidden unit tends 
to form an overall spectrogram template for one or 
more of the words. 

According to the standard intuitive explanation of 
the behavior of multilayer feed-forward networks, 
hidden units are supposed to extract meaningful fea- 
tures from the input patterns. These features are then 
passed on as evidence for the output units to consider 
as they decide on the network's answer. The intuitive 
notion of a spectrogram feature generally involves a 
localized subpattern in the spectrogram. One can 
force a network to develop localized feature detec- 
tors by restricting its connectivity, giving each hidden 
unit a receptive field that only covers a small region 
of the input. 

Because the total number of its weights is a rel- 
atively small multiple of the number of its hidden 
units, a small-receptive-field network enjoys a large 
ratio between the information bandwidth of the hid- 
den layer and the total information capacity of the 
network. Thus, a network with small receptive fields 
can possess a rich inventory of hidden layer codes to 
represent subtleties of the input, without being bur- 
dened by an excessive number of free parameters 
that would allow the network to learn its training set 
by rote. ,6 

~6 This assumes that the capacity limitation that forces good 
generalization is the number of weights. Some networks achieve 
good generalization by restricting the width of a "bottleneck" 
hidden layer instead of the weights (Hinton, 1987a). 
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To determine the benefits of this network archi- 
tecture, a small-receptive-field network was built with 
approximately the same number of weights as the 
fully connected 8 hidden unit network. As shown in 
Figure 5(a), each hidden unit in the new network 
was connected to a slice of the input spectrogram 
that contained only 3 time steps (but all 16 frequency 
bands). Since there are 10 ways to position a 3-step 
window on a 12-step input pattern, the input was 
covered by 10 different time windows. To permit the 
detection of multiple features in each slice of the 
input, the network had 3 separate hidden units con- 
nected to each of the 10 receptive fields, for a total 
of 30 hidden units. The 4 output units were connected 
to all 30 hidden units, so the network contained 
30 x 3 x 16 + 4 x 30 = 1560 weights. 

The learning trajectories contained in Table 3 show 
that this network performed slightly better than the 
fully connected network according to the mean 
squared error metric. Although the small-receptive- 
field architecture did not provide a big improvement 
over the fully connected architecture on this task, 
we have found it to be clearly superior on tasks that 
require a network to discriminate between conso- 
nants in multiple vowel contexts, in which case it is 
useful for the network to be able to represent infor- 
mation about different parts of the spectrogram using 
separate hidden units. 

3.5. Position Independent Feature Detectors 

In the small-receptive-field architecture described in 
the last section the hidden units are all free to de- 
velop weight patterns for detecting the features that 
are most relevant to the particular portions of the 
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FIGURE 5. Two views of a 3-layer network containing 30 
hidden units, each of which Is connected to a window of 3 
time steps. 

words that lie in the units' receptive fields. This free- 
dom to develop specialized hidden units for analyzing 
the various parts of the words would be desirable if 
all of the exemplars of the words had exactly the 
same alignment relative to the input array. Unfor- 
tunately, when a misaligned word is presented as 
input, the fact that these specialized detectors are 
hard-wired to the input array means that the wrong 
detectors will be applied to the wrong parts of the 
word. One way to eliminate this problem is to force 
the network to apply the same set of feature detectors 
to every slice of the input. 

A small modification to the back-propagation 
learning procedure is required to make a small-re- 
ceptive-field network act in this manner. Consider 
the network of Figure 5(a), which contains 3 rows 
of 10 hidden units connected to 10 successive 3 x 
16 windows into the input. The 10 weights connecting 
the hidden units of a given row to the 10 successive 
input units represen t ing  a given recept ive  field 
component ~7 are thrown into an equivalence class. 
After the weights are updated at the end of each 
iteration of the learning procedure, every weight in 
an equivalence class is set to the average of the weights 
in that class (Rumelhart,  Hinton, & Williams, 1986). 
When the network is trained using this rule, all of 
the hidden units in a given row will have learned the 
same weight pattern, so the row can be thought of 
as a single hidden unit replicated I0 times to examine 
10 successive input slices for the presence of one 
feature. 

This new interpretation of the small-receptive-field 
network is shown schematically in Figure 5(b). The 
network effectively contains only 3 different hidden 
units. Because each hidden unit is connected to the 
input units via a 3 by 16 weight pattern, there are 3 
× 3 x 16 = 144 weights between the first and second 
layers. Although the 10 copies of a given hidden unit 
possess identical weights, they can assume 10 differ- 
ent activation levels to represent the presence or ab- 
sence of the unit's feature in the 10 slices of the input. 
Since the activation level of each copy of a hidden 
unit conveys unique information about the input pat- 
tern, every copy gets a separate connection to the 
output layer. Thus there are 4 × 10 x 3 = 120 
weights between the second and third layers. 

Experiments with networks containing 4, 6, and 
8 replicated hidden units showed that a network with 
8 hidden units worked the best on this task. Column 
3 of Figure 1 exhibits the activation levels of the 8 
x 10 = 80 hidden unit copies of this network on 
four sample words. These hidden unit activation pat- 
terns can be thought of as pseudo-spectrograms that 
have arbitrary features rather than frequency band 
energies displayed on the vertical axis. 

F7 For example, the upper left-hand corner of the field. 
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3.6. Position Independent Output Units 

An analysis of the errors made by the previous net- 
works of this section showed that the most common 
source of error was incorrect alignment of the utter- 
ance on the input array. Because the position of the 
vowel onset in each utterance was chosen by a mostly 
accurate Viterbi alignment procedure, there weren't 
nearly enough different starting points in the training 
data to allow a network to learn to generalize across 
time. TM 

To solve this problem, we devised a network that 
is inherently time-symmetric because it integrates 
output activations over time. The network contains 
multiple copies of each output unit. The copies of 
an output unit apply the same weight pattern to suc- 
cessive narrow slices of the input pattern, attempting 
to locate a subpattern which is characteristic of the 
word denoted by that unit. During learning, the 
equivalence class rule described in section 3.5 con- 
strains the weights of all of the copies of each output 
unit to be the same. 

A 2-layer version of this network is shown in Fig- 
ure 6. Whereas the output units of the simple 2-layer 
network of Figure 3 had been connected to the entire 
input layer, the output units in this network are con- 
nected to narrow receptive fields that only cover 5 
time steps. Since there are 8 ways to position a 5- 
step window on a 12-step pattern, the network con- 
tains 8 copies of each output unit. When an input is 
presented to the network, each of the 4 × 8 = 32 
output unit copies is activated by an amount that 
indicates the copy's confidence that its word is pres- 
ent, based on the evidence that is visible in its re- 
ceptive field. The overall value of each of a network's 
outputs is defined to be the sum of the squares ~'~ of 
the activations of all of that output unit's temporal 

'8 Hinton (1987a) demonstrated that a network could learn to 
perform position-independent recognition of bit patterns from 
scratch when the training set provided nearly complete coverage 
of the cross product of patterns and positions. This would be 
infeasible when training a network to perform a real-world task. 

19 The motivation for squaring the activations was to allow the 
activation of the output unit replica that found the best match to 
predominate in the overall answer. To find out whether this effect 
was really beneficial, we trained a toy network consisting of 5 
input units and 2 replicated output units to distinguish between 
the patterns 101 and 110 regardless of the patterns' alignment on 
the 5 input units. Using the squared activation rule, the network 
took 311 iterations to learn the task, employing weights whose 
average size was 0.99. When we tried the same task using the sum 
of the output units' unsquared activations as the network's out- 
puts, the network needed 558 iterations and weights of average 
size 1.23 to solve the problem, so the squared activation rule 
appeared to be superior. The performance of the two rules has 
not been compared on a speech task, but the unsquared activation 
rule worked well in Waibel, Hanazawa, Hinton, Shikano, and 
Lang (1987). 
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copies, so the computation performed by the net- 
work is a mapping from spectrograms to real-valued 
4-tuples. as always. 

While it is clear that a network with this structure 
and an appropriate set of weights could perform shift- 
invariant pattern recognition, it is less obvious how 
the network could acquire such a set of weights given 
the lack of temporal supervision caused by the sum- 
mation of the activations of the multiple output unit 
copies. The network only receives a single error sig- 
nal for each training token, which must somehow 
guide the development of all of the network's rep- 
licated weights, even though some of the weight cop- 
ies are processing portions of the input pattern that 
are useful for identifying the word. and others are 
processing portions of the input that are completely 
irrelevant. By combining evidence from the entire 
corpus of training data, the network does ultimately 
learn which of the subpatterns possess the most pre- 
dictive power, at which point the detectors for those 
subpatterns can be made very precise because they 
don't have to account for shifted versions of the pat- 
terns. 

For example, the weights shown on the right side 
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of Figure 6 allowed the replicated 2-layer network 
to correctly classify 94% of the training cases and 
91% of the test cases of the reallocated version of 
the data set. A comparison of the weight patterns 
learned by this network and the fixed position 2-layer 
network of Figure 3 is illuminating. In the new net- 
work, the rising ~ of the B pattern and the high- 
frequency burst of the D pattern are cleanly localized 
in time, while in the old network, these events were 
smeared over two or three time steps. Becuase the 
replicated network has time symmetry built into its 
architecture, it no longer has to compensate for vari- 
able word alignment by blurring its weight patterns, 
thus allowing the network to analyze the critical por- 
tions of the spectrograms in more detail. 

Having demonstrated the value of the time-sym- 
metric replicated output unit architecture with this 
2-layer network, we next applied the idea to a more 
powerful 3-layer network. The first layer of the 3- 
layer replicated network consisted of 192 input units 
encoding a spectrogram. The hidden layer contained 
10 copies of 8 hidden units that were each connected 
to 3 frames of the input. The third layer had 6 copies 
of the 4 output units, each looking at 5 frames of the 
pseudo-spectrogram generated by the hidden layer. 

The weight space of a highly constrained multi- 
layer network is more difficult to explore than that 
of a simpler network, requiring smaller and more 
carefully chosen learning parameters. More than 
20,000 iterations with peak parameters of {e = .001 
a = .95} were needed to tune the network into a 
model that accounted for 93% of the 668 training 
cases and 93% of the 10l) test cases of the modified 
task. The activation patterns of this network's output 
units on four sample utterances are pictured in col- 
umn 4 of Figure 1. The detectors for E and V show 
little time locality, apparently utilizing global char- 
acteristics of the tokens. However, the network rec- 
ognizes the stops B and D by examining the vowel 
onset, so the output activation patterns for them 
clearly show the alignment of the utterance. Notice 
that the network fired later on the B than it did on 
the D, as one would expect from looking at the cor- 
responding waveforms. 

It is significant that the network learned to locate 
and analyze the consonant-vowel transition region 
for these words, despite the fact that the training 
environment did not include any explicit information 
about the usefulness of this region of the word, much 
less any information about where to find the vowel 
onset in a given utterance. The network's success at 
learning to find and exploit the most informative 
region of each input pattern suggests that the Viterbi 
alignment initially used to clip a 144 ms salient sec- 
tion from each utterance was unnecessary; the net- 
work might have done just as well on complete, un- 
segmented words. This idea is explored in section 4. 

3.7. An Implementational Detail 

So far, we have glossed over the details of training 
a network with replicated output units. The error of 
a back-propagation network on a given case is a func- 
tion of the differences between the network's actual 
output values o i and the corresponding target 
values dj. 

1 
E = Y, (o, - d,l . 

/ 

In an ordinary back-propagation network, the 
output values oj are just the activation levels of the 
network's output units Yi. Plugging this fact into the 
definition of E and then differentiating by yi gives us 
the partial derivative of the error with respect to the 
activations of the output units. These values provide 
the starting point for the backward pass of the learn- 
ing algorithm. 

OE 
- - = y , - d ,  
OYi 

In the replicated network, each output value of 
the network is the sum of the squares of the acti- 
vations of several temporal replicas of an output unit. 

o, = )2  
t 

Plugging this into the definition of E and then 
differentiating yields the partial derivative of the er- 
ror with respect to activation of the replica of unit j 
at time r. 

3.8. Time-delay Neural Networks 

The architecture of our best BDEV network was 
originally formulated in terms of replicated units 
trained under constraints which ensured that the cop- 
ies of a given unit applied the same weight pattern 
to successive portions of the input (Lang, 1987). Be- 
cause the constrained training procedure for this net- 
work is similar to the standard technique for recur- 
rent back-propagation training (Rumelhart, Hinton, 
& Williams, 1986), it is natural to re-interpret the 
network in iterative terms (Hinton, 1987b). Accord- 
ing to this veiwpoint, the 3-layer network described 
in section 3.6 has only 16 input units, 8 hidden units, 
and 4 output units. Each input unit is connected to 
each hidden unit by 3 different links having time 
delays of 0, 1, and 2. Each hidden unit is connected 
to each output unit by 5 different links having time 
delays of 0, 1, 2, 3, and 4. The input spectrogram is 
scanned one frame at a time, and activation is iter- 
atively clocked upwards through the network. 
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The time-delay nomenclature associated with this 
iterative viewpoint was employed in describing the 
experiments at the Advanced Telecommunications 
Research Institute in Japan which confirmed the 
power of the replicated network of section 3.6 by 
showing that it performed better than all previously 
tried techniques on a set of Japanese consonants ex- 
tracted from continuous speech (Waibel et al., 1987). 

3.9.  Re la t ed  w o r k  

The idea of replicating network hardware to achieve 
position independence is an old one (Fukushima, 
1980). Replication is especially common in connec- 
tionist vision algorithms where local operators are 
simultaneously applied to all parts of an image (Marr 
& Poggio, 1976). The inspiration for the external 
time integration step of our time-delay neural net- 
work (TDNN) was Michael Jordan's work on back- 
propagating errors through other post-processing 
functions (Jordan, 1986). 

Waibel (1989) describes a modular training tech- 
nique that made it possible to scale the TDNN tech- 
nology up to a network which performs speaker de- 
pendent recognition of all Japanese consonants with 
an accuracy of 96.7%. The technique consists of 
training smaller networks to discriminate between 
subsets of the consonants, such as brig and ptk, and 
then freezing and combining these networks along 
with "glue" connections that are further trained to 
provide interclass discrimination. 

Networks similar to the TDNN have been inde- 
pendently designed by other researchers. The time- 
concentration network of Tank and Hopfield (1987) 
was motivated by properties of the auditory system 
of bats, and was conceived in terms of signal pro- 
cessing components such as delay lines and tuned 
filters. This network is interesting because variable- 
length time delays are learned to model words with 
different temporal properties, and because it is one 
of the few connectionist speech recognition systems 
actually to be implemented with parallel hardware 
instead of being simulated by a serial computer. 

An interesting performance comparison between 
a TDNN and a similarly structured version of Ko- 
honen's LVQ2 classifier on the ATR brig task is re- 
ported in Mcdermott and Katagiri (1989). The same 
15 × 16 input spectrograms were used for both net- 
works. In the LVQ2 network, a 7-step window (which 
is the amount of the input visible to a single output 
unit copy in the TDNN) was passed over the input, 
and the nearest of 150 LVQ2 codebook entries was 
determined for each input Window position. These 
codebook entries were then summed to provide the 
overall answer for a word. The replicated LVQ2 net- 
work achieved nearly identical performance to the 

TDNN with less training cost, although recognition 
was more expensive. 

An comprehensive survey of the field of connec- 
tionist speech recognition can be found in Lippmann 
(1989). 

3.10.  Mult ireso lut ion  Training 

In order to facilitate a muttiresolution training pro- 
cedure, the time-delay network of section 3,6 was 
modified slightly so that the widths of its receptive 
fields would be divisible by 2. While the network had 
previously utilized hidden unit receptive fields that 
were 3 time steps wide and output unit receptive 
fields that were 5 time steps wide, its connection 
pattern was adjusted to make all of its receptive fields 
4 time steps wide (see Figure 7(b)). Because this 
modification would have increased the total number 
of weights in the network, the number of hidden units 
was decreased from 8 to 6. After these changes, the 
network contained 490 unique weights. The half-res- 
olution version of the network shown in Figure 7(a) 
was also constructed. This network covered the input 
patterns using six 24-ms frames rather than the twelve 
12-ms frames of the full-resolution network. In the 
half-resolution version of the network, the receptive 
fields were all 2 frames wide. 

Multiresolution training is conducted in two stages. 
In the first stage, the half-resolution network is trained 
from small random weights on half-resolution ver- 
sions of the training patterns until its training set 
accuracy reaches a specified level. Then, the net- 
work's weights are used to initialize the full-resolu- 
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tion network, which is further trained on full-reso- 
lution versions of the training patterns. Figure 8 
illustrates this two-stage training procedure, which 
saves time because the half-resolution network can 
be simulated with only one-fourth as many connec- 
tions as the full-resolution network. 

3.11. Discussion 

The architectural experiments described earlier in 
this section were performed on a modified version 
of the BDEV task in which the data had been re- 
apportioned between the training and testing sets. 
An additional experiment was required to measure 
the time-delay network's performance on the Vi- 

terbi-aligned version of the task with the original 
training and testing sets. 

Starting from random weights distributed uni- 
formly on the interval ( -0 .01 ,  +0.01), the low res- 
olution TDNN of Figure 7(a) was trained of the 372 
training patterns until its accuracy reached 85%. This 
required 3000 epochs using the parameter schedule 
of Table 4(a). The network's weights were then trans- 
ferred to the high resolution network, and learning 
continued. The previously employed target activa- 
tions of 0.2 and 0.8, which are reputed to improve 
generalization, were abandoned in favor of the naive 
target activations of 0.0 and 1.0, which actually work 
better for this task. Peak generalization occurred after 
the high-resolution network had been trained for 
10,000 epochs, at which point the network got 95.4% 
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FIGURE 8. (a) Weights taken from a half-resolution TDNN to generate (b) initial weights for a full-resolution TDNN, which 
learned (c) these full-resolution final weights. For clarity, only half of the networks' six hidden units are shown here. 
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TABLE 4 
The parametM schedule used for multi-clmoluUon Vahling. The low Initlat momentum allows the networks to find the bottom 
of a ravine. Because the second stage ~ starts out with ~ ~ r n e d  bythe first ~ n ~ ,  itle already located 

in a ravine, and can accelerate more rapidly. 

(a) First-stage network (b) Second-stage network 

epoch 0 200 1000 2000... 0 50 100 200 1000.,, 

epsilon .0001 .0001 .0005 .0010 .0001 ,0001 .0005 0010 
momentum .05 .9 .95 .95 .5 .9 .95 95 

of the training cases and 91.4% of the testing cases 
correct. During an additional 10,000 epochs of train- 
ing, the network's performance increased to 98.1% 
on the training set, but generalization fell to 88.1%. 

The baseline 2-layer network of section 3.1 reached 
an 86.9% generalization peak when trained under 
the same conditions, so the peak performance of the 
time-delay network was 4.5% better. Based on this 
comparison, it seems like the additional complexity 
of the multilayer time-delay network did not buy very 
much. However, the time-delay network's ability to 
learn to sharply focus on the best discrimination cues 
in an utterance, as evidenced by the B and D output 
activation patterns in column 4 of Figure 1, are an 
indication that the TDNN was underutilized on the 
simplified, Vite~bi-aligned version of the task which 
was the domain for all of the experiments desCribed 
up to this point. When the original, unsegmented 
version of the task was tackled using the methods 
described in the next section, the peak generalization 
of the time-delay network actually increased to 92%, 
while the generalization of the simple 2-layer net- 
work plummeted to 61%. 

4. BEYOND SEGMENTATION 

In order to simplify our initial foray into connec- 
tionist speech recognition, we had tried to avoid the 
time alignment problem by using short (144 ms) sec- 
tions of each utterance selected by the IBM hidden 
Markov model. As explained in section 3.6, this seg- 
mentation was generally accurate, but there were 
several cases where the position of the vowel onset 
differed from the norm, defeating networks that had 
learned to expect the most prevalent alignment. To 
solve this problem, a network was built that summed 
the squares of the activations of multiple output unit 
copies which could each see a different portion of 
the input pattern. During training, the overall net- 
work gradually learned to locate and focus on the 
most relevant portions of the utterance, ignoring the 
rest. 

Thus armed with a network that could learn to 
find and classify the relevant portion of a long ut- 
terance, it was feasible to attack the same full-length 
utterances that Peter Brown had used in his hidden 

Markov model experiments. These recordings for the 
BDEV set ranged in length from 0.3 to 6.4 seconds, 
and averaged 1.1 seconds. In each recording, the 
word itself was fairly short, and was preceded and 
followed by "silence," which was actually rather noisy, 
containing knocking sounds and background con- 
versation. 

In principle, we could have trained and tested a 
gigantic version of our replicated network on the full- 
blown recordings, which would have been desirable 
since systems generally work best when they are 
trained on a version of the task that exactly corre- 
sponds to the one encountered in performance. How- 
ever, in the interest of speed and convenience, we 
instead approximated that approach by training the 
network on a new set of wider consonant-vowel tran- 
sition regions selected by an ad hoc energy-based 
segmenter, augmented with "counter-example" re- 
gions randomly chosen from the Leftover portion of 
each utterance (which consisted of background noise 
and the trailing part of the E vowel). Testing was 
performed by scanning the network across the com- 
plete, unsegmented version of an utterance, looking 
for the maximum output activation level which re- 
suited. When trained and tested in this manner, the 
network achieved better peak generalization than it 
had on when trained and tested on the 144 ms Vi- 
terbi-selected segments, probably because the sys- 
tem no longer depended on a potentially errorful 
segmentation during recognition. 

4.1. Training on Heuristically Sel~ted Segments 

Because of the alignment-invariance of the replicated 
TDNN network architecture, precise segmentation 
of the training data is not necessary; it is sufficient 
to have a section of each utterance that somewhere 
contains enough information to discriminate be- 
tween the alternatives. On the BDIEV task, this in- 
formation is concentrated in the consonant-vowel 
transition region. Assuming that most of the energy 
in these words is contained in the vowel, the con- 
sonant-vowel transition can be located by an ad hoc 
program that finds the be#nning of the largest con- 
centration of energy in an utterance. 

Figure 9 shows how such a program works on an 
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FIGURE 9. This simple heuristic, which locates the beginning of the largest energy hump in an utterance, was used to extract 
vowel-onset segments in order to expedite training. The best testing performance, however, was achieved by presenting 
complete, unsegmented spectrograms to the network. 

instance of the word B. Starting from a raw spectro- 
gram containing 128 frequency bands ranging up to 
8 kHz, the total energy below 4 kHz is computed for 
every 3 ms time step, and then the energies are nor- 
malized by subtracting the smallest value from all of 
the others, yielding the lower curve in the diagram. 
(The two spikes near the end are background noise.) 
This curve is then smoothed with a 150 ms window 
and threshoided with the median smoothed value to 
obtain the top curve, which in this case contains two 
contiguous energy blobs. According to our assump- 
tion, the larger blob represents the vowel. The 
boundaries of this blob are expanded by 150 ms in 
each direction to obtain the points a and b. 

Returning to the original, unsmoothed curve, point 
c is then fixed at the energy midpoint of the interval 
ab, so that the area under the curve on the interval 
ac equals the area under the curve on the interval 
cb. Finally, point d is scanned across the interval ac 
while values are computed for g(d)  and h(d), which 
are the average energies on the intervals ad and dc, 
respectively. The output of the program is the value 
of d for which h(d)  - g(d)  is maximized. 

From each training utterance, the section from 
time d - offset to time d - offset + length was 
extracted to form a training segment, where d was 
the heuristically determined vowel onset position in 
that utterance, offset was 120 ms, and length was 216 
ms. The 50% increase in length from the previously 
used value of 144 ms was motivated by the reduced 
precision of the new ad hoc vowel finding rule. The 
longer training segments also increased the amount 
of irrelevant material that the network would have 
to learn to ignore. 

Despite their increased length, the new training 
patterns couldn't provide a comprehensive picture of 
the acoustical content of the training corpus because 
they were all positioned around the consonant-vowel 
transitions of the words. Therefore,  after the heu- 

ristic segmentation program had extracted a slice 
containing the vowel onset from a given utterance, 
it randomly selected an additional 216 ms section 
from the leftover portion of that utterance. These 
"counter-example" segments were placed in the 
training set with target values of zero for all of the 
network's output units. The augmented collection of 
training segments constructed by this technique con- 
tained essentially the same information as the raw, 
unsegmented corpus, but with reduced redundancy; 
while the tiny consonant-vowel transition region of 
every word contained valuable information, the long 
stretches of background noise and vowel in the ut- 
terances were comparatively uniform, and could be 
adequately characterized by random samples. 

4.2. Testing on Complete Utterances 

Testing was accomplished by a scanning procedure 
in which an unsegmented utterance was divided into 
consecutive, overlapping 216 ms input patterns, and 
the network was repeatedly applied to convert this 
sequence of patterns into a sequence of output vec- 
tors for the utterance. 2° The 216 ms input window 
was shifted by 12 ms (or 1 input frame) between 
successive computations. The largest single vector 
component observed in the output vector sequence 
for a given utterance determined the classification of 
that utterance. 

4.3. A Question of Supervision 

This section began with the claim that the replicated 
TDNN architecture could handle the unsegmented 

z~ When a t ime-delay network was used, each value in an out- 
put vector was the sum of the squares of the activation levels of 
several output unit copies. 
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version of the BDEV task because it did not require 
supervision in the time domain, that is, it did not 
need to be told the location of the discrimination 
cues in a given utterance. In the name of efficiency, 
redundancy in the training corpus was then reduced 
by first extracting a 216 ms slice around each hy- 
pothesized vowel onset, and then randomly selecting 
an additional 216 ms slice from each word on which 
the network would be trained to output a vector of 
zeroes. This training method sounds suspiciously su- 
pervised, calling into question the need for a network 
as powerful and expensive to train as a TDNN. 

To find out whether this training method would 
eliminate the need for a network that can learn to 
find the most meaningful event in a longer input 
pattern, a conventional network and a time-delay 
network were both trained on the new set of training 
segments and then tested on the full-length training 
utterances. 

The conventional, fully connected network had 
an 18 x 16 input array, 8 hidden units, 4 output 
units, and 2358 weights. The network was trained 
twice: once on the set of 216 ms vowel-onset seg- 
ments alone, and once on those segments plus the 
counter-example segments randomly chosen from the 
leftover portions of the utterances. After each 2000- 
epoch training session using a parameter schedule 
which peaked at {e = .0005, u = .95} after 400 ep- 
ochs, the network's performance on the training set 
was measured in two different ways. First, the vowel- 
onset segments of the training set were classified us- 
ing the best-guess rule. Second, the network was 
scanned across the full-length versions of the training 
utterances and the maximum output activation was 
noted. 

A 216-ms version of the time-delay network of 
Figure 7 was then evaluated. As before, the output 
values produced by this network were ttie sums of 
the squares of the activations of several output unit 
copies, each of which could only see only 84 ms of 
the input. However, there were now 12 copies of 
each output unit, rather than just 6. Using the mui- 
tiresolution training paradigm described in section 
3.11, the network was trained once on vowel-onset 
segments alone, and again on vowel-onset segments 

plus counter-example segments. After both runs, the 
network's recognition accuracy was measured on the 
vowel-onset segments and on the full-length versions 
of the training utterances. 

Table 5 contains the results of this experiment. 
When trained on vowel-onset segments alone, the 
conventional network learned nearly all of the train- 
ing patterns, but was unable to correctly classify more 
than a third of the corresponding full-length utter- 
ances. By contrast, the time-delay network's training 
set performance only fell slightly when going from 
the vowel-onset segments to the complete utter- 
ances. When trained on vowel-onset segments to- 
gether with counter-example segments, the error rate 
of the conventional network on full-length utterances 
was nearly halved, but was still an order of magnitude 
higher than on the training segments. Under the same 
conditions, the time-delay network actually per- 
formed better on the full-length utterances than on 
the segments with which it had been trained. 

To provide some intuition into these performance 
numbers, Figure 10 was made. The left-hand plots, 
which correspond to training on the vowel-onset seg- 
ments alone, have a dramatically different character 
for the two networks. The time-delay network, which 
had already learned to isolate the most informative 
region contained in each 216 ms segment, behaved 
in a controlled manner when confronted with the full- 
length versions of the utterances, while the outputs 
of the conventional 3-layer network fired erratically 
throughout the utterances as random noise stimu- 
lated its comparatively undiscriminating feature de- 
tectors. 

The right-hand plots show that the use of counter- 
example segments in the training process cleaned up 
the firing patterns of both networks, eliminating spu- 
rious firings in the vocalic and background noise por- 
tions of the words. Still, the conventional network 
fired erratically when the vowel-onset regions of the 
word was shown to the network in novel positions, 
while the time-delay network was unfazed because 
its replicated architecture allowed it to recognize 
known patterns imbedded in previously unseen ma- 
terial. 

While the training method described in this sec- 

TABLE 5 
This table shows how networks with two dlflMent srchilm:turss fared when forced to classify u n ~  spectrograms 
after being trained on =dart segments of thotm =pectroglams. Goth networks were ~ ~ ~ l m h m  ~ tha, n 9~=:~ Okf 
the training segments which were extracted from around the conmammt-v(Mel ~ r ~ . . ~ l e  ~ ~  
was unable to transfer its knowledge of the traht~ segmet#s to the f ~  task, while the ~ y  network s per- 

fonnance actually ~ When ~ the f u l ~  ~ ~ tO ~ .  

Counter-examples used? 

Type of input pattern: 

3-layer conventional net 
3.layer time-delay net 

No Yes 

Segments Full-length Segments Full-length 

99% 34% 97% 54% 
94% 91% 92% 94% 
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FIGURE 10. Output activation traces obtained by scanning a network across full-length training utterances. The top two plots 
are for a 3-layer fully-connected network, while the bottom two plots are for a 3-layer time-delay network. The plots on the 
left resulted from training on 216 ms segments extracted from around the consonant-vowel transition of each word, while 
the plots on the right resulted from training on those segments plus counter-example segments randomly chosen from the 
leftover portions of the words. 

tion might appear to be closely supervised in time 
(i.e., the network should fire here, but not there), 
the training segments are longer than the events which 
are significant for this task, and are not aligned with 
any degree of precision. A conventional network is 
unable to learn enough from these segments to suc- 
cessfully classify unsegmented utterances, while the 
time-delay network is fully capable of learning from 
patterns that contain small pieces of crucial infor- 
mation in unknown positions. 

5. PERFORMANCE 

During the architectural study of section 3, networks 
were rated according to peak generalization; at reg- 
ular intervals while each network was being trained, 
its performance on the test set was measured. These 
scores would typically rise to a maximum value and 
then fell again as the network learned facts about 
the training set which were not true of the test set. 
Although peak generalization is a useful measure for 
comparing the utility of different network architec- 

tures, it fails to capture the flavor of a real appli- 
cation, where training must be completed without 
any reference to the ultimate testing set. 

When one is lucky enough to have a clean and 
consistent training set, good generalization may be 
achieved by simply training the network until it makes 
no errors on that set. When the training set contains 
outliers that result in diminished generalization, as 
does our BDEV training set, a more insightful halt- 
ing methodology is required. 

The standard technique for deciding when to stop 
an excessively powerful learning procedure is to set 
aside part of the training set as a "check set" to be 
used for tuning. This leaves a reduced collection of 
cases for actually training the network's weights. When 
the training data is organized in this way, the peak 
generalization method can be used to decide when 
to stop learning. The network is trained on the re- 
duced training set until it achieves peak performance 
with respect to the check set. Then the network's 
performance on the test set can be measured exactly 
once, yielding a true generalization score. Although 
this technique works, the reduction in size of the 
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training set can be a disadvantage when the training 
set is small to begin with. 

In a separate set of experiments, we proposed and 
tested several decision rules that did not result in a 
loss of training data. The simplest technique was to 
first perform a check set run to estimate the shape 
of the network's generalization curve, and then re- 
train the network using all of the training data until 
its mean squared error reached the level at which 
the best estimated generalization had occurred dur- 
ing the check set run. 

In order to obtain an official BDEV performance 
rating for the recognition system described in section 
4, a check set was created by setting aside 100 of the 
216-ms vowel-onset segments (25 per word) and 100 
of the counter-example segments. Using the multi- 
resolution training procedure described in section 
3.11, 21 a 216-ms version of the network of Figure 7 
was trained on the remaining training segments for 
10,000 epochs, which was long enough to see that 
the network's mean squared error on the check set 
was rising from the minimum value that it had reached 
at 6,000 epochs. 

The network was then retrained on the full train- 
ing set of 216-ms heuristically selected vowel-onset 
segments plus counter-example segments, including 
the segments which had been temporarily removed 
to form the check set. This retraining started from 
the same set of half-resolution weights which had 
been used during the check set experiment, and em- 
ployed identical learning parameters. At the end of 
6,000 epochs, the network showed the same mean 
squared error on the training set that it had after 
6,000 epochs during the check set run, so training 
was halted, and the network's scanning mode gen- 
eralization to the full-length utterances of the real 
testing set (which otherwise was not touched during 
this experiment) was measured to be 90.9% 

This true generalization score is not only much 
better than the standard IBM hidden Markov model's 
80% BDEV accuracy, it also compares favorably with 
the estimated 89% BDEV performance of the IBM 
system when it had been enhanced with the contin- 
uous parameter, MMIE acoustic model that is the 
main result of Peter Brown's thesis. It should be 
emphasized that our network's 90.9% test set per- 
formance was attained on exactly the same noisy, 
variable-length recordings that the hidden Markov 

2~ During this run, the momentum parameter was set to .98 
after 1000 epochs rather than .95 in the interest of faster learning. 
Weight decay was performed, with h = .002. During the exper- 
iments described in earlier sections, weight decay was performed 
by multiplying every weight by (1 - h) after each weight step. 
For this experiment, the simulator was modified to perform weight 
decay by adding a decay vector - hw, where w is the weight vector, 
to the gradient before computing the actual weight step using 
momentum. This implementation has the desirable property that 
weight decay does not interact with momentum. 

models were faced with. Thus, we have shown that 
without the benefit of a presegmentation step, a 
properly designed neural network is capable of rec- 
ognition performance on a highly confusable small- 
vocabulary multispeaker recognition task that is 
competitive with the best achieved by an enhanced 
hidden Markov model which was also specially de- 
signed for the task. 

It is interesting to contrast the methods by which 
these two systems achieved their good performance 
on this task. The hidden Markov system had the 
advantage of being able to model the global temporal 
structure of the utterances. By recognizing the vo- 
calic and background portions of the utterances, the 
HMM was able to accurately position the consonant 
models that actually provided the discrimination be- 
tween the words. The time-delay network, while un- 
aware of everything about an utterance that was not 
directly under its nose at a given moment, used its 
superior discrimination power to ignore everything 
but the maximally informative cottsonant-vowel tran- 
sition in each utterance. 

6. CONCLUSION 

The primary result of this paper is the time-delay 
neural network architecture. This architectur.e, which 
factors out the position of features in its input pat- 
terns by summing the activations of replicated output 
units connected to small receptive fields, has benefits 
that extend far beyond the property that input reg- 
istration errors are tolerated. The temporally unsu- 
pervised TDNN training procedure amounts to a 
small-scale iterative labeling/training loop which 
permits the network to acquire extremely sharp fea- 
ture detectors. 

The fact that a time-delay network can learn pre- 
cise weight patterns from imprecisely prepared train- 
ing examples makes the system an attractive foun- 
dation for the construction of a practical recognition 
system. Also, the number of weights that must be 
stored and convolved with the input stream during 
recognition is small, and the network's narrow re- 
ceptive fields require only short input buffers, thereby 
minimizing both the memory requirements and la- 
tency of such a system. 

The decision rule which was used to halt the back- 
propagation learning procedure in section 5 also has 
practical benefits. At the expense of training the net- 
work twice, once on a version of the training set from 
which a check set had been withheld, and again on 
the full training set up to the point had which yielded 
the best check set generalization, this method per- 
mitted an informed decision to be made about when 
to stop training without reducing the size of the train- 
ing set. 
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Finally, it is hoped that the tour through a portion 
of network design space in section 3 provided some 
insight into the issues that are nearly always relevant 
to the construction of a successful network for a given 
application. Consideration must be given to a net- 
work's information capacity relative to the amount 
of training data, to the bandwidth of a network's 
information channels relative to the sorts of internal 
codes that will be needed, and to the computational 
power of a network compared to the complexity of 
the input-output mapping that it is being asked to 
perform. It is also important to consider whether a 
network can learn the essential properties of a task 
from the training data that is actually available. When 
a network's architecture permits a desirable mode of 
operation, but that mode cannot be learned from the 
training set, the network must be redesigned so that 
it will behave correctly despite the inadequacies of 
the training data. Although back-propagation is often 
touted as a black-box learning procedure, the best 
results are obtained when it is used to tune the best 
possible network for a given task. 
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