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Abstract

We describe an efficient learning procedure for multilayemayative models that
combine the best aspects of Markov random fields and deegutéit belief nets.
The generative models can be learned one layer at a time aed l@hrning is
complete they have a very fast inference procedure for ctingpa good approx-
imation to the posterior distribution in all of the hiddeyéas. Each hidden layer
has its own MRF whose energy function is modulated by thedimpn directed
connections from the layer above. To generate from the medeh layer in turn
must settle to equilibrium given its top-down input. We shihat this type of
model is good at capturing the statistics of patches of nhiorages.

1 Introduction

The soldiers on a parade ground form a neat rectangle byaatieg with their neighbors. An officer
decides where the rectangle should be, but he would bevlked to try to tell each individual sol-
dier exactly where to stand. By allowing constraints to bieered by local interactions, the officer
enormously reduces the bandwidth of top-down communicagquired to generate a familiar pat-
tern. Instead of micro-managing the soldiers, the officecsjgs an objective function and leaves
it to the soldiers to optimise that function. This examplgaftern generation suggests that a multi-
layer, directed belief net may not be the most effective veagenerate patterns. Instead of using
shared ancestors to create correlations between the kegrialthin a layer, it may be more efficient
for each layer to have its own energy function that is moeuwldty directed, top-down input from
the layer above. Given the top-down input, each layer cam tise lateral interactions to settle on
a good configuration and this configuration can then providetop-down input for the next layer
down. When generating an image of a face, for example, theoajppate locations of the mouth
and nose might be specified by a higher level and the locakiations would then ensure that the
accuracy of their vertical alignment was far greater thandbcuracy with which their locations
were specified top-down.

In this paper, we show that recently developed techniqude#oning deep belief nets (DBN's) can
be generalized to solve the apparently more difficult pnobté learning a directed hierarchy of
Markov Random Fields (MRF's). The method we describe camlgadels that have many hidden
layers, each with its own MRF whose energy function is coodil on the values of the variables in
the layer above. It does not require detailed prior knowéedlgout the data to be modeled, though
it obviously works better if the architecture and the typEktent variable are well matched to the
task.



2 Learning deep belief nets: An overview

The learning procedure for deep belief nets has now beemidedén several places (Hinton et al.,
2006; Hinton and Salakhutdinov, 2006; Bengio et al., 20@i8)will only be sketched here. It relies
on a basic module, called a restricted Boltzmann machineMRiBat can be trained efficiently
using a method called “contrastive divergence” (HintorQ20

2.1 Restricted Boltzmann Machines

An RBM consists of a layer of binary stochastic “visible” tsmconnected to a layer of binary,
stochastic “hidden” units via symmetrically weighted ceations. A joint configuration,y(, h) of
the visible and hidden units has an energy given by:
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wherev;, h; are the binary states of visible uniand hidden unif, b;, b; are their biases and;; is
the symmetric weight between them. The network assignstzapility to every possible image via
this energy function and the probability of a training imaga be raised by adjusting the weights
and biases to lower the energy of that image and to raise #rgyenf similar, reconstructed images
that the network would prefer to the real data.

Given a training vectol, the binary stateh ;, of each feature detectgr, is set tol with probability
o(bj + >, viw;;), whereo(z) is the logistic functionl /(1 + exp(—x)), b; is the bias ofj, v; is
the state of visible unit, andw;; is the weight between and j. Once binary states have been
chosen for the hidden units, a reconstruction is produceseltyng eachy; to 1 with probability
o(b; + >, hjwi;). The states of the hidden units are then updated once mohatsihey represent
features of the reconstruction. The change in a weight gy

wheree is a learning rate(v;h;) .., iS the fraction of times that visible unitand hidden unitg
are on together when the hidden units are being driven byatate; %), ..., is the corresponding
fraction for reconstructions. A simplified version of thersalearning rule is used for the biases.
The learning works well even though it is not exactly follagithe gradient of the log probability
of the training data (Hinton, 2002).

2.2 Compositions of experts

A single layer of binary features is usually not the best wagapture the structure in the data. We
now show how RBM’S can be composed to create much more polverfiltilayer models.

After using an RBM to learn the first layer of hidden features rave an undirected model that
definesp(v, h) via the energy function in Eqg. 1. We can also think of the medadefiningy(v, h)

by defining a consistent pair of conditional probabilitigh|v) andp(v|h) which can be used to
sample from the model distribution. A different way to exggavhat has been learnedpiév|h)
andp(h). Unlike a standard directed model, thigh) does not have its own separate parameters.
It is a complicated, non-factorial prior dnthat is defined implicitly by the weights. This peculiar
decomposition intgp(h) andp(v|h) suggests a recursive algorithm: keep the leam@dh) but
replacep(h) by a better prior oveh, i.e. a prior that is closer to the average, over all the data
vectors, of the conditional posterior ovier

We can sample from this average conditional posterior bylirapplyingp(h|v) to the training
data. The sampleH vectors are then the “data” that is used for training a hidgéezl RBM that
learns the next layer of features. We could initialize thghlr-level RBM model by using the same
parameters as the lower-level RBM but with the roles of tlielah and visible units reversed. This
ensures that(v) for the higher-level RBM starts out being exactly the samg(as for the lower-
level one. Provided the number of features per layer doeslemrease, Hinton et al. (2006) show
that each extra layer increases a variational lower bourtietog probability of the data.

The directed connections from the first hidden layer to treble units in the final, composite
graphical model are a consequence of the the fact that wetkegpv|h) but throw away the(h)
defined by the first level RBM. In the final composite model, &méy undirected connections are



between the top two layers, because we do not throw away(lnefor the highest-level RBM. To
suppress noise in the learning signal, we use the real-dactvationprobabilities for the visible
units of all the higher-level RBM's, but to prevent hidderitarirom transmitting more than one bit
of information from the data to its reconstruction, we al&ayse stochastic binary values for the
hidden units.

3 Semi-restricted Boltzmann machines

For contrastive divergence learning to work well, it is imgmt for the hidden units to be sampled
from their conditional distribution given the data or theaastructions. It not necessary, however,
for the reconstructions to be sampled from their conditidligribution given the hidden states. All
that is required is that the reconstructions have lower éreergy than the data. So it is possible to
include lateral connections between the visible units araé¢ate reconstructions by taking a small
step towards the conditional equilibrium distributiongyivhe hidden states. If we are using mean-
field activities for the reconstructions, we can move towahe equilibrium distribution by using a
few damped mean-field updates (Welling and Hinton, 2002).ceethis a semi-restricted Boltz-
mann machine (SRBM). The visible units form a conditional MRith the biases of the visible
units being determined by the hidden states. The learniogepiure for the visible to hidden con-
nections is unaffected and the same learning proceduregeapplthe lateral connections. Explicitly,
the energy function for a SRBM is given by

E(v,h)=— Z biv; — Z bjh; — Zvihjwij - Zvi'Ui’Lii’ (3)
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and the update rule for the lateral connections is
ALiir = €((ivir) gata = (ViVir ) recon) (4)

Semi-restricted Boltzmann machines can be learned gyeadd composed to form a directed hi-
erarchy of conditional MRF's. To generate from the composibbdel we first get an equilbrium
sample from the top level SRBM and then we get an equilibriame from each lower level MRF
in turn, given the top-down input from the sample in the lagieove. The settling at each interme-
diate level does not need to explore a highly multi-modargnéandscape because the top-down
input has already selected a good region of the space. Ta®fdhe settling is simply to sharpen
the somewhat vague top-down specification and to ensureghtbatsulting configuration repects
learned constraints. Each intermediate level fills in thaitegiven the larger picture defined by the
level above.

4 Inference in a directed hierarchy of MRF’s

In a deep belief network, inference is very simple and vesy Eeecause of the way in which the
network is learned. Rather than first deciding how to repretbe data and then worrying about in-
ference afterwards, deep belief nets restrict themsedesatning representations for which accurate
variational inference can be done in a single bottom-up.aash layer computes an approximate
sample from its posterior distribution given the actistia the layer below. This can be done with
a single matrix multiply using the bottom-up “recognitiozdnnections that were originally learned
by an RBM but are no longer part of the generative model. Thegeition connections compute
an approximation to thproduct of a data-dependent likelihood term coming from the laydowe
and a data-independent prior term that depends on the teparameters of all the higher layers.
Each of these two terms can contain strong correlationghleuvay in which the model is learned
ensures that these correlations cancel each other out tsthéhtue posterior distribution in each
layer is very close to factorial and very simple to computarfithe activities in the layer below.

The inference process is unaltered by adding an MRF at eddeiilayer. The role of the MRF’s
is to allow the generative process to mimic the constraldsdre obeyed by the variables within a
layer when the network is being driven bottom-up by data.if@inference, these constraints are
enforced by the data. From a biological perspective, it iy waportant for perceptual inference to
be fast and accurate, so it is very good that it does not ievahy kind of iterative settling or belief
propagation. The MRF’s are vital for imposing constrainisitg generation and for whitening the



learning signal so that weak higher-order structure is naskad by strong pairwise correlations.
During perceptual inference, however, the MRF’s are meeetsypors.

5 Whitening without waiting

Data is often whitened to prevent strong pairwise corretegifrom masking weaker but more in-
teresting structure. An alternative to whitening the dateimodify the learning procedure so that
it actsas if the data were whitened and ignores strong pairwise coigakatvhen learning the next
level of features. This has the advantage that perceptigakimce is not slowed down by an explicit
whitening stage. If the lateral connections ensure thatravigz correlation in the distribution of the
reconstructions is the same as in the data distributiohctivaelation will be ignored by contrastive
divergence since the learning is driven by the differencga/éen the two distributions. This also
explains why different hidden units learn different feasieven when they have the same connec-
tivity: once one feature has made one aspect of the recatistna match the data, there is no longer
any learning signal for another hidden unit to learn thatesaspect.

Figure 1 shows how the features learned by the hidden urataffected by the presence of lateral
connections between the visible units. Hidden units arengdr required for modeling the strong

pairwise correlations between nearby pixels so they aeetfyaliscover more interesting features
than the simple on-center off-surround fetaures that aeggbent when there are no connections
between visible units.

BREE IIHII-I

Figure 1: (A) A random sample of the filters learned by an RBadined on 60,000 images of hand-
written digits from the MNIST database (see Hinton et al0@(or details). (B) A random sample
of the filters learned by an SRBM trained on the same data. ddyme each reconstruction, the
SRBM used 5 damped mean-field iterations with the top-dovpntifrom the hidden states fixed.
Adding lateral connections between the visible units cleare types of hidden features that are
learned. For simplicity each visible unit in the SRBM was mected to all 783 other visible units,
but only the local connections developed large weights aeddteral connections to each pixel
formed a small on-center off-surround field centered on ikelp Pixels close to the edge of the
image that were only active one or two times in the whole ingjrset behaved very differently:
They learned to predict the whole of the particular digit teused them to be active.

6 Modeling patches of natural images

To illustrate the advantages of adding lateral connecttorthe hidden layers of a DBN we use
the well-studied task of modelling the statistical struetof images of natural scenes (Bell and
Sejnowski, 1997; Olshausen and Field, 1996; Karklin anditkiw2005; Osindero et al., 2006; Lyu
and Simoncelli, 2006). Using DBN's, it is easy to build ovamplete and hierchical generative
models of image patches. These are able to capture much tygles of statistical dependency than
traditional generative models such as ICA. They also hawgtitential to go well beyond the types
of dependencies that can be captured by other, more sapattéxti multi-stage approaches such as
(Karklin and Lewicki, 2005; Osindero et al., 2006; Lyu andn8ncelli, 2006).

6.1 Adapting Restricted Boltzmann machines to real-valuediata

Hinton and Salakhutdinov (2006) show how the visible unitaroRBM can be modified to allow it
to model real-valued data using linear visible variableth iaussian noise, but retaining the binary
stochastic hidden units. The learning procedure is esggntinchanged especially if we use the
mean-field approximation for the visible units which is wineg do.

4



Two generative DBN models, one with and one without latemalnectivity, were trained using
the updates from equations 2 and 4. The training data usesisted of 150,00Q0 x 20 patches
extracted from images of natural scenes taken from theatmite of Van Hatereh The raw im-
age intensities were pre-processed using a standard sgtecdtmns — namely an initial log-
transformation, and then a normalisation step such that gael had zero-mean across the training
set. The patches were then whitened using a Zero-Phase @emtpanalysis (ZCA) filter-bank.
The set of whitening filters is obtained by rotating the data & co-ordinate system aligned with
the eigenvectors of the covariance matrix, then rescaliic eomponent by the inverse square-root
of the correspoding eigenvalue, then rotating back intatiginal pixel co-ordinate system.

Using ZCA has a similar effect to learning lateral connetdibetween pixels (Welling and Hinton,
2002). We used ZCA whitened data for both models to make #@rdleat the advantage of lateral
connections is not just caused by their ability to whitenitipait data. Because the data was whitened
we did not include lateral connections in the bottom layetheflateral DBN. The results presented
in the figures that follow are all shown in “unwhitened pisglace”, i.e. the effects of the whitening
filter are undone for display purposes.

The models each had 2000 units in the first hidden layer, 5@@eisecond hidden layer and 1000
units in the third hidden layer. The generative abilitiesboth models are very robust against
variations in the number of hidden units in each layer, thoiigseems to be important for the

top layer to be quite large. In the case where lateral coiorectvere used, the first and second
hidden layers of the final, composite model were fully ldtgreonnected.

Data was taken in mini-batches of size 100, and training vea®pmed for 50 epochs for the first
layer and 30 epochs for the remaining layers. A learning ot was used for the interlayer
connections, and half that rate for the lateral connectibhstiplicative weight decay of0~2 mul-
tiplied by the learning rate was used, and a momentum faétd9avas employed. When training
the higher-level SRBM’s in the model with lateral conneityiv30 parallel mean field updates were
used to produce the reconstructions with the top-down ifmout the hidden states held constant.
Each mean field update set the new activity of every “visilieit to be0.2 times the previous ac-
tivity plus 0.8 times the value computed by applying the logistic functiothie total input received
from the hidden units and the previous states of the visibiesu

Learned filters

Figure 2 shows a random sample of the filters learned usingBivi Rith Gaussian visible units.
These filters are the same for both models. This representati x overcomplete.

Figure 2: Filters from the first hidden layer. The results geaerally similar to previous work on
learning representations of natural image patches. Therityapf the filters are tuned in location,
orientation, and spatial frequency. The joint space oftlocaand orientation is approximately
evenly tiled and the spatial frequency responses span a drapout four octaves.

6.1.1 Generating samples from the model

The same issue that necessitates the use of approximati@rslearning deep-networks — namely
the unknown value of the partition function — also makesffiddilt to objectively assess how well
they fit the data in the absence of predictive tasks such asifitation. Since our main aim is to
demonstrate the improvement in data modelling ability thegral connections bring to DBN’s, we
simply present samples from similarly structured modelt) and without lateral connections, and
compare these samples with real data.

http://hlab.phys.rug.nl/imlib/index.html



Ten-thousand data samples were generated by randomaéligiitg the top-level (S)RBM states and
then running 300 iterations of a Gibbs sampling scheme hetwiee top two layers. For models
without lateral connections, each iteration of the scheoresisted of a full parallel-update of the
top-most layer followed by a full parallel-update of the pkimate layer. In models with lateral
connections, each iteration consisted of a full paralfglate of the top-most layer followed by 50
rounds of sequential stochastic updates of each unit inghalpmate layer, under the influence of
the previously sampled top-layer states. (A different mndrdering of units was drawn in each
update-round.) After running this Markov Chain we then perfed an ancestral generative pass
down to the data layer. In the case of models with no lateraheotions, this simply involved
sampling from the factorial conditional distribution atldayer. In the case of models with lateral
connections we performed 50 rounds of randomly-orderegljesgtial stochastic updates under the
influence of the top-down inputs from the layer above. In lwatbes, on the final hidden layer update
before generating the pixel values, mean-field updates ugs@ so that the data was generated using
the real-valued probabilities in the first hidden layer eattihan stochastic-binary states.

(A) (B)

Figure 3: (A) Samples from a model without lateral connewtio(B) Samples from a model with
lateral connections. (C) Examples of actual data, drawmaradom. (D) Examples of actual data,
chosen to have closest cosine distance to samples from (&nel

Figure 3 shows that adding undirected lateral interactwitisin each intermediate hidden layer of
a deep belief net greatly improves the model’s ability toegate image patches that look realistic.
Itis evident from the figure that the samples from the modéh Witeral connections are much more
similar to the real data and contain much more coherent;tange structure. Belief networks with
only directed connections have difficulty capturing sgatiastraints between the parts of an image
because, in a directed network, the only way to enforce caings is by using observed descendants.
Unobserved ancestors can only be used to model shared satingiation.

6.1.2 Marginal and pairwise statistics

In addition to the largely subjective comparisons from thevipus section, if we perform some
simple aggregate analyses of the synthesized data we dethéhsamples from the model with
lateral connections are objectively well matched to thosmftrue natural images. In the right-hand
column of figure 4 we show histograms of pixel inensities &aldata and for data generated by the



two models. The kurtosis &3 for real datay.3 for the model with lateral connections, add for
the model with no lateral connections. If we make a histogoéuthe outputs of all of the filters in
the first hidden layer of the model, we discover that the lgistes 10.5 on real datal0.3 on image
patches generated by the model with lateral connectiomnk3.&ron patches generated by the other
model.

Columns one through five of figure 4 show the distributionshefriesponse of one filter conditional
on the response of a second filter. Again, for image patchesrgted with lateral connections the
statistics are similar to the data and without lateral cotioas they are quite different.
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Figure 4: Each row shows statistics computed from a diffeset of 10,000 images. The first
row is for real data. The second row is for image patches géeerby the model with lateral
interactions. The third row is for patches generated withateral interactions. Column six shows
histograms of pixel intensities. Columns 1-5 show condidilter responses, in the style suggested
in (Wainwright and Simoncelli, 2000), for two different gaffilters applied to the sampled images.
In columns 1-3 the filters are 2, 4, or 8 pixels apart. In coluhthey are at the same location but
orthogonal orientations. In column 5 they are at the samatilme and orientation but one octave
apart in spatial frequency.

7 Discussion

Our results demonstrate the advantages of using semietedtBoltzmann machines as the building
blocks when building deep belief nets. The model with ldtesanections is very good at capturing
the statistical structure of natural image patches. Inrétuork we hope to exploit this in a number
of image processing tasks that require a good prior overénpadches.

The models presented in this paper had complete lateralectiaity — largely for simplicity in
MATLAB. Such a strategy would not be feasible were we to gigantly scale up our networks.
Fortunately, there is an obvious solution to this — we canpfmnestrict the majority of lateral
interactions to a local neighbourhood and concomitterdlyetthe hidden units focus their attention
on spatially localised regions of the image. A topographéeang would then exist throughout the
various layers of the hierarchy. This would greatly redinedomputational load and it corresponds
to a sensible prior over image structures, especially ifdbal regions get larger as we move up the
hierarchy. Furthermore, it would probably make the prooésettling within a layer much faster.

One limitation of the model we have described is that thedoywn effects can only change the
effective biases of the units in the Markov random field athelagel. The model becomes much



more powerful if top-down effects can modulate the intéoast. For example, an “edge” can be
viewed as a breakdown in the local correlational structfith@image: pixel intensities cannot be
predicted from neighbors on the other side of an object bayndd hidden unit that can modulate
the pairwise interactions rather than just the biases aan &far more abstract representation of an
edge that is not tied to any particular contrast or inter(&tyman and Geman, 1984). Extending our
model to this type of top-down modulation is fairly straifittvard. Instead of using weights;;
that contribute energiesv;v;w;; we use weightsv;;;, that contribute energiesv;v;hrw;ji. This
allows the binary state df;, to gate the effective weight between visible uritnd;j. Memisevic
and Hinton (2007) show that the same learning methods capdiied with a single hidden layer and
there is no reason why such higher-order semi-restrictéiBann machines cannot be composed
into deep belief nets.

Although we have focussed on the challenging task of modgbatches of natural images, we
believe the ideas presented here are of much more geneligladgility. DBN'’s without lateral con-
nections have produced state of the art results in a numlzgéins including document retrieval
(Hinton and Salakhutdinov, 2006), character recogniti¢inton et al., 2006), lossy image compres-
sion (Hinton and Salakhutdinov, 2006), and the generatfdruman motion (Taylor et al., 2007).
Lateral connections may help in all of these domains.
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