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Abstract

We �rst describe a hierarchical, generative model that can be
viewed as a non-linear generalisation of factor analysis and can
be implemented in a neural network. The model performs per-
ceptual inference in a probabilistically consistent manner by using
top-down, bottom-up and lateral connections. These connections
can be learned using simple rules that require only locally avail-
able information. We then show how to incorporate lateral con-
nections into the generative model. The model extracts a sparse,
distributed, hierarchical representation of depth from simpli�ed
random-dot stereograms and the localised disparity detectors in
the �rst hidden layer form a topographic map. When presented
with image patches from natural scenes, the model develops topo-
graphically organised local feature detectors.

1 Introduction

Factor analysis is a probabilistic model for real-valued data which assumes that
the data is a linear combination of real-valued uncorrelated Gaussian sources (the
factors). After the linear combination, each component of the data vector is also
assumed to be corrupted by additional Gaussian noise. A major advantage of this
generative model is that, given a data vector, the probability distribution in the
space of factors is a multivariate Gaussian whose mean is a linear function of the
data. It is therefore tractable to compute the posterior distribution exactly and to
use it when learning the parameters of the model (the linear combination matrix
and noise variances). A major disadvantage is that factor analysis is a linear model
that is insensitive to higher order statistical structure of the observed data vectors.

One way to make factor analysis non-linear is to use a mixture of factor analyser
modules, each of which captures a di�erent linear regime in the data [3]. We can
view the factors of all of the modules as a large set of basis functions for describing
the data and the process of selecting one module then corresponds to selecting
an appropriate subset of the basis functions. Since the number of subsets under
consideration is only linear in the number of modules, it is still tractable to compute



the full posterior distribution when given a data point. Unfortunately, this mixture
model is often inadequate. Consider, for example, a typical image that contains
multiple objects. To represent the pose and deformation of each object we want
a componential representation of the object's parameters which could be obtained
from an appropriate factor analyser. But to represent the multiple objects we need
several of these componential representations at once, so the pure mixture idea is
not tenable. A more powerful non-linear generalisation of factor analysis is to have
a large set of factors and to allow any subset of the factors to be selected. This
can be achieved by using a generative model in which there is a high probability of
generating factor activations of exactly zero.

2 Recti�ed Gaussian Belief Nets

The Recti�ed Gaussian Belief Net (RGBN) uses multiple layers of units with states
that are either positive real values or zero [5]. Its main disadvantage is that com-
puting the posterior distribution over the factors given a data vector involves Gibbs
sampling. In general, Gibbs sampling can be very time consuming, but in practice
10 to 20 samples per unit have proved adequate and there are theoretical reasons
for believing that learning can work well even when the Gibbs sampling fails to
reach equilibrium [10].

We �rst describe the RGBN without considering neural plausibility. Then we show
how lateral interactions within a layer can be used to perform probabilistic infer-
ence correctly using locally available information. This makes the RGBN far more
plausible as a neural model than a sigmoid belief net [9, 8] because it means that
Gibbs sampling can be performed without requiring units in one layer to see the
total top-down input to units in the layer below.

The generative model for RGBN's consists of multiple layers of units each of which
has a real-valued unrecti�ed state, yj , and a recti�ed state, [yj]

+, which is zero if
yj is negative and equal to yj otherwise. This recti�cation is the only non-linearity

in the network.1 The value of yj is Gaussian distributed with a standard deviation
�j and a mean, ŷj that is determined by the generative bias, g0j, and the combined
e�ects of the recti�ed states of units, k, in the layer above:

ŷj = g0j +
X
k

gkj[yk]
+ (1)

The recti�ed state [yj]
+ therefore has a Gaussian distribution above zero, but all

of the mass of the Gaussian that falls below zero is concentrated in an in�nitely
dense spike at zero as shown in Fig. 1a. This in�nite density creates problems if we
attempt to use Gibbs sampling over the recti�ed states, so, following a suggestion
by Radford Neal, we perform Gibbs sampling on the unrecti�ed states.

Consider a unit, j, in some intermediate layer of a multilayer RGBN. Suppose
that we �x the unrecti�ed states of all the other units in the net. To perform Gibbs
sampling, we need to stochastically select a value for yj according to its distribution
given the unrecti�ed states of all the other units. If we think in terms of energy
functions, which are equal to negative log probabilities (up to a constant), the
recti�ed states of the units in the layer above contribute a quadratic energy term
by determining ŷj . The unrecti�ed states of units, i, in the layer below contribute a
constant if [yj]

+ is 0, and if [yj ]
+ is positive they each contribute a quadratic term

1The key arguments presented in this paper hold for general nonlinear belief networks
as long as the noise is Gaussian; they are not speci�c to the recti�cation nonlinearity.
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Figure 1: a) Probability den-
sity in which all the mass of a
Gaussian below zero has been
replaced by an in�nitely dense
spike at zero. b) Schematic
of the density of a unit's un-
recti�ed state. c) Bottom-
up and top-down energy func-
tions corresponding to b.

because of the e�ect of [yj ]
+ on ŷi.

E(yj) =
(yj � ŷj)

2

2�2j
+
X
i

(yi �
P

hghi[yh]
+)2

2�2i
(2)

where h is an index over all the units in the same layer as j including j itself. Terms
that do not depend on yj have been omitted from Eq. 2. For values of yj below zero
there is a quadratic energy function which leads to a Gaussian distribution. The
same is true for values of yj above zero, but it is a di�erent quadratic (Fig. 1c). The
Gaussian distributions corresponding to the two quadratics must agree at yj = 0
(Fig. 1b). Because this distribution is piecewise Gaussian it is possible to perform
Gibbs sampling exactly.

Given samples from the posterior, the generative weights of a RGBN can be learned
by using the online delta rule to maximise the log probability of the data.2

�gji = � [yj]
+ (yi � ŷi) (3)

The variance of the local Gaussian noise of each unit, �2j , can also be learned by

an online rule, ��
2
j = � [(yj � ŷj)

2 � �
2
j ]: Alternatively, �

2
j can be �xed at 1 for

all hidden units and the e�ective local noise level can be controlled by scaling the
generative weights.

3 The Role of Lateral Connections in Perceptual Inference

In RGBNs and other layered belief networks, �xing the value of a unit in one layer
causes correlations between the parents of that unit in the layer above. One of
the main reasons why purely bottom-up approaches to perceptual inference have
proven inadequate for learning in layered belief networks is that they fail to take
into account this phenomenon, which is known as \explaining away."

Lee and Seung (1997) introduced a clever way of using lateral connections to handle
explaining away e�ects during perceptual inference. Consider the network shown
in Fig. 2. One contribution, Ebelow, to the energy of the state of the network is
the squared di�erence between the unrecti�ed states of the units in one layer, yj,
and the top-down expectations generated by the states of units in the layer above.
Assuming the local noise models for the lower layer units all have unit variance, and

2If Gibbs sampling has not been run long enough to reach equilibrium, the delta rule
follows the gradient of the penalized log probability of the data [10]. The penalty term is
the Kullback-Liebler divergence between the equilibrium distribution and the distribution
produced by Gibbs sampling. Other things being equal, the delta rule therefore adjusts
the parameters that determine the equilibrium distribution to reduce this penalty, thus
favouring models for which Gibbs sampling works quickly.



ignoring biases and constant terms that are una�ected by the states of the units

Ebelow =
1

2

X
j

(yj � ŷj)
2 =

1

2

X
j

(yj �
P

k[yk]
+
gkj)

2
: (4)

Rearranging this expression and setting rjk = gkj and mkl = �
P

j
gkjglj we get

Ebelow =
1

2

X
j

y
2

j �
X
k

[yk]
+
X
j

yjrjk �
1

2

X
k

[yk]
+
X
l

[yl]
+
mkl: (5)

This energy function can be exactly implemented in a network with recognition
weights, rjk, and symmetric lateral interactions, mkl. The lateral and recognition
connections allow a unit, k, to compute how Ebelow for the layer below depends on
its own state and therefore they allow it to follow the gradient of E or to perform
Gibbs sampling in E.

k

glj

rjk
rjl

gkj

j

l
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Figure 2: A small segment of a network,
showing the generative weights (dashed) and
the recognition and lateral weights (solid)
which implement perceptual inference and
correctly handle explaining away e�ects.

Seung's trick can be used in an RGBN and it eliminates the most neurally implau-
sible aspect of this model which is that a unit in one layer appears to need to send
both its state y and the top-down prediction of its state ŷ to units in the layer above.
Using the lateral connections, the units in the layer above can, in e�ect, compute
all they need to know about the top-down predictions. In computer simulations, we
can simply set each lateral connection mkl to be the dot product �

P
j gkjglj . It is

also possible to learn these lateral connections in a more biologically plausible way
by driving units in the layer below with unit-variance independent Gaussian noise
and using a simple anti-Hebbian learning rule. Similarly, a purely local learning
rule can learn recognition weights equal to the generative weights. If units at one
layer are driven by unit-variance, independent Gaussian noise, and these in turn
drive units in the layer below using the generative weights, then Hebbian learning
between the two layers will learn the correct recognition weights [5].

4 Lateral Connections in the Generative Model

When the generative model contains only top-down connections, lateral connections
make it possible to do perceptual inference using locally available information. But
it is also possible, and often desirable, to have lateral connections in the generative
model. Such connections can cause nearby units in a layer to have a priori correlated
activities, which in turn can lead to the formation of redundant codes and, as we
will see, topographic maps.

Symmetric lateral interactions between the unrecti�ed states of units within a layer
have the e�ect of adding a quadratic term to the energy function

EMRF =
1

2

X
k

X
l

Mkl ykyl; (6)

which corresponds to a Gaussian Markov Random Field (MRF). During sampling,
this term is simply added to the top-down energy contribution. Learning is more
di�cult. The di�culty stems from the need to know the derivatives of the partition
function of the MRF for each data vector. This partition function depends on the



top-down inputs to a layer so it varies from one data vector to the next, even if the
lateral connections themselves are non-adaptive. Fortunately, since both the MRF
and the top-down prediction de�ne Gaussians over the states of the units in a layer,
these derivatives can be easily calculated. Assuming unit variances,

�gji = �

 
[yj ]

+(yi � ŷi) + [yj]
+
X
k

�
M (I +M )�1

�
ik
ŷk

!
(7)

whereM is the MRFmatrix for the layer including units i and k, and I is the identity
matrix. The �rst term is the delta rule (Eq. 3); the second term is the derivative
of the partition function which unfortunately involves a matrix inversion. Since
the partition function for a multivariate Gaussian is analytical it is also possible to
learn the lateral connections in the MRF.

Lateral interactions between the recti�ed states of units add the quadratic term
1

2

P
k

P
l Mkl [yk]

+[yl]
+. The partition function is no longer analytical, so comput-

ing the gradient of the likelihood involves a two-phase Boltzmann-like procedure:

�gji = �

�

[yj]

+
yi

�
�

�


[yj]

+
yi

�
�

�
; (8)

where h�i� averages with respect to the posterior distribution of yi and yj , and h�i�

averages with respect to the posterior distribution of yj and the prior of yi given
units in the same layer as j. This learning rule su�ers from all the problems of
the Boltzmann machine, namely it is slow and requires two-phases. However, there
is an approximation which results in the familiar one-phase delta rule that can
be described in three equivalent ways: (1) it treats the lateral connections in the
generative model as if they were additional lateral connections in the recognition
model; (2) instead of lateral connections in the generative model it assumes some
�ctitious children with clamped values which a�ect inference but whose likelihood
is not maximised during learning; (3) it maximises a penalized likelihood of the
model without the lateral connections in the generative model.

5 Discovering depth in simpli�ed stereograms

Consider the following generative process for stereo pairs. Random dots of uniformly
distributed intensities are scattered sparsely on a one-dimensional surface, and the
image is blurred with a Gaussian �lter. This surface is then randomly placed at one
of two di�erent depths, giving rise to two possible left-to-right disparities between
the images seen by each eye. Separate Gaussian noise is then added to the image
seen by each eye. Some images generated in this manner are shown in Fig. 3a.

a b Figure 3: a) Sample data from the stereo
disparity problem. The left and right column
of each 2�32 image are the inputs to the left
and right eye, respectively. Periodic bound-
ary conditions were used. The value of a pixel
is represented by the size of the square, with
white being positive and black being nega-
tive. Notice that pixel noise makes it di�cult
to infer the disparity, i.e. the vertical shift
between the left and right columns, in some
images. b) Sample images generated by the
model after learning.

We trained a three-layer RGBN consisting of 64 visible units, 64 units in the �rst
hidden layer and 1 unit in the second hidden layer on the 32-pixel wide stereo



disparity problem. Each of the hidden units in the �rst hidden layer was connected
to the entire array of visible units, i.e. it had inputs from both eyes. The hidden
units in this layer were also laterally connected in an MRF over the unrecti�ed
units. Nearby units excited each other and more distant units inhibited each other,
with the net pattern of excitation/inhibition being a di�erence of two Gaussians.
This MRF was initialised with large weights which decayed exponentially to zero
over the course of training. The network was trained for 30 passes through a data
set of 2000 images. For each image we used 16 iterations of Gibbs sampling to
approximate the posterior distribution over hidden states. Each iteration consisted
of sampling every hidden unit once in a random order. The states after the fourth
iteration of Gibbs sampling were used for learning, with a learning rate of 0.05 and
a weight decay parameter of 0.001. Since the top level of the generative process
makes a discrete decision between left and right global disparity we used a trivial
extension of the RGBN in which the top level unit saturates both at 0 and 1.

a

b

c

Figure 4: Generative weights of a three-layered RGBN after being trained on the stereo
disparity problem. a) Weights from the top layer hidden unit to the 64 middle-layer hidden
units. b) Biases of the middle-layer hidden units, and c) weights from the hidden units to
the 2� 32 visible array.

Thirty-two of the hidden units learned to become local left-disparity detectors, while
the other 32 became local right-disparity detectors (Fig. 4c). The unit in the second
hidden layer learned positive weights to the left-disparity detectors in the layer
below, and negative weights to the right detectors (Fig. 4a). In fact, the activity
of this top unit discriminated the true global disparity of the input images with
99% accuracy. A random sample of images generated by the model after learning is
shown in Fig. 3b. In addition to forming a hierarchical distributed representation
of disparity, units in the hidden layer self-organised into a topographic map. The
MRF caused high correlations between nearby units early in learning, which in
turn resulted in nearby units learning similar weight vectors. The emergence of
topography depended on the strength of the MRF and on the speed with which it
decayed. Results were relatively insensitive to other parametric changes.

We also presented image patches taken from natural images [1] to a network with
units in the �rst hidden layer arranged in laterally-connected 2D grid. The network
developed local feature detectors, with nearby units responding to similar features
(Fig. 5). Not all units were used, but the unused units all clustered into one area.

6 Discussion

Classical models of topography formation such as Kohonen's self-organising map [6]
and the elastic net [2, 4] can be thought of as variations on mixture models where
additional constraints have been placed to encourage neighboring hidden units to
have similar generative weights. The problem with a mixture model is that it cannot
handle images in which there are several things going on at once. In contrast, we



Figure 5: Generative weights of an
RGBN trained on 12 � 12 natural
image patches: weights from each
of the 100 hidden units which were
arranged in a 10 � 10 sheet with
toroidal boundary conditions.

have shown that topography can arise in much richer hierarchical and componential
generative models by inducing correlations between neighboring units.

There is a sense in which topography is a necessary consequence of the lateral
connection trick used for perceptual inference. It is infeasible to interconnect all
pairs of units in a cortical area. If we assume that direct lateral interactions (or
interactions mediated by interneurons) are primarily local, then widely separated
units will not have the apparatus required for explaining away. Consequently the
computation of the posterior distribution will be incorrect unless the generative
weight vectors of widely separated units are orthogonal. If the generative weights
are constrained to be positive, the only way two vectors can be orthogonal is for
each to have zeros wherever the other has non-zeros. Since the redundancies that
the hidden units are trying to model are typically spatially localised, it follows
that widely separated units must attend to di�erent parts of the image and units
can only attend to overlapping patches if they are laterally interconnected. The
lateral connections in the generative model assist in the formation of the topography
required for correct perceptual inference.
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