
Recognizing Hand-written Digits Using
Hierarchical Products of Experts

Guy Mayraz & Geoffrey E. Hinton
Gatsby Computational Neuroscience Unit

University College London
17 Queen Square, London WC1N 3AR, U.K.

Abstract

The product of experts learning procedure [1] can discover a set of s-
tochastic binary features that constitute a non-linear generative model of
handwritten images of digits. The quality of generative models learned
in this way can be assessed by learning a separate model for each class of
digit and then comparing the unnormalized probabilities of test images
under the 10 different class-specific models. To improve discriminative
performance, each of the 10 digit models can be given more layers of fea-
ture detectors. The layers are trained sequentially and each layer learns
a generative model of the patterns of feature activities in the preceding
layer. After training, each layer of feature dectectors produces a separate,
unnormalized log probabilty score. With three layers of feature detectors
in each of the 10 digit models, a test image produces 30 scores which can
be used as inputs to a supervised, logistic classification network that is
trained on separate data. On the MNIST database, our system is compa-
rable with current state-of-the-art discriminative methods, demonstrating
that the product of experts learning procedure can produce effective gen-
erative models of high-dimensional data.

1 Learning products of stochastic binary experts

Hinton [1] describes a learning algorithm for probabilistic generative models that are com-
posed of a number of experts. Each expert specifies a probability distribution over the
visible variables and the experts are combined by multiplying these distributions together
and renormalizing.

p(dj�1:::�n) =
�mpm(dj�m)P
c
�mpm(cj�m)

(1)

where d is a data vector in a discrete space, �m is all the parameters of individual model
m, pm(dj�m) is the probability of d under model m, and c is an index over all possible
vectors in the data space.

A Restricted Boltzmann machine [2, 3] is a special case of a product of experts in which
each expert is a single, binary stochastic hidden unit that has symmetrical connections to
a set of visible units, and connections between the hidden units are forbidden. Inference
in an RBM is much easier than in a general Boltzmann machine and it is also much easier



than in a causal belief net because there is no explaining away [4]. There is therefore no
need to perform any iteration to determine the activities of the hidden units. The hidden
states, sj , are conditionally independent given the visible states, s i, and the distribution of
sj is given by the standard logistic function:

p(sj = 1) =
1

1 + exp(�
P

i
wijsi)

(2)

Conversely, the hidden states of an RBM are marginally dependent so it is easy for an RBM
to learn population codes in which units may be highly correlated. It is hard to do this in
causal belief nets with one hidden layer because the generative model of a causal belief net
assumes marginal independence.

An RBM can be trained using the standard Boltzmann machine learning algorithm which
follows a noisy but unbiased estimate of the gradient of the log likelihood of the data.
One way to implement this algorithm is to start the network with a data vector on the
visible units and then to alternate between updating all of the hidden units in parallel and
updating all of the visible units in parallel. Each update picks a binary state for a unit
from its posterior distribution given the current states of all the units in the other set. If
this alternating Gibbs sampling is run to equilibrium, there is a very simple way to update
the weights so as to minimize the Kullback-Leibler divergence, Q0jjQ1, between the data
distribution, Q0, and the equilibrium distribution of fantasies over the visible units, Q1,
produced by the RBM [5]:

�wij / <sisj>Q0 � <sisj>Q1 (3)
where <sisj>Q0 is the expected value of sisj when data is clamped on the visible units
and the hidden states are sampled from their conditional distribution given the data, and
<sisj>Q1 is the expected value of sisj after prolonged Gibbs sampling.

This learning rule does not work well because it can take a long time to approach thermal
equilibrium and the sampling noise in the estimate of <s isj>Q1 can swamp the gradient.
[1] shows that it is far more effective to minimize the difference between Q

0jjQ1 and
Q
1jjQ1 where Q

1 is the distribution of the one-step reconstructions of the data that are
produced by first picking binary hidden states from their conditional distribution given the
data and then picking binary visible states from their conditional distribution given the
hidden states. The exact gradient of this “contrastive divergence” is complicated because
the distributionQ1 depends on the weights, but [1] shows that this dependence can safely be
ignored to yield a simple and effective learning rule for following the approximate gradient
of the contrastive divergence:

�wij / <sisj>Q0 � <sisj>Q1 (4)
For images of digits, it is possible to apply Eq. 4 directly if we use stochastic binary pixel
intensities, but it is more effective to normalize the intensities to lie in the range [0; 1]
and then to use these real values as the inputs to the hidden units. During reconstruction,
the stochastic binary pixel intensities required by Eq. 4 are also replaced by real-valued
probabilities. Finally, the learning rule can be made less noisy by replacing the stochastic
binary activities of the hidden units by their expected values. So the learning rule we
actually use is:

�wij / <pipj>Q0 � <pipj>Q1 (5)
Stochastically chosen binary states of the hidden units are still used for computing the prob-
abilities of the reconstructed pixels, so the hidden probabilities cannot be used to convey
an unbounded amount of information to the reconstruction.

2 The MNIST database

MNIST, a standard database for testing digit recognition algorithms, is available at
http://www.research.att.com/�yann/ocr/mnist/index.html. MNIST



METHOD % ERRORS
Linear classifier (1-layer NN) 12.0
K-nearest-neighbors, Euclidean 5.0
1000 RBF + linear classifier 3.6
Best Back-Prop: 3-layer NN, 500+150 hidden units 2.95

Reduced Set SVM deg 5 polynomial 1.0
LeNet-1 [with 16x16 input] 1.7
LeNet-5 0.95

Product of Experts (separate 3-layer net for each model) 1.7

Table 1: Performance of various learning methods on the MNIST test set.

has 60,000 training images and 10,000 test images. Images are highly variable in style but
are size-normalized and translated so that the center of gravity of their intensity lies at the
center of a fixed-size image of 28 by 28 pixels.

A number of well-known learning algorithms have been run on the MNIST database[6], so
it is easy to assess the relative performance of a novel algorithm. Some of the experiments
in [6] included deskewing images or augmenting the training set with distorted versions
of the original images. We did not use deskewing or distortions in our main experiments,
so we only compare our results with other methods that did not use them. The results in
Table 1 should be treated with caution. Some attempts to replicate the degree 5 polynomial
SVM have produced slightly higher error rates of 1.4% [7] and standard backpropagation
can be carefully tuned to achieve under 2% (John Platt, personal communication).

Table 1 shows that it is possible to achieve a result that is comparable with the best dis-
criminative techniques by using multiple PoE models of each digit class to extract scores
that represent unnormalized log probabilities. These scores are then used as the inputs to
a simple logistic classifier. The fact that a system based on generative models can come
close to the very best discriminative systems suggests that the generative models are doing
a good job of capturing the distributions.

3 Training the individual PoE models

The MNIST database contains an average of 6,000 training examples per digit, but these
examples are unevenly distributed among the digit classes. In order to simplify the research
we produced a balanced database by using only 5,400 examples of each digit. The first
4,400 examples were the unsupervised training set used for training the individual PoE
models. The remaining examples of each of the 10 digits constituted the supervised training
set used for training the logistic classification net that converts the scores of all the PoE
models into a classification.

The original intensity range in the MNIST images was 0 to 255. This was normalized to
the range 0 to 1 so that we could treat intensities as probabilities. The normalized pixel
intensities were used as the initial activities of the 784 visible units corresponding to the 28
by 28 pixels. The visible units were fully connected to a single layer of hidden units. The
weights between the input and hidden layer were initialized to small, zero-mean, Gaussian-
distributed, random values. The 4,400 training examples were divided into 44 mini-batches.
One epoch of learning consisted of a pass through all 44 minibatches in fixed order with the
weights being updated after each minibatch. We used a momentum method with a small



0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

digit to be explained

m
o

d
el

 #

Figure 1: The mean goodness of validation set
digits using the first hidden layer of the 500 u-
nit models. A different constant is added to
all the goodness scores of each model so that
rows sum to zero. Successful discrimination
depends on models being better on their own
class than other models are. The converse is not
true: models can be better reconstructing other
easier classes of digits than their own class.

Figure 2: Cross reconstruction of 7s and 9s
with networks of 25 units (top) and 100 u-
nits (bottom). The central horizontal line in
each block contains originals, and the lines
above and below are reconstructions by the
7s and 9s models respectively. Both model-
s produce stereotyped digits in the small net
and much better reconstructions in the large
one for both the digit classes. There are al-
so some examples of the 9s model trying to
close the loop in 7s, and the 7s model to open
the loop in examples of 9s.

amount of weight decay, so the change in a weight after the t th minibatch was:

�w
t

ij
= ��w

t�1

ij
+ 0:1

�
hpipjiQ0

t

� hpipjiQ1

t

� 0:0001wt

ij

�
(6)

where Q0

t
and Q

1

t
are averages over the data or the one-step reconstructions for minibatch

t, and the momentum, �, was 0 for the first 50 weight changes and 0:9 thereafter. The
hidden and visible biases, bi and bj , were initialized to zero. Their values were similarly
altered (by treating them like connections to a unit that was always on) but with no weight
decay.

Rather than picking one particular number of hidden units, we trained networks with vari-
ous different numbers of units and then used discriminative performance on the validation
set to decide on the most effective number of hidden units. The largest network was the
best, even though each digit model contains 392,500 parameters trained on only 4,400 im-
ages. The receptive fields learned by the hidden units are quite local. Since the hidden units
are fully connected and have random initial weights the learning procedure must infer the
spatial proximity of pixels from the statistics of their joint activities. Figure 1 shows the
mean goodness scores of all 10 models on all 10 digit classes.

Figure 2 shows reconstructions produced by models on previously unseen data from the
digit class they were trained on and also on data from a different digit class. With 500
hidden units, the 7s model is almost perfect at reconstructing 9s. This is because a model
gets better at reconstructing more or less any image as its set of available features becomes
more varied and more local. Despite this, the larger networks give better discriminative
information.



3.1 Multi-layer models

Networks that use a single layer of hidden units and do not allow connections within a
layer have some major advantages over more general networks. With an image clamped
on the visible units, the hidden units are conditionally independent. So it is possible to
compute an unbiased sample of the binary states of the hidden units without any iteration.
This property makes PoE’s easy to train and it is lost in more general architectures. If, for
example, we introduce a second hidden layer that is symmetrically connected to the first
hidden layer, it is no longer straightforward to compute the posterior expected activity of a
unit in the first hidden layer when given an image that is assumed to have been generated
by the multilayer model at thermal equilibrium. The posterior distribution can be computed
by alternating Gibbs sampling between the two hidden layers, but this is slow and noisy.

Fortunately, if our ultimate goal is discrimination, there is a computationally convenient
alternative to using a multilayer Boltzmann machine. Having trained a one-hidden-layer
PoE on a set of images, it is easy to compute the expected activities of the hidden units on
each image in the training set. These hidden activity vectors will themselves have interest-
ing statistical structure because a PoE is not attempting to find independent causes and has
no implicit penalty for using hidden units that are marginally highly correlated. So we can
learn a completely separate PoE model in which the activity vectors of the hidden units are
treated as the observed data and a new layer of hidden units learns to model the structure
of this “data”. It is not entirely clear how this second level PoE model helps as a way of
modelling the original image distribution, but it is clear that if a PoE is trained on images
of 2’s, we would expect the vectors of hidden activities to be be very different when it is
presented with a 3, even if the features it has learned are quite good at reconstructing the
3. So a second level model should be able to assign high scores to the vectors of hidden
activities that are typical of the 2 model when it is given images of 2’s and low scores to
the hidden activities of the 2 model when it is given images that contain combinations of
features that are not normally present at the same time in a 2.

We used a three-layer hierarchy of hidden features in each digit model 1. The layers were
trained sequentially and to simplify the research we always used the same number of hidden
units in each layer. We trained models of five different sizes with 25, 100, 200, 400, and
500 units per layer.

4 The logistic classification network

An attractive aspect of PoE’s is that it is easy to compute the numerator in Eq. 1 so it is
easy to compute a goodness score which is equal to the log probability of a data vector
up to an additive constant. Figure 3 show the goodness of the 7s and 9s models (the most
difficult pair of digits to discriminate) when presented with test images of both 7s and 9s.
It can be seen that a line can be passed that separates the two digit sets almost perfectly. It
is also encouraging that all of the errors are close to the decision boundary, so there are no
confident misclassifications.

The classification network had 10 output units, each of which computed a logit, x, that was
a linear function of the goodness scores, g, of the various PoE models, m, on an image, c.
The probability assigned to class j was then computed by taking a “softmax” of the logits:

p
c

j
=

e
x
c
jP

k
e
x
c
k

x
c

j
= bj +

X
m

g
c

m
wmj (7)

1Strictly speaking, each layer of hidden features is a separate generative model of the activities
in the layer below but it is more convenient to describe all three hidden layers as a single multilayer
model that produces three goodness scores, one per hidden layer.



180 200 220 240 260
170

180

190

200

210

220

230

240

250

260

270
(a)

score under 7s model (1st layer)

sc
o

re
 u

n
d

er
 9

s 
m

o
d

el
 (

1s
t 

la
ye

r)

140 160 180 200 220

120

130

140

150

160

170

180

190

200

210

(b)

score under 7s model (3rd layer)

sc
o

re
 u

n
d

er
 9

s 
m

o
d

el
 (

3r
d

 la
ye

r)

Figure 3: Validation set cross goodness results of the first (a) and third (b) layers in 7s and 9s
models with 500 units per layer. Higher layers clearly contribute significant discriminative
information.

There were 10 PoE models with 3 layers each, so the classification network had 30 inputs
and therefore 300 weights and 10 output biases. Both weights and biases were initialized
to zero. The weights were learned by a momentum version of gradient ascent in the log
probability assigned to the correct class. Since there were only 310 weights to train, little
effort was devoted to making the learning efficient.

�wmj(t) = ��wmj(t�1) + 0:0002
X
c

g
c

m
(tc
j
� p

c

j
) (8)

where t
c

j
is 1 if class j is the correct answer for training case c and 0 otherwise. The

momentum � was 0:9. The biases were treated as if they were weights from an input that
always had a value of 1 and were learned in exactly the same way.

In each training epoch the weight changes were averaged over the whole supervised training
set2. We used separate data for training the classification network because we expect the
goodness score produced by a PoE of a given class to be worse and more variable on
exemplars of that class that were not used to train the PoE and it is these poor and noisy
scores that are relevant for the real, unseen test data.

The training algorithm was run using goodness scores from PoE networks with different
numbers of hidden units. The results in Table 2 show a consistent improvement in classifi-
cation error as the number of units in the hidden layers of each PoE increase. There is no
evidence for over-fitting, even though large PoE’s are very good at reconstructing images
of other digit classes. It is possible to reduce the error rate by a further 0.1% by averaging
together the goodness scores of corresponding layers of all the networks with 100 or more
units per layer, but this model averaging is not nearly as effective as using extra layers.

2We held back part of the supervised training set to use as a validation set in determining the
optimal number of epochs to train the classifiaction net, but once this was decided we retrained on all
the supervised training data for that number of epochs.



Network size Learning epochs % Errors
25 25 3.8

100 100 2.3
200 200 2.2
400 200 2.0
500 500 1.7

Table 2: MNIST test set error
rate as a function of the number
of hidden units per layer.

5 Model-based normalization

The results of our current system are still not nearly as good as human performance. In
particular, it appears the network has only a very limited understanding of image invari-
ances. This is not surprising since it is trained on prenormalized data. Dealing with image
invariances better will be essential for approaching human performance. The fact that we
are using generative models suggests an interesting way of refining the image normaliza-
tion. If the normalization of an image is slightly wrong we would expect it to have lower
probability under the correct class-specific model. So we should be able to use the good-
ness score as an objective function for comparing many slightly different normalizations.
As an initial experiment, we restricted ourselves to comparing 5 possible normalizations of
the image: The given normalization and the 4 possible translations by a single pixel hori-
zontally or vertically. For each generative model we allow it to select whichever of these
five normalizations gives the best goodness score. Obviously this means that the goodness
scores can only improve and the question is whether they improve more for the right model
than for the wrong ones, particularly in marginal cases. A preliminary experiment using
only the two most confusable classes (7s and 9s) showed that this reduces the error rate by
30%. Model-based deskewing should make a similar improvement. It should be even more
effective to search for the best normalization by taking the easily-computed gradient of
the goodness w.r.t the image intensities and projecting this gradient vector into the tangent
space of affine image transformations. We will know by november.

References
[1] G. E. Hinton. Training products of experts by minimizing contrastive divergence. Technical Re-

port GCNU TR 2000-004, Gatsby Computational Neuroscience Unit, University College Lon-
don, 2000.

[2] P. Smolensky. Information processing in dynamical systems: Foundations of harmony theory. In
D. E. Rumelhart and J. L. McClelland, editors, Parallel Distributed Processing: Explorations in
the Microstructure of Cognition. Volume 1: Foundations. MIT Press, 1986.

[3] Yoav Freund and David Haussler. Unsupervised learning of distributions of binary vectors using
2-layer networks. In John E. Moody, Steve J. Hanson, and Richard P. Lippmann, editors, Ad-
vances in Neural Information Processing Systems, volume 4, pages 912–919. Morgan Kaufmann
Publishers, Inc., 1992.

[4] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann, 1991.

[5] G. E. Hinton and T. J. Sejnowski. Learning and relearning in boltzmann machines. In D. E.
Rumelhart and J. L. McClelland, editors, Parallel Distributed Processing: Explorations in the
Microstructure of Cognition. Volume 1: Foundations. MIT Press, 1986.

[6] Y. LeCun, L. D. Jackel, L. Bottou, A. Brunot, C. Cortes, J. S. Denker, H. Drucker, I. Guyon,
U. A. Muller, E. Sackinger, P. Simard, and V. Vapnik. Comparison of learning algorithms for
handwritten digit recognition. In F. Fogelman and P. Gallinari, editors, International Conference
on Artificial Neural Networks, pages 53–60, Paris, 1995. EC2 & Cie.

[7] Chris J.C. Burges and B. Schölkopf. Improving the accuracy and speed of support vector ma-
chines. In Michael C. Mozer, Michael I. Jordan, and Thomas Petsche, editors, Advances in
Neural Information Processing Systems, volume 9, page 375. The MIT Press, 1997.


