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ABSTRACT , .. following problems:
When a vision system creates an interpretation of some input data, it 1. They converge slowly. !

assigns truth values or probabilities to internal hypotheses about the N .
8 P P 2. Itis bard to analyse what computation is being performed by the

world. We present 2 non-deterministic method for assigning truth relaxation process. For example, in some versions of relaxation

values that avoids many of the problems encountered by existing there is no explicit global measure which is being optimized.
relaxation methods. Ins.tead of representing probabilitics with real- 3. They are unable to integrate, in a principled way, two kinds of
numbers, we use a more direct encoding in which the probability decision.  Some systems use relaxation o make discrete
associated with a hypothesis is represented by the probability that it is decisions (e.g. which kind of 3-D edge a line depicts) and the

: numbers that are modificd during relakation then represent
. probabilitics,5 Other systems choose the most likely values of
deterministic operator, based on statistical mechanics, for updating the continuous physical paramicters (e.g.  the local surface
truth values of hypotheses. The operator ensurcs that the probability orientation) and the numbers that are modified then represent
current estimates of these paramcu:rs.ﬁ'7 No system integratcs

both kinds of decision and still guarantees convergence to the-
function of how good that combination is, We show that there is a optimal interpretation.

in onc of two states, true or false. We give a particular non-

of discovering a particular combination of hypothescs is a simple

simple relationship between this operator and Bayesian inference, and .
Systems designed to make discrete decisions do not always

) converge to a state in which all probabilities for discrete
on a sct of weights that optimizes its perceptual inferences. hypotheses are 1 or 0, so a subscquent stage is needed to choose
a specific pereeptual interpretation.

&

we describe a learning rule which allows a paralicl system to converge

Introduction 57 There 1§ no obvious way .for. most sys.tems to learn fhe
o ~ "appropriate values for thé weighting coefficients that dctermine
One way of interpreting images is to formulate hypotheses about parts how the probabilities of related hypothcses affect cach other.

or aspects of the image and then decide which of these hypotheses are !

likely to be correct. The probability that each hypothesis is correct is In this paper we present a parallel search technique which overcomes

determined partly by its fit to the image and partly by its fit to other these difficultics by using a different representation for probabilities.

hypotheses that are taken to be carrect, so the truth’value of an All the current methods use real numbers to represent the

individual hypothesis cannot be decided in isolation. One method of probabilities associated with hypotheses. Our method uses a more

searching for the most plausible combination of hypotheses istousea - direct encoding in which probabilitics are represented by probabilities.

relaxation process in which a probability is associated with each If a hypothesis has a probability of two thirds of being correct, the unit
hypothesis, and the probabilities are then iteratively modified on the representing-it will have a probability of two thirds of being found in
basis of the fit to the image and the known relationships between the "true” state and a probability of one third of being in the "false™
hypotheses. An attractive property of relaxation methods is that they state, We first show that this dircct encoding allows the probability of
can be implemented in parallel hardware where one computational one hypothesis to determine the probabilities of other related
unit is used for each possible hypothesis, and the interactions between hypotheses even though none of the hypothesis units ever has enough ¢
hypothescs are implemented by dircct hardware connections between information to allow it, for example, to print out its associated I
the units. . probability. We then describe a search method, using this encoding, |
that finds plausible combinations of hypotheses. Next we show. that, j
Many variations of the basic relaxation idea have becn suggestcd.l'4 using -our search technique, there is a Bayesian interpretation of the
However, all the current methods suffer from one or more of the weights that determine the effects of one hypothesis on another, and
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that the interpretation does not require the usual assumption of
independence of multiple sources of evidence, :

Finally we give a learning rule that allows an optimal (or near optimal)
set of weights to be learnt from expericnce. This learning rule can be
used even in cases where the representations that the system should
use have not been decided in advance. The rule gencrates new
internal representations that make explicit the higher-order statistical

regularitics in the environment,

-

Representing probabilities

There are two very different senses of the phrase "communicate a
probability”. In the strong sense, a unit has communicated a’
probability to another unit if the second unit has reccived enough
information to allow it to print out the probability. In this strong sense,
it takes a long time to communicate a probability using discrcte
stochastic states. To decide whether a unit is"adopting the true state
100 times per sccond or only 90 times pcr second, it is necessary to
observe its state for a large fraction of a second. In a tenth of a sccond
there is only a difference of 1 in the expected number of times the unit
is in the true state in the two cases. So in this strong sense, a unit that
adopts truth values with a particular probability can only
communicate the probability very slowly (or very inaccurately). Even
if there is little physical transmission delay, there is still a long
"decoding™ dclay before another unit has *received enough
information to be able to make an accurate estimate of the probability.

The decoding delay can be reduced by using a large pool of equivalent
units, and by monitoring the outputs of all of them. If each unit is
considered to be a Poisson process, a pool of units is a Poisson process
whose rate is just the sum of the individual rates, so the decoding delay

is inversely proportional to the number of units in the pool. However, .

the use of population averages is clearly cxpensive in terms of the
number of units and connections required, and is therefore only worth
doing if there is no more economical alternative.

Fortunately, for the kind of scarch we are proposing it is not necessary

to communicate probabilities in the strong sense of the term, What we

require is that the ‘probability associated with unit B dépcnds, in a
particular way, on the probability associated with unit }\._If these
probabilites are related by some arbitrary function, it is generally
necessary for unit A to communicate its probability to unit B in the
strong sense of the term. But there is a spei:ial class of functions
relating the probabilitics of A and B that can be implemented without

the units ever having to "know" (i.e. having enough information to -

print out) these probabilities. The simplest member of this class is the
identity function. If B simply a'dopts the same state as A, its
probability will be exacily the same as A’s, and there will be no
decoding delay. Whenever the probability associated with A changes,
the probability associated with B will change aftcr a time equal to the
transinission delay alone. Another function that can be implemented
this way is a probabilistic disjunction, To make the probability that
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unit C is in the true state be equal to the probability that cither A or B
is in the true state, it is sufficient to makc C true if cither A or B is true.

- Even though the states themselves are regarded as probabilistic, the

identity and disjunction functions involve a deterministic relationship
between the state of one unit and the state of another. A non-
deterministic relationship can be used, for example, to make the
probability associated with B be half the probability associated with
A. The rule is simply that B adopts the true state with a probability of
one half if A is in the true state. This is a "doubly-stochastic” process
in which one probability is a probabilistic function of another. We use

[

such processes in our model of perceptual inference.

Searching for minimum enerqgy states of a -
network ' . L

Given a perceptual input derived from 'some particular world, cach
possible combination of hypotheses has a particular probability of
being the correct interpretation of the input. We show later that the
probability can be related to a potential energy function, so that the:
most plauéible combination of hypotheses is' the one with lowest’
pétcntial encrgy. First' we give an expression for the “"potential
cnergy" of a state of a network and show how the processors have to
behave in order to minimize the energy. '

Hopﬁcld8 describes a system with a large number of binary units. The
units are synvnetrically connected, with the strength of the connection

being the same in both directions. Hopfield has shown that there is an
expression for the "encrgy” ofa global state of the network, and with
the right assumptions, the individual units act so as to minimize the
global cnergy. We use a variation of Hopficld's system in which a
particular task is defined by sustained inputs from outside the system,
and the interactions between units implement constraints between
hypotheses. The energy of a state can then be interpreted as the extent

‘to which a combination of hypotheses fails to fit the input data and

violates the constraints betwcen hypotheses, so in minimizing cnergy

the system is maximizing the extent to which a perceptual

interpretation fits the data and satisfies the constraints. -

The global potential energy of the system is defined as

E=—1/2Z wijsisj_ Z(m—ﬂi)s, (1)
i i i

where 7/ .is the external input to the i unit, wy; is the strength of

connection (synaptic weight) from the / to the i unit, s; is a boolean

truth value (0 or 1), and &;is a threshold.

A simple algorithm for finding a combination of truth values that is a
local minimum is to switch each hypothcsis into whichever of its two
states yiclds the lower total encrgy given the current states of the ather
hypo(héscs. If hardware units make their decisions asynchronously,
and. if transmission times are negligible, then the system always settles

into a local cnergy minimum. Because the conncctions are




symmetrical, the diffcrence between the energy of the whole system
with the k%% hypothesis false and its energy with the k% hypothesis true
can be determined locally? by the k% unit, and is just

| Therefore, the rule for minimizing the energy contributed by a unit is
to adopt the true state if its total input from the other units and from
outside the system exceeds its threshold. This is the familiar rule for
binary lhrcshold units. '

Using_probabilistic _decisions_to escape
from local minima a

The deterministic algorithm suffers from the standard ‘weakness of

gradient descent methods: It gets stuck at Jocal minima that are not

globally optimal. This is an inevitable conscquence of only allowing.
jumps to states of lower energy. If, however, jumps to higher energy.
states occasionally occur, it is possible to break out of local minima.:
An algorithm with this property was introduced by Mctropolis et, al®.
to study average propertics of thermodynamic systcms and has
recently been applied to problems of constraint satlsfacuon11 We
adopt a form of the Metropolis algorithm that is suitable for parallél,
computation: If the energy gap between the true and falsc states of the
k% unit is AEy then regardless of the previous state set sp=1 with

probability

1

Pi= (1+e-AEk/T)

where T is a parameter which acts like tempergture (see fig. 1).

0 ‘ -
AE ‘ P

Figurel S

Probability p(AE) that a unit is in its "true" state as a function of
“its energy gap AE plotted for T=1 (Eq. 3). As the tempcrature
.. is lowered to zero the sigmoid approaches a step function.

This parallel algorithm ensures that in thermal equilibrium the relative
probability of two global states.is determined solely by their energy
difference, and follows a Boltzmann distribution.
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where Pa is the probability of being in the ol global state, and Ea is
the energy of that state. '

At low temperatures there is a strong bias in favor of states with low
energy, but the time required to reach equilibrium may be long, At
higher temperatures the bias is not so favorable but equilibrium is
reached faster.

Bayesian inference

Bayesian inference bsuggcsts a general paradigm. for perceptual
interpretation problems. Suppose the prdbabilily associated with one
unit represents the probability that a particular hypothesis, A, is
correct, Suppose, also, that the "true” state of another unit is used to
represent the existence of some evidence; e. Bayes theorem prescribes

a way of updating the probability of the hypothesis Z{h) given the

existence of new evidence e: .

P (W) plel )
pWyplel k) + p(R)plelh)
- p(R) plelf)
=V pian )

o p(eth)
=1+ e U gy i ) ©)

whe_r‘e i is the negation of h.

The Bayés rule has the same form as the decision rule in Eq (3) if we
identify the probability of the unit with-the probability of the
hypothesis. The threshold implements the a priori likelihood ratio, the

external input implements the effect of the direct evidence in the -

image, and the synaptic weights implement the effect of the evidence
provided by the states of other hypotheses (assummg xhe temperdturc

. is fixed at 1)
\
) " _plelh) p(imagedatalh)
9, =B, 2@h) g, plimagedatalh)
H= 2(R) Whe= = plimagedatalk)

pleR)

Bayesian inference with one piece of evidence can therefore be

implemented by units of the type we have been considering. There

are, however, several difficulties with this simple formulation.

1. It provides no way for the negation of the evidence e to affect
the probability of 4.

2. It does not lead to symmetrical weights when two units affect
-each . other since p(elh)/p(eIE) is generally not equal to
p(Hle)/p(Hle). .

"3, Although' it can easily be generalised to cases where there are
many independent pieces of evidence, it is much harder to

" - generalise to cases where the pieces of evidence not independent
. ofeag:h other. . . .

TR

A diagrammatic reprcscntatidn of the way to solve the first difficulty is




shown below. The diagram uses a convention in which threshold terms:

are implemented by weights of the opposite sign on a connection from

a permanently true unit. This TRUE unit is just a hypothetical device:

for allowing threshold terms to be treated in the same way as pairwise

interactions, It simplifies the mathematics because it allows all terms in’
the energy expression to be treated as pairwise interactions, (The’

sustained external inputs that specify the particular data to be
interpreted can also be turned into pairwise terms by treating them as
weights on lines from units that are fixed in the true state for that
particular case). The effect-of ¢ can be implemented by putting it into
the threshold term for A, and by subtracting an cqual amount from the
weighting cocfficient from e, so that when e is in the true state the
effect of the threshold term on h is cancelled out,

where w,,;:ln*”(—gw—)-—
p(elh)

Thus the combined weight from e is: .

Wiotal= Whe™ Whe

_ 2GR

= [p 2(dh) ¢
B BT
o PE=p@=pW+plel)

(&)= pleh)lip(h)—ple.h)] ’
Equation 6 is symmetrical in e and A, so in solving the pr;)blem of how
to make the negation of e have the correct effect on & we have also
solved the sccond problem -- the required ~weights are now'/
symmetrical. The more complicated weight in Eq. 6 does not alter the
fact that the probability of a hypothesis has the form of the Boltzmann
distribution for a unit with two encrgy states.

Systems which use Bayesian inference often make the ééshmption that
pieces of evidence are independent.!13 The main motivation for this
assumption is that too much mcmory.would be required to store all
the dependencies, even if they were known. The independence
assumption is hard to justify and it is typically a poor approximation in
systems with many mutually interdependent hypotheses. A much
better approximation, given some fixed set of variable weights, can be
achieved by using whatever weights give the best overall
approximation to the correct- probabilitics for the various possible
combinations of hypotheses. At first sight, it is very hard to derive
these weights, since the correct value for each weight depends on all
the others. However, we now show that there are ways to hill-climb
towards the optimum combination of weights, :
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Learning

Whén a systerh is alvlowcd to reach thcrmal equilibn’umblising the

probabilistic decision rule in Eq 3, the probability of finding it in any
particular global state depends on the energy of that state (Eq 4), and
50 the probability can be changed by modifying the weights so as to

change the energy of the state. In* we describe a learning rule which

assumes that in addition to the input data, the system is given the
desired probability ratios for pairs of global states. The rule is

guaranteed to converge-on a set of weights that causes the system to

behave in accordance with the desired probabilities (if any such set of
weights exists). We now describe a mo}e gencral learning rule that
does not require any separate source of information about the desired
probabilities of global states, The rule leads to continval
imprbvcmcms in the network’s mode! of its environment.

Suppose that the environment directly and completely determines the
states of a subset of the units {called the "visible” units), but leaves the
network to determine the states'of the remaining, "hidden™ units, The
aim of the learning is to usc the hidden units to create a model of the

“structure implicit in the ensemble of binary state vectors trat the

environment determines on the visible units.

P

We assume that each of the environmentally determined state vectors’
persists for long enough to allow the rest of the nctwork to' reach’
thermal equilibrium, and we ignore any structure that may exist in the

sequence of environmentally determined vectors. The structure of the "

environment can then be spccified by giving the’ p'robébility

distribution over all 2" states of the v visible units. The network will be ‘
said to have a perfect model of the environment if it achieves exactly

the same probability distribution over these 2V states when it is
running freely at thermal equilibrium with no environmental input,

In general, it will be impossible to achieve a perfect model bec‘ausc' the
\

1/2(v+h)2 weights among the v visible and h hidden units are

insufficient to model the 2¥ probabilities of the environmentally

- determined statcs of the visible units, However, if there are regularities
in the environment, and if the network uses its hidden units to capture
these regularities, it may achieve a good match to the environmental "

probabilities.

An information theoretic measure of the discrepancy between the
network’s internal model and the environment is

G=;P(Va)ln%‘%— o)

where [’(i’a) is the probability of the a'™ state of the visible units when
their states are determined by the environment, and P/(¥,) is the
corresponding probability when the network is running freely with no
environmental input. The term P/(V,) depends on the weights, and so
G can be altered by changing the weights. To perform gradient

descent in G, it is necessary to know the partial derivative of G with’

g




respect to cach individual weight. In most cross-coupled non-linear
networks it is very hard to derive tHis quantity, but because of the
simple relationships that hold at thermal cquilibrium, the partial
derivative of G is fairly simple to derive for our nctworks. The
probabilities of global states dre determined by their energics (Eq. 4)
and the encrgies are determined by the weights (Eq. 1). Uéiné these

equations it can be shown that

06 =——;—— ZP,,s?’s}’ - Z P',,s}'s}i
T . . . N

aw,j

where s7 is the state of the i unit in the 7" global state, P, is the
probability of the 't global state (defined over both the visible and
hidden units) when the network is being driven by the environment so
that the states of the visible units-do not depend on the weights, and
P’ is the probability of the ™ global state’ when the network is .
running frecly.

To minimize G, it is thercfore sufficient to increment cach weight by
an amount proportional to- the difference between two frequencics.
The first is the frequency with which the two units that the weight
connects are both'on when the network is being driven by the
environment, and the second is the corresponding frequency when the
network is running freely without cnvironmental input. Both
frequencies must be measured when the network is at thermal

cquilibn’um; A surprising feature of this rule is that it uses only Ibcally ’

available information. The change in a weight depends only on the
behaviour of the two units it connects, even though the change
optimizes a global measure, and the best valu¢ for each weight
depends on the values of all the other wéights.

Once G has been minimized the network will be able to generate

plausible completions when the cnvironment only determincs the
states of some of the visible units, The network will have captured the
best regularitics in the eavironment and these regularities will be
enforced when performing completion. One way to use this
completion ability would be to divide the visible units into two subscts
called "input" and "output”. During "training" ‘the environment
would consist of pairs of inputs and desired outputs. In mipimizing G,
the network would then be finding weights that allowed it to predict

the output when given the input alone. C

If there are no hidden units, the weight space is concave in G so
gradient descent will find the global minimum. When there arc hidden
uni'ts. the same learning rule still performs gradient descent in G, but
there are non-global minima in the weight space, and the sytem can

get stuck at one of these sub-optimal values of G. This occurs when.

the system is doing the best that it can given the representations it has
learnt in the hidden units. To do better it has to change these
representations which involves a temporary increase in G. Of course, if

the modifications to the weights are probabilistic so that G can,

sometimes increase, it is possible to cscape from local minima and
ensure that after enough learning there is a bias in favor of globally
optimal or near optimal scts of weights.

Potential energy and perceptual inference

In designing a parallel system for perceptual inference, the energy was
important for two reasons. It represented the degree of violation of the
constraints between hypotheses, and it also determined the dynamics
of the scarch, From a few simple postulates about the energy it is
possible to derive the main properties of the probabilistic system. -

Postulate 1; There is a "potential energy” function vver states of the’

whole system which is a function, f(P), of the probability of a state.
This is equivalent to saying that, given any input, a particular

. combination of hypotheses has exactly one probability. It docs not, for

example, have a probability of 0.3 and alsb a probab{lily of 0.5.

Postulate 2: The potential energy is additive for independent systems.
Since the probability for a combination of states of independent
systems is multiplicative, it follows that f{P,) -+ APg) =Ly Pg). The
only function that satisfics this cquation is f{P,)=kIn(P,). To make
more probable states have lower energy k must be negative.

~ Postulate 3: The part of the potential energy contributed by a single unit

452

can be computed from information available to the unit. Only potential
cnergics symmetrical in all pairs of units have this property, since in

this case a unit can "deduce” its effect on other units from their effect
onit,
Discussion

We have given a bricf and condensed description of a new relaxation
method that overcomes many of the drawbacks of current methods.

There is not space for a detailed discussion of the many. interesting

qugstions (aiscd by the new mcthod, and so we shall just mention a
few of the more important issues here.

We have ignored the difﬁéult question of how long it takes the system

1o reach equilibrium, The efficiency of the whole method depends on -

equilibrium being reached fairly rapidly, so this is a crucial issue,
Several methods of speeding the approach to cquilibrium are
described bricfly in!* but more research is needed. A group at Brown
University (Gcman,' private communication)’ have independently
discovered the value of this kind of non-deterministic search as a
model of parallel computation, and they are deriving bounds on the
rate of approach to equilibrium.

lt:may seem disadvantageous to haye a system which does not always

find the most probable interpretation of the perceptual input, but -

instead produces interpretations with a probability that equals their
probability of being correct. However, a system that integrates many
different kinds of constraints will almost always pick the correct
interpretation of a natural scene because with enough information the




correct interpretation is overwhelmingly more likely than any other.3
Also, by lowering the temperature and running the system for longer it
is possible to cxaggerate the probability with which the most plausxble
interpretation will be selected.

The natural way to represent continous parameters for our relaxation
method is to divide their ranges into a number of overlapping intervals
and to set aside a unit for each interval’®, The truth-value of a unit

then indicates whether the continous parameter lies within its interval, -

By using large overlapping intervals, this representation can be made
both accurate and efficient for encoding mumdlmensxonal vanables

An advantage of using this "mosaic” encoding is that'it allows
decisions about discrete and continuous variables to be integrated into

a single scarch in a principled way.

We have ignored the fact that at finite temperature the system will -

incvitably scttle into a "degenerate” minimum in which it fluctuates

among a collection of similar states. This is actually an advantage since -
the proportion of the time a unit is true within the degencrate’

minimum allows it to convey more information about the solution
than a single truth value.

We have assumed that the connections are all symmetrical in order to
simplify the analysis. This assumption, however, can be relaxed.
Given the symmatry of the potential energy function, it is not

necessary Lo have two-way conncctions in the paratlel hardware. If a

symmetrical network is degraded by removing one of the directions
for cach pairwise link, its behavior will still apprpximalé the bchavior
of the original network provided each unit has a large number of
inputs, and the choice of which dircction to remove for each link is
random relative to the potential encrgy function, If these conditions
hold, a unit can get a good, unbiased estimate of what its total input
would have been if all the connections had been symmetrical.

A very common misconception about our relaxation method is that it
is just a noisy version of continuous relaxation methods which
associate a real-number with cach unit, According to this view, it is the
time average of the truth values that is important in the computation,
and this time average can be represented by an approximate real-
number., This view is wrong for several reasons.
computation is performed by the non-equilibrium process of reaching
equilibrium, and during this process there are major differences
between the ensemble average (taken over a collection of identical
non-deterministic machines) and the time average (taken over time for

First, the

a single machine). For example, probabilities can be accurately

defined over very short time periods usmg ensemble averages and they
can also change very rapidly. Second the behaviour of a large
ensemble of identical machines contammg binary units cannot be
- modclled adequately by a single machine that contains real-valued
units whose values represent the fraction of the corresponding units

that are on in the cnsemble, The single real-valued machine looses
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information about the higher-order statistics of the enscmble. In a case
like the Necker cube, for example, there may be two alternative
collections of hypotheses that form equally pfausiblc interpretations,
and a probabilistic binary machine may occasionally flip between
these collections. A real-valued machine would assign a value of 0.5 to
each hypothesis in either collection, and would thus fail to represent
which hypothesis goes with which, o
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