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ABSTRACT - 
When a vision system creates an interpretation of some input datn, it 

assigns truth values or probabilities to intcrnal hypothcses about the 

world. We present a non-dctcrministic method for assigning truth 

values that avoids many of the problcms encountered by existing 

relaxation methods. Instead of rcprcscnting probabilitics with real- 

numbers, we usc a more dircct encoding in which thc probability 
\ 

associated with a hypotlmis is rcprcscntcd by the probability h a t  it is 

in one of two states, true or  false. Wc give a particular non- 

deterministic operator, based on statistical mechanics, for updating the 

truth values of hypothcses. The operator ensures that the probability 

of discovering a particular combination of hypothcscs is a simplc 

function of how good that combination is. Wc show that thcrc is a 

simple relationship bctween this operator and Bayesian inference, and 

we describe a learning rule which allows a parallel system to converge 

on a set ofweights that optimizes its perccptt~al inferences. 

l n t  roduction 

One way of interpreting images is to formulate hypotheses about parts 

or aspects of the imagc and then decide which of these hypotheses are 

likely to be correct. Thc probability that each hypothesis is correct is 

determined partly by its fit to the imagc and partly by its fit to other 

hypothcses (hat are taken to be correct, so the truth'value of an 

individual hypothesis cannot be decided in isolation. One method of 

searching for the most plausible combination of hypotheses is to use a 

rclaxation process in which a probability is associated with each 

hypothesis, and the probabilities arc then iteratively modified on the 

basis of the fit to the imagc and the known relationships bctwcen 

hypotheses. An attractive property of rclaxation methods is that they 

can be implemented in parallel hardwarc where one computational 

unit is used for each possible hypothcsis, and the interactions betwcen 

hypotheses are implemented by dircct hardwarc connections betwcen 

the units. 

Many variations of the basic relaxation idea have becn 

However, all the current methods suffer from one or more of the 
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following problems: 

1. They convcrge slowly. 

2. It is bard to analyse what computation is being performed by the 
relaxation process. For example, in some vcrsions of relaxation 
there is no explicit global measure which is being optimized. 

3. They are unable to integrate, in a principled way, two kinds of 
decision. Some systems use rclaxation to make discrete 
decisions (e.g. which kind of 3-D edge a line depicts) and the 
numbcrs that are modified during relaxation then represent 

Other systems choose the most likely values of 
continuous physical parameters (e.g. the local surface 
orientation) and the numbcrs that are modified then rcprcscnt 
current cstimatcs of these No system integrates 
both kinds of decisioil and still guarantees convergence to the 
optimal intcrprctation. 

4. Systems designed to make discrctc decisions do not always 
convcrge to a state in which all probabilities for discrete 
hypotheses are 1 or 0, so a subsequent stage is needed to choose 
a specific pcrccptual interpretation. 

S.There is no obvious way for most systems to learn the 
appropriate values for the weighting coefficients that dctermi,ne 
how the probabilities of related hypothcses affect each other. 

\ 

In this paper wc present a parallel search technique which overcomes 

these difficulties by using a different reprcscntation for probabilities. 

1\11 the currcnt methods use real llumbcrs to represent the 

probabilities associated with hypotheses. Our method uses a more 

dircct encoding in which probabilitics are represented by probabilities. 

If a hypothcsis has a probability of two thirds of being correct, the unit 

representing it will have a probability of two thirds of being found in 

the "true" state and a probability of one third of being in t21e "false" 

state. Wc first show that this dircct cncoding allows the probability of 

one hypothcsis to determine the probabilitics of other related 

hypothcses even though none of the hypothesis units ever has enough 

information to allow it, for example, to print out its associated 

probability. We then describe a search method. using this cncoding. 

that finds plausible combinations of hypothcses. Next we show that, 

using,our search tcchniquc, thcrc is a Bayesian interpretation of h e  

weights that determine the effects of one hypothcsis on another, and 
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that the intcrprctation docs not rcquirc thc usual assumption of 

indcpcndcnce of multiple sourccs of cvidcncc. 

F~nally we give a learning rule that allows an optimal (or ncar optimal) 

set of wc~ghts to be learnt from cxpcricncc. ?his learning rule can be 

uscd even in cases whcrc h e  rcprcscntatior~s that UIC systcm should 

use havc not been dec~dcd in advance. The rule generates new 

intcrn,~l rcprcscntations that make explicit thc higher-order statistical 

regularities in the environment. 

R e ~ r e s e n t i n q   roba abilities , 

Thcrc arc two vcry different senses of the phrase "communicate a 

probability". In the strong sense, a unit has communicated a 

probability to another unit if the second unit has received cnough 

information to allow it to print out the probability. In this strong sensc, 

it takes a long timc to communicate a prob'ability using discrcte 

stochastic states. To  decide whethcr a unit is adopting thc tnlc state 

100 times pcr sccond or only 90 times per second, it is necessary to 

obscrx  its state for a largc fraction of a sccond. In a tenth of a sccond 

there is only a difference of 1 in the expected number of times thc unit 

is in the m c  statc in the two cases. S o  in this strong sensc, a unit that 

adopts truth valucs with a particular probability can only 

cornmunicatc thc probability very slowly (or vcry inaccurately). Even 

if there is little physical transmission dclay, there is still a long 

"dccoding" dclay bcforc anothcr unit has received cnough 

information to be able to make an accurate estimate of the probability. 

I h c  dccoding dclay can be rcduccd by using a Iargc pool of equivalent 

unlts, and by monitoring the outputs of all of them. If each unit is 

considcrcd to be a Poisson process, a pool of units is a Poisson process 

v,hosc rate is just d ~ e  sum of the individual ratcs, so the dccoding dclay 

is mversely proportional to the numbcr of units in the pool. However, 

thc use of population avcragcs is clearly cxpentive in tcrms of the 

number of units and connections rcquircd, and is thcrcfore only worth 

doing if thcre is no more economical alternative. .' 

Fortunately, for the kind of scarch we arc proposing it is not necessary 

to communicate probabilities in the strodg sensc of the term. What we 

rcquire is that the probability associatcd with unit B depends, in a 

particular way, on the probability associated with unit A. If these 

probabilitcs arc related by somc arbitrary function, it is generally 

ncccssary for unit A to communicate its probability to unit B in the 

strong sensc of the term. But thcre is a special class of functions 

relating the probabilirics of A and B that can be hnplcmentcd without 

the units ever having to "know" (ix. having enough information to 

print out) these probabilities. Thc simplest member of this class is the 

idenbty function. If B simply adopts thc samc state as A, its 

probability will be exaclly the same as A's, and there will be no 

dccoding delay. Whcncver the probability associatcd with A changes, 

UIC probability associated with B will change after a timc cqual to the 

transmission dclay alone. Another func:ion that can be implcmcntcd 
his  way is a probabilistic disjunction. T o  make the probability that 

unit C is in the true state bc equal to thc probability that cithcr A or B 
is in the true statc, it is sufficient to make C true if cithcr A or B is m e .  

Even though the statcs themselves are rcgardcd as probabilistic, the 

identity and disjunction functions involve a detcnninistic relationship 

bctween the statc of one unit and the statc of another. A non- 

detcmlinistic relationship can be uscd, for cxamplc, to make the 

probability associatcd with B be half the probability associatcd with 

A. The ntle is simply that B adopts the true statc with a probability of 

one half if A is in the true state. This is a "doubly-stochastic" proccss 

in which onc probability is a probabilistic function of anothcr. We use, 
* .  

such proccsscs in our model of perceptual inference. 

Searchinq for  minimum enerqv s tates of a 
network -- . < 

Givcn a perceptual input derived from .some particular world, cach 

possible combination of hypotheses has a particular probdbility of 

being the correct intcrprctation of the input We show laicr that the 

probability can be rclated to a potential cncrgy function, so that the 

most plausible combination of hypothcscs is the one with lowest 

potcntial encrgy. First we give an exprcssion lbr the "potential 

cnergy" of a state of a network and show how thc proccssors have to 

behave in order to minimizc the energy. 

~ o ~ f i c l d '  dcscribcs a system with a li~rgc numbcr of binary units. The 

units arc ~jwrneiticu!(v connected, wit. the strength of r11c co!incction 

being the same in both directions. Hopficld has shown that therc is an 

exprcssion for the "enc~gy" of a global statc of the network, and with 

the right assumptions, the individual units act so as to minimize the 

global cnergy. We use a variation of IHopficld's system in which a 

particular task is dcfined by suslained inputs from outside thc system. 

and the interactions bctween units implement constraints bctwccn 

hypotheses.'lhe cncrgy of a statc can Lhcn be intcrpretcd as the extent 

to which a combination of hypotheses fails to fit the input daki and 
\ 

violates the condtraints between hypotheses, so in minimizing cnergy 

,the system is maximizing the extent to which a perceptual 

interpretation fits the data and satisfies the constraints. 

?'he global potential energy of the. systcm is dcfined as 

whcre q, is the cxtcrnal input to the ifh unit, wu is the strcngth of 

conncction (synaptic weight) from t h c t h  to the ifh unit, si is a boolean 

truth value (0 or I), and 0,is a threshold. 

A simple algoritflm for finding a copbination of truth values that is a 
locnl minimum is to switch each hypothesis into whichever of its two 

skitcs yields the lower total energy given the current sutcs of thc othcr 

hypothcscs. If hardware units makc their decisions asynchronously. 

and if transmission times are negligible, Ulcn thc system always settles 

into a local cncrgy minimum. Because the connections are 



symmetrical. the diffcrence between the energy of the whole system 

with the kth hypothesis false and its energy with the kth hypothesis true 

can be determined locally8 by the kth unit  and is just 

(2) 

Therefore, the rulc for minimizing the energy contributed by a unit is 

to adopt the true state if its total input from the other units and from 

outside the system exceeds its threshold. This is the familiar rule for 

binary threshold u n i k  

Usinq probabilistic decisions to escaoe 
from local minima 

The deterministic algorithm suffers from the standard weakness of 

gradient dcsccnt methods: It gets stuck at local minima that are not 

globally optimal. This is an inevitable consequence of only allowing 

jumps to states of lower energy. If, however, jumps to higher energy 

states occasionally occur, it is possiblc to break out of local minima. 

An algoritllm with this property was introduced by Metropolis el. 01.' 

to study average properties of thermodynamic a!d has 

recently been applied to problems of constraint shsfactionl'. We 

adopt a form of the Metropolis algorithm that is suitable for parallel, 

computation: If the energy gap betwecn the true and false states of the 

kth unit is AEk then regardless of the previous statc set sk=l with 

probability 

where T is a parameter which acts)ike temperature (see fig. 1). 

Figure 1 

Probability p(AE) that a unit is in its "true" smte as a function of 
its energy gap AE plotted for T= 1 (Eq. 3). As the tempcrature 

, . is lowered to zero the sigmoid approaches a step function. 

This parallel algorithm ensurcs that in thermal equilibrium the relative 

probability of two global states is determined solely by their energy 
difference, and follows a Boltvnann distribution. 

where Pa is the probability of being in the ah global state, and Ea is 
the energy of that state. 

At low tcrnpcraturcs there is a strong bias in favor of states with low 

energy, but the time required to reach equilibriun~ may be long. At 

highcr temperatures the bias is not so favorable but equilibrium is 

reached faster. 

Bavesian inference 

Baycsian inference suggests a general paradigm for pcrccptual 

interpretation problems. Suppose the probability associated with one 

unit rcprescnts the probability that a particular hypothesis, h, is 

correct. Suppose, also, that the "true" statc of anothcr unit is used to 

represent the existcnce of some evidence, e. Daycs theorem prcscribcs 

a way of updating the probability of the hypothesis A h )  given the 

existence of new evidence e: 

' p(hIe)= p(h)p(eI h) 
p(h)p(eI 4 + p(J9~(eIJ9 

where 7iis the negation of h. 

'I'hc Ilaycs rulc has the same form as the decision rule 111 l:4 (3) if we 

identify the probability of the unit with the probability of the 

hypothesis. The threshold implements the a priori likelihood ratio, the 

extcrnal input implements the effect of the direct evidence in the 

image, and the synaptic weights implement the cffcct of the evidence 

providcd by the states of other hypotheses (assuming the temperature 

is fixed at 1): 

\ 

Bayesian inference with one piece of evidence can therefore be 

implemented by units of the type we have been considering. There 

are, however, scvcral difficulties with this simple formulation. 

1. It provides no way for the negation of the evidence e to affect 
the probability of h. ' 

2. It does not lead to symmetrical weights when two units affcct 
each other since p(elh)/p(elli) is generally not equal to 
p(hle)/p(hl3. 

3. Although it can easily be gencralised to cascs where thcrc are 
many independent pieces of evidence, it is much harder to 
generalisc to cases where the pieces of evidence not independent 
of each other. 

' t ,  

A diagrammatic representation of the way to solve the first difficulty is 



shown below. ' h e  diagram uscs a convention in which threshold terms 

are implemented by weights of the opposite sign on a connection from 

a permanently true unit  This TRUE unit is just a hypothetical device 

for allowing threshold terms to be treated in the same way as pairwise 

interactions. ft simplifies the mathematics because it allows all terms in 

the energy expression to be treated as pairwise intcractions. (The 
sustained external inputs that specify the particular data to be 

interpreted can also be turned into painvise terms by treating them as 

weights on lines from units that are fixed in the true state for that 

particular case). The effcct of ;can be implemented by putting it into 

the threshold term for h, and by subtracting an equal amount from the 

weighting coefficient from e, so that when e is in the true state the 

effect of the threshold term on h is cancelled out. 

@ e ! w h  ' 

where whF= ln a 
P ( m  

w 
' I l~us  the combined weight from e is: 

Equation 6 is symmetrical in eand h, so in solving Uie problem of how 

to make the negation of e have the correct effcct on h we have also 

solved the second problem -- the required weights arc now 

symmetrical. The more complicated weight in Eq. 6 does not alter the 

fact that the probability of a hypothesis has the form of the Bolhnann 

distribution for a unit with two energy states. 

Systems which use Bayesian inference often make the assumption that 

pieces of evidence are independent.12s13 The main motivation for this 

assumption is that too much memory would be required to store all 

the dependencies, even if they were known. The independence 

assumpdon is hard to justify and it is typically a poor approximation in 
systems with many mutually interdependent hypotheses. A much 

better approximation, given some fixed set of variable weights, can be 

achieved by using whatever weights give the best ovcrall 

approximation to the correct probabilitics for the various possible 

combinations of hypotheses. At first sighf it is very hard to derive 

these wcights, since the correct value for each weight depends on all 

the others. However, we now show that there are ways to hill-climb 

towards the optimum combination of weights. 

Learninq 

When a system is allowed to reach thcrmal equilibrium using the 

probabilistic decision rule in Eq 3, the probability of finding it in any 

particular global state depends on the energy of that state (Eq 4). and 

so the probability can be changed by modifying the weights s o  as to 

change the energy of the state. d4 we describe a learning rule which 

assumes that in addition to the input data, the system is given the 

desired probability ratios for pairs of global states. The rule is 

guaranteed to converge on a set of wcights that causes the system to 

behave in accordance with the desired probabilitics (if any such set of 

weights exists). We now describe a more gencral learning rule that 

does not require any separate source of information about thc desired 

probabilities of global states. The rule leads to continual 

improvcmcnts in the network's model of its environment. 

Suppose h a t  the environment directly and completely determines the 

states of a subset of the units (called the "visible" units), but leaves the 

network to determine the states'of the remaining. "hiddcn" units. The 

aim of the learning is to use the hidden units to create a model of the 

structure implicit in the ensemble of binary state vectors ttrat the 

environment determines on the visible units. 
' t ' .  

We assume that each of the environmentally determined state vectors 

persists for long enough to allow the rest of the network to' reach 

thermal equilibrium, and we ignore any structure that may exist in the 

sequence of environmentally determined vectors. The structure of the 

environment can then be spccified by giving the probability 

distribution over all 2' states of the v visible units. The network will be 

said to have a perfect model of the environment if it achieves exactly 

the same probability distribution over these 2" states when it is 

running freely at thermal equilibrium with no environmenlal input. 

In general, it will be impossible to achieve a perfect model because the 
\ 

1/2(v+h12 wbights among the v visible and h hidden units are 

insufficient to model the 2' probabilities of the environmentally 

determined statcs of the visible units. However, if there are regularities 

in the environment, and if the network uscs its hiddcn units to capture 

these regularities, it may achieve a good match to the environmental 

probabilities. 

An information theoretic measure of the discrepancy between the 

network's internal model and the environment is 

where P(VJ is the probability of the aLh state of the visible units when 

their states are determined by the environment, and P'(Va) is the 

corresponding probability when the network is running freely with no 

envir~nmental,input. The term P1(Va) depends on the weights. and so 
G can be altered by changing the weights. To  perform gradient 

descent in G, it is necessary to know the partial derivative of G with 



respect to cach individual wcight In most cross-coupled non-linear 

networks it is very hard to derive h i s  quantity, but bccausc of the 

simple relationships that hold at thermal equilibrium, the partial 

derivative of G is fairly simple to derive for our nctworks. The 

probabilities of global states arc determined by thcir energies (Eq. 4) 

and the encrgies arc dctcnnincd by the weights (1q. 1). using' these 

equations it can'be shown that 

where sy is the state of thc th unit in thc n f h  global statc. P,, is the 

probability of the n th  global state (dcfincd over both the visible and 

hidden unitc) when UE network is bcing driven by the cnvironmcnt so 

that the statcs of the visible units do not dcpcnd on the weights, and 

P I v  is the probability of the nrh global state whcn thc ne'twork is 

running freely. 

T o  minimize G, it is therefore sufficient to increment cach wcight by 

an amount proportional to the diffcrencc bctwceh two frequencies. 

The first is the frequency with which the two units that thc wcight 

connccts are both on whcn the network is being driven by the 

environmcnt, and the second is Ule corresponding frcqimcy when the 

nctwork is running freely without cnvironmcntal input. Doth 

frequencies must be mcasurdd whcn the network is at thermal 

equilibrium. A surprising feature of this rulc is that it uses only locall)* 

availnble infonnation. The change in a wcight dcpcnds only on the 

bchaviour of the two units it connccts, even though the change 

optimi~es a global mcasure, and Uie bcst valut for each wcight 

depends on the values of all the other weights. 

Once G has been minimized h e  nctwork will be able to gcncrate 

plausible cornplctions when the environmcnt only determines the 

states of some of the visiblc units. The network will have captured the 

best regularitics in the environment and these regularities will be 

enforced whcn performing complctioh. One way to use this 

completion ability would be to divide the visiblc units intotwo subsets 

called "input" and "output". During "training" the environment 

would consist of pain of inputs and desired outputs. In minimizing G, 

the network would then be finding weights that allowed it to predict 

the output whcn given the input alone. 

If there are no hidden units, the weight space is concave in G so 

gradient descent will find the global minimum. When there arc hiddcn 

units. the same learning rule still performs gradicnt descent in .G, but 

there are non-global minima in the wcight space, and the sytem can 

get stuck at one of these sub-optimal values of G.This occurs when 

the systcm is doing the bcst that it can given thc representations it has 

learnt in the hiddcn units. To  do better it has to change these 

representations which involves a temporary increase in G. O f  course, if 

the modifications to the weights are probabilistic so that G can 

sometimes increase, it is possible to cscapc from local minima and 

ensure that after enough lcarrling thcre is a bhs  in favor of globally 

optimal or near optimal scts of wcights. 

Potent ia l  e n e r q v  a n d  ~ e r c e n t u a l  i n f e r e n c e  

In designing a parallel system for pcrccptual inference, the cncrgy was 

important for two reasons. It rcprcscnted the dcgrcc of violarion of the 

constraints between hypotheses, and it also dctcrmincd the dynamics 

of the search. From a few simple postulates about the energy it is 

possible to derive the main propertics of the probabilistic systcm. 

Postulate 1: There is a "po~etrlinl errrrgy"Jirrrc/io,t over ~ r a / e s  of fire 

~vhaie systern which is a fut~ction, jrPa), of /he probabiliry of a sure. 

This is equivalent to saying that, given any input, a particular 

combination of hypotheses has exactly one probability. It docs not, for 

example, have a probability of 0.3 and alsb a probability of 0.5. 

Postulate 2: The porenlial energy is addiliw f i r  indepettrienr system 

Since the probability for a combination of statcs of indcpcndcnt 

systems is multiqlicative, it follows that/(P,)-tflPp)=fllh Pp). The 

only function that satisfies this equation is/(/',)= k In (P,). To make 

more probable sutes have lower energy k must be negative. 

Postulate 3: The par/ of /he po/enrial urergy corrrribured by a 5brgle uni/ 

can be cotnputedfrom bl/onnatiot~ available 10 the unil. Only potential 

cncrgics symmetrical in all pairs of unirs have this property,'since in 

this case a unit can "deduce" its effect on other units from thcir effect 

on it. 

D i scuss ion  

Wc have given a brief and condenscd description of a new relaxation 

mcthod that overcomes many of the drawbacks of current mcthods. 

There is'not space for a detailed discussion of the many. interesting 

qucstions qaised by Lhe new mcthod, and so we shall just mention a 

few of the more important issues here. 

We have ignored the difficult question of how long it takes the system 

to reach equilibrium. The efficiency of the whole method depends on 

equilibrium being reached fairly rapidly, so this is a crucial issue. 

Several methods of speeding the approach to equilibrium are 

described briefly in14 but more rcscarch is needed. A group at Brown 

University (Gcman, private communication)' have independently 

discovered the value of this kind of non-detcrministic search as a 

model of parallcl computation, and they are deriving bounds on the 

rate of approach to equilibrium. 

It'may seem disadvantageous to have a systcm which docs not always 

find the most probable interpretation of the perceptual input, but 

inste'ad produces interpretations with a probability that equals thcir 

probability of bcing correct However, a system that integrates many 
different kinds of constraints will almost always pick the corrcct 

interpretation of a natural scene bccausc with enough information the 



corrcct intcrprctation is ovcrwhclmingly morc likcly than any ~ t h c r ? ~  

Also, by Iowcring the tcmpcraturc and running the systcm for longer it 

is possible to cxaggcratc thc probability with which the most plausible 

intcrprctation will be selected. 

The natural way to repi'cscnt continous parameters for our relaxation 

mcthod is to divide thcir rangcs into a number of ovcrlapping intervals 

and to set asidc a unit for each intcrval16. The truth-value of a unit 

then indicates whcther thc continous parameter lies within its interval. 

By using large overlapping intervals, this rcprcscntation can be made 

both accuratc and eflicicnt for cncoding'~nultidimensional variables.17 

An advantagc of using this "mosaic" encoding is that ' i t  allows 

dccisions about discrete and continuous variables to be integrated into 

a singlc scarch in a principlcd way. 

We havc ignorcd h e  fact h a t  at flnitc tcmpcraturc the system will 

inevitably scttle into a "dc.gcncrate" minimum in which it fluctuates 

among a collcction of similar states. This is actually an advantage since 

the proportion of the tinic a unit is true within the degcncrate 

minimum allows it to convcy morc information about thc solution 

than a single truth value. 

Wc havc assumed that the connections arc all symmetrical in ordcr to 

simplify the analysis. This assumption, however, can bc relaxed. 

Given the syrnmctry of the potential cncrgy function, it is not 

ncccssary to liavc two-way connccdons in Uic pnmllcl hardware. If a 

~yrninctrical nctwork is dcgradcd by removing one of the directions 
for cach pairwise link, its bchavior will still app[oximate the bchavior 

of thc original network provided each unit has a large numbcr of 

inputs. and the choice of which direction to remove for each link is 

random rclativc to the potential encrgy function. If thcse conditions 

hold, a unit can gct a good, unbiased estimate of what its total input 

would have bcen if all the conncctions had been synmctrical. 

A very common misconception about our relaxation method is that it 

is just a noisy version of continuous relaxation methods which 

associate a real-number with cach unit. According to this view, it is the 

timc average of thc truth valucs that is important in the computation, 

and this time average can be reprcscntcd by an approximate real- 

number. 'Ihis view is wrong for several reasons. First, the 

coniputation is pcrformed by the non-equilibrium process of reaching 

equilibrium, and during this process there are major differences 

bctwcen the ensenible average (taken over a collection of identical 

non-clctcrministic machincs) and thc time averagc (taken over timc for 

a single machine). For example, probabilities can be accurately 

dcfincd over very short time periods using cnsemblc averages and they 

can also change very rapidly. Second, the behaviour of a large 

enscmble of identical machincs containing binary units cannot be 

rnodcllcd adcquatcly by a single machine that contains real-valued 

units whose values reprcsent the fraction of thc corresponding units 

that zre on in the cnscmblc. The singlc rcal-valued machine looses 

information about the highcrwrdcr sLitistics of chc enscmble. In a case 

like the Necker cube, for cxample, thcrc may be two alternative 

collcctions of hypotheses that form equally plausible interpretations. 

and a probabilistic binary machine may occasionally flip betwccn 

thcse collections. A real-valued machine would assign a valuc of 0.5 to 

each hypothcsis in eithcr collcction, and would thus fail to reprcsent 

which hypothesis goes with which. 
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