Hinton, G. E. (1987) Learning translation invariant recognition in a massively patalel
“network.“hrGoos, G. and Hartmanis, J., editors, PARLE: Parallel Architeclures and
Languages Europe, pages 1-13, Lecture Notes:in Computer Science, Sprimﬂag,

Berlin. .

LEARNING TRANSLATION INVARIANT RECOGNITION
IN A MASSIVELY PARALLEL NETWORK

Geoffrey E. Hinton
Computer Science Department
Carnegie-Mellon University
Pittsburgh PA 15213
U.S.A.

Abstract

One maijor goal of research on massively parallel networks of neuron-like processing
elements is to discover efficient methods for recognizing patterns. Another goal is to discover
general learning procedures that allow networks to construct the internal representations that
are required for complex tasks. This paper describes a recently developed procedure that can
learn to perform a recognition task. The network is trained on examples in which the input
vector represents-an instance of a pattern in & particular posmon and the required output
vector represents its name. After prolonged training, the network develops canonical internal
representations of the patterns and it uses these canonical representations to identify familiar

patterns in novel positions.

1 Introduction

Most current models of human cognitive processes are based on logic. They assume
that the formal manipulation of symbols is the essence of intelligence and they model cognitive
processes by exploitiﬂg the sequential symbol processing abilities of conventional, serial
computers (Newell, 1980). This approach has been very successful for modeling people’s
behavior when they are solving symbolic problems or playing intellectual games, and it has
also had some success for expert systems which do not require much commonsense
knowledge and do not involve complex interactions with the physical world. It has been much
less successful for tasks like vision or commonsense reasoning that require rapid processing
of large amounts of data or large amounts of stored knowledge.

An alternative approach that is much more compatible with fine-grained parallel

[i |

computasen~i&r based on neural nets. It assumes that human abﬁifreﬁike perceptual
"interpretation. content-addressable memory, and commonsense reasoning are best
understood by considering how computation might be organized in systéms fike the brain
which consist of massive numbers of richly-interconnected but rather slow processing
elements. Representations and search techniques which are efficient on serial machines are
not necessarily suitable for massively paraliel networks, particularly if the hardware is
inhomogeneous and unreliable. The neural net approach has tended to emphasize learning
from examples rather than programming. So far, it has been much less successful than the
logic-based approach, partly because the ideas about representations and the procedures for
learning them have been inadequate, and partly because it is very inefficient to simulate
massively parallel networks with conventional computers.

The recent technological advances in VLSI and computer aided design mean that it is
now much easier to build massively parallel machines and this has led to a new wave of
interest in neural net models (Hinton and Anderson, 1981; Feldman and Baliard, 1982;
Rumelhart, McClelland et. al., 1986). One very ambitious goal is to produce a general-purpose
special-purpose chip (Parker, 1985). After leaming, the chip would be special-purpose
because the interactions between the proée‘ssi’ng elements would be specific to a particular
task, with ail the space and time efficiency which that implies. But before learning the chip
would be general-purpose: The very same chip could learn any one of a large number of
different tasks by being shown examples of input vectors and required output vectors from the
' relevant domain. We are still a long way from achieving this goal because the existing learning
procedures are too slow, although one generél-purpose special-purpose chip based on the
Boltzmann machine learning procedure (Ackley, Hinton, and Sejnowski, 1985) has already
been laid out (Alspector and Allen, 1987). '

This pape_r describes a recent and powerful "connectionist” learning procedure called
back-propagation {Rumelhart, Hinton, and Williams, 1986a, 1986b) and shows that it can
overcome a major limitation of an earlier generation of leaming procedures such as
perceptrons (Rosenblatt, 1962) which were incapable of leamning to recognize shapes that had
been translated. '

2 The network
The network consists of multiple layers of simple, neuron-fike processing elements called

‘"units” that interact using weighted connections. Each unit has a "state" or "activity level" that
is determined by the input received from units in the layer below. The total input, x;, received

By unit j is defined to be

x=3ywi=8 - ‘ o)

where y; is the state of the i'th unit (which is in a lower _Iayer), Wi is the wefght on the
connection from the ’th to the ['th unit and 8; is the threshold of the j'th unit. Threshoids can be
eliminated by giving every unit an extra input line whose activity levei is always 1. The weight
on this input is the negative of the threshold, and it can be learned in just the same way as the
other weights. The lowest layer contains the input units and an external input vector is
supplied to the network by clamping the states of these units. The state of any other unit in the
network is a monotonic non-linear function of its total input (see figure 1).

1 .
- 1+e7% : @

Yj

All the network’s long-term knowledge about the function it has learned to compute is
encoded by the magnitudes of the vyeights on the connections. This paper does not address
the issue bf how to choose an appropriate architecture (i.e. the number of. layers, the number
of units per layer, and the connectivity between layers).

Figure 1: The non-linear transfer function defined in Eq. 2.

3 The learning procedure
| Some learning procedures, like the perceptron convergence procedure (Rosenblatt,

1962)7 are only applicable if the actual or desired states of all the units in the network are
already specified. This makes the learning task relatively easy, but it also rules out learning in
networks that have intermediate layers between the input and the output Other, more recent,
learning procedures operate in networks that contain "hidden" units (Ackley, Hinton, and
Sejnowski, 1985) whose desired states are not specified (either directly or ind;rectty) by the
input or the desired output of the network. This makes leaming much harder because the
learning procedure must (implicitly) decide what the hidden units should represent. The
learning procedure is therefore searching the space of possible representations. Since this is
a very large space, it is not surprising that the learning is rather slow.

3.1 A simple LMS learning procedure
[f the input units of a network are directly connected to the output units, there is a

relatively simple procedure for finding the weights that give the Least Mean Square (LMS)
error in the output vectors. The error, with a given set of weights, is defined as:

E-~20’m i o* | T @y

where y; . is the actual state of output unit j in input-output case ¢, and d. is its desired
state. ' - ' :

We can minimize the error measure given in Eq. 3 by starting with any set of weights and
repeatedly changing each weight by an amount proportional to oE/ow.
oFE , @)

Provided the weight increments are sufficiently small this learning procedure is
guaranteed to find the set of weights that minimizes the error. The value of 9E/ow is obtained

by differentiating Eq. 3 and Eq. 1.

zg‘g = 2074 dyf ; 5)
[J '

ﬁls..%‘

ax,
awﬁ 2 a""ﬂ

If the output units are linear, the term dyj/dxj is a constant. If the output units use the

- Ty

T RN N m

T

non-linear transfer function described in Eq. 2, dyjldxj is equal to y;(1 =¥;)-

i we construct a multi-dimensional "weight-space” that has an axis for each weight and
one extra axis (the "height”) that corresponds to the error measure, we can interpret the simple
LMS procedure geometrically. For each combination of weights, there is a height (the total
error) and these heights form an error-surface. For networks with linear output units and no
hidden units, the error surface always forms a concave-upward bowl whose horizontal cross-
sections are ellipses and whose vertical cross-sections are parabolas. Since the bowl only has
one minimum, gradient descent on the error-surface is guaranteed to find it. If the output units
use the non-finear transfer function described in Eq. 2, the bow! is deformed. It stiil only has
one minimum, so gradient descent still works, but the gradient tends o zero as we move far
away from the minimum. So gradient descent can become very slow at points in weight-space.
where output or hidden units have incorrect activity levels near 1 or 0.

3.2 Back-propagation: A multilayer LMS procedure

In a multifayer network it is possible, using Eg. 5, to compute aE/aw for all the weights in
the network prowded ‘we can compute aE/ayJ for all the umts that. have modifiable incoming
weughts Ina system that has no hidden units, thls is easy because the only relevant units are
the output units, and for them aE/ay is found by differentiating the error function in Eq. 3. But
for hidden units, aE/ayJ is harder to compute. The central idea of back-propagation is that
these derivatives can be computed efficiently by starting wath the output layer and work:ng _
backwards through the layers. For each input-output case ¢, we first use a forward pass, L
starting at the input units, to compute the activity levels of all the units in the network. Then we
use a backward pass, starting at the output units, to compute amyj for all the hidden units.
For a hidden unit, j, in layer J the only way it can affect the error is via its effects on the units, k,
in the next layer, K , (assuming units in one layer only send their outputs t0 units in the !ayer
above). So we have

E Dy O

E D
zayk 3 -I5 &

where the index ¢ has been suppressed for clarity. So if dE/dy, is already known for all
units in layer K, it is easy to compute the same quantity for units in layer J. The computation
performed during the backward pass is very similar in form to the computation performed

" during the forward pass.

Back-propagation has been tried for a wide variety of.ta_sks {Le Cun, 1985; Rumelhart,

Hinton and Williams, 1986b; Sejnowski and Rosenberg, 1986: Elman and Zipser, 1987; Plaut
and Hinton, 1987). it rarely gets stuck in poor local miriima, even though these can exist for
networks with hidden units. A much more serious problem is the speed of convergence. High-
dimensional weight spaces typically contain ravines with steep sides and a shaliow gradient
along the ravine. Acceleration methods can be used to speed convergence in such spaces.
The idea of an acceleration method is to use the gradient to change the velocity of the current
point in weight space rather than using it to directly determine the change in the position of the
point. The method can be implemented by using the following weight update rule

Awﬁ{t) = -e:w—E + chwﬁ(z-l))

ji
where a is a coefficient between 0 and 1 that determines the amount of damping.

Gradient descent is still very slow for large networks, even using the acceleration method.
More powerful techniques that use the second derivative would converge faster but would
require more elaborate cornputahons that would be much harder to implement directly in

parallel hardware. ‘So despite its impressive performance:on relatively small problems, back-.

propagat:on is inadequate, in its current form, for larger tasks because the learning time scales
poorly with the size of the task and the size of the network.

A second ma;or issue with back-propagation concerns the way it generalizes. If the
network must be shown all possable input vectors before it learns a function, it is little more
than a table look-up device. We would like to be able to learn a function from many less
examples than the compiete set of possibilities. The assumption is that most of the functions
we are interested in are highly structured. They contain regularities in the reiationship between
the input and output vectors, and the network should notice these regularities in the training
examples and apply the same regularities to predict the correct output for the test cases.

4 Recognizing familiar shapes in novel positions

The task of recognizing familiar shapes in novel positions can be used as a test of the
ability of a learning procedure to discover the regularities that underiie a set of examples. We
use a very simple version of this task in which there is a one-dimensional binary image that is
12 pixels long. The shapes are all 6 pixels long and their first and last pixels always have
value 1, so that they are easy to locate. The middle 4 pixels of a shape can take on values of
" either 1 or 0, so there are 16 possible shapes. Each image only contains one shape, and the
background consists entirely of zeros. To eli_'mi'nate,_ end effects, there is wrap-around so that if

S m

T T T TN T T

T

I

a shape moves off one end of the image it reappears at the other end {see figure 3). The
wrap-around also ensures that the group invariance theorem of Minsky and Papert (1969} is
applicable, and this theorem can be used to prove that the task cannot be performed by a

" network with no hidden layers.

Since each of the 16 shapes can appear in 12 positions, there are 192 possible shape
instances. 160 of these are used for training the network, and 32 are used for testing it to see
if it generalizes correctly. There are two test instances, selected at random, tor each shape.

~ The network has two hidden layers as shown in figure 2. The hlgher hidden layer acts as
a narrow bandwidth bottieneck. Informatlon about the identity of the shape must be squeezed
through this layer in order to produce the correct answer. The aim of the simulation was to
show that the network would develop canonical codes for shapes in this layer, and would use
these same canonical codes for shapes in novel positions. The lower hidden layer consists of
units that are neaded to extract the canonical representation. Each unit in this layer receives
connections from 6 adjacent input unifs, and sends outputs to all the units in the higher hidden

layer.

16 output units |

_)[\

6 .units

60 units

12 input units

Figure 2: The architecture of the network. The activities of the input units in the
bottom layer represent the image. The 60 units in the next layer up are each
connected to 6 adjacent input units (with wrap-around) and to all the units in the
layer above. The 6 units in the next layer up are all connected to all the output
units which are in the top layer.

After extensive: learning, the network performs perfectly on the training cases. To avoid
~ requiring very large weights, the error of an output unit is defined to be zero if its activity is
above 0.8 when it should be on or below 0.2 when it should be off. Otherwise the error is the
square of the difference between the activity level and 0.8 or 0.2. After the network has

Flgure 3a: The activity levels of some of the units for 16 of the 32 test cases. The bottom row of each
group shows the input units (whose activity levels encode the image). The top row shows the output units
and there is a smail black dot on the cormrect answers. There are two different test cases, arranged side
by side, for each shape. The middle row of each group shows the activity leveis of the higher hidden
iayer. Notice that the two instances of each shape have very similar activity patterns in this layer. The
lower hidden layer of 60 hidden units is not shown.

T

Figure 3b: The activity levels of some of the units for the remaining 16 test cases.

learned to get the training cases correct, "weight-decay” is introduced -- each time the weights
are updated, their magnitude is also decremented by 0.4%. This means that only weights that
are doing useful work in reducing the error can survive. |t forces the network to perform the
task by exploiting strong regularities that apply to many cases, rather than using the accidental
structure of individual cases. The weight-decay improves the generalization performance from
17/32 correct to 30/32 correct, where a "correct” answer is one for which the correct output unit

is more active than any of the others.

Figure 3 shows the activity levels of the 16 output units for each of the 32 test cases. |t
also shows the activity levels of the 6 units in the higher hidden layer. Notice that the network
has developed a canonical "description” for each shape so that the two novel instances of
gach shape receive very similar descriptions even though the network has not seen either
instance before. This is what allows the network to generalize correctly. When presented with
a novel image, the network converts it into a canonical description. It can do this because it
has seen many other shapes in the same position, and so it knows how to produce canonical
descriptions of the individual pieces of the image. The use of canonical descriptions is much
-more powerfUI than simply looking for correlations between the input and output. if we
consider the images alone, most of the test images have a much larger overlap with images of
some other shape than they do with images of the correct shape in other positions.

4.1 The learning parameters

All the weights are updated in paralle! after sweeping through the entire set of training
cases. All the weights were randomly initialized to values between -0.5 and +0.5 and the
network was first trained for 20 sweeps using the acceleration method (Eg. 7) with £=.002 and
x=.5. Then it was trained for 8000 sweeps with £=.004 and a=.95. After this training the
arrors on the test cases were tiny. Weight-decay of 0.4% per update was then introduced and
the network was trained for a further 15,000 sweeps with £=.008 and .=.98. The parameters
used were very conservative to ensure that there were no oscillations and that the weights
were not accidentally driven to large values from which they could not recover. The training
time could be reduced substantially by using an adaptive scheme for dynamically controlling
the parameters. It could also be reduced by using a value for e that is inversely proportional to
the number of input lines that the unit receives. Nevertheless the learning would still be very

slow.

(L] L MM ENN D | b

N

4.2 Some variations
Simulations in which the units in the lower hidden layer received inputs from the whole

image did not generalize as well (20/32 correct), so the local connectivity is helpful in
constraining the function that the network learns. Simulations that omitted the higher hidden
layer (the narrow bandwidth channel) did not generalize nearly as well {4/32 correct).

A very different way of using back-propagation for shape recognition is described in
Hinton (1987). It uses a network with recurrent connections that settles to a stable state when
shown an image, and it incorporates a more elaborate mechanism for achieving invariance
that includes an expilicit representa’iion of the position and orientation of the object in the

image.

5 The future of back-propagation

One drawback of back-propagation is that it appears to require an external superviser to
specify the desired states of the output units. It can be converted into an unsupervised
procedure by using the input itself to do the supervision. Consider a mul'ulayer "encoder”

nistwork in which the desired output vector is identical with the input vector. The network must - -

learn to compute the identity mapping for all the input vectors in its training set. If the middle
layer of the n'etwork contains fewer units than the input layer, the learning procedure must
construct a compact, invertible code for each input vector. This code can then be used as the
input to later stages of processing.

‘The use of self-supervised back-propagation to construct compact codes resembies the
use of principal components analysis to perform dimensionality reduction, but it has the
advantage that it allows the code to be a non-linear transform of the input vector. This form of
back-propagation hés been used successfully to compress images (Cottrell, personal
communication, 1986) and to compress speech waves (Elman and Zipser, 1887). A variation
of it has been used to extract the underlying degrees of freedom of simple shapes (Saund,
1986). It-is also possible to use back-propagation to predict one pa'rt of the perceptual input
from other parts. In domains with sequential structure, one portion of a sequence can be used
as input and the next term in the sequence can be the desired output. This forces the network
to extract features that are good predictors. |

One promising technique for improving the way the learning time scales With the size of

-the task is to introduce modularity so that the interactions between the changes in different
weights are reduced. For tasks like low-level vision, it is possible fo specify in advance that
each part of an image should be predictable from nearby parts. This allows a procedure like

self-supervised back-propagation to be used in a local module which ¢an learn independently
and in parailel with other local modules. In addition to using this kind of innately specified
modularity, it is clear that people solve complex tasks by making use of procedures and
representations that they have already developed for solving simpler tasks. If back-
propagation is to be effective for more realistic tasks than the toy examples that have been
used so far, it probably needs to be developed in such a way that it too can exhibit this type of

modularity.

6 Conclusions
There are now a number of different "connectionist” learning procedures which are

capable of constructing interesting representationé in the hidden units of a connectionist
network. All of the existing procedures are very slow for large networks, and future progress
will depend on finding faster procedures or finding ways of making the existing procedures
scale better. Paraliel hardware will probably be needed for this research because searching a
very large space of possible representations is probably inherently expensive. [f the research
is successful it may lead to & new kind of chip that learns from examples rather than requiring

explicit prégramming.
Acknowledgements
This research was supported by grant 1ST/8520358 from the National Science

Foundation. The simulator for the learning procedure was developed by Kevin Lang.and David

Plaut. David Rumelhart provided heipful advice.

References

Ackley, D. H., Hinton, G. E., Sejnowski, T. J. (1985). A learning algorithm fdf Boltzmann
machines. Cognitive Science, 9, 147-168.

Alspector, J. & Allen, R. B. (1987). A neuromorphic VLSI learning system. In P. Loseleben
(Ed.), Advanced Research in VLSI: Proceedings of the 1987 Stanford Conference..
Cambridge, Mass.: MIT Press. '

Eiman, J. L. and Zipser, D. (1987). Discovering the hidden structure of speech (Tech. Rep.).
Institute for Cognitive Science Technical Report No. 8701. University of California, San
-Diego., ' |

Feldman, J. A. & Ballard, D. H. {1882). Connectionist models and their properties. Cognitive
Science, 6, 205-254.

TR

L

(o 1 ol 1111 M T

Hinton, G. E & Anderson, J. A. (1981). Parallel models of associative memory. Hillsdale, NJ:

Erlbaum.
Hinton, G. E. (1987). Learning to recognize shapes in a parallel network. In M. imbert (Ed.},

Proceedings of the 1986 Fyssen Conference. Oxford: Oxford University Press.

Le Cun, Y. (1985). A learning scheme for asymmetric threshoid networks. Proceedings of

Cognitiva 85. Paris, France.

Minsky, M. & Papert, S. (1969). Perceptrons. Cambridge, Mass: MIT Press.

Newell, A. (1980). Physical symbol systems. Cognitive Scignce, 4, 135-183.

Parker, D. B. (April 1985). Learning-logic (Tech. Rep.). TR-47, Sloan School of Management,
MIT, Cambridge, Mass.,

Plaut, D. C., Nowlan, S. J., & Hinton, G. E. (June 1986). ‘Expen'mentsron learning by
back-propagation (Tech. Rep. CMU-CS-86-126). Pittsburgh PA 15213: Carnegie-
Mellon University,

Plaut, D. C. and Hinton, G. E. (1987). Learning sets of filters using back-propagation.
Computer Speech and Language, . | | -

Rosenblatt, F. (1962). Principles of neurodynamics. New York: Spartan Books.

Rumelhar, D. E., McClelland, J. L., & the PDP researéh group. {1986). Parallel distributed

processing: Explorations in the microstructure of cognition. Volume L. Cambridge, MA: .

Bradford Books.
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representations by

back-propagating errors. Nature, 323, 533-536.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representations by
error propagation. In D. E. Rumelhart, J. L. McClelland, & the PDP research group
(Eds.), Paralle! distributed processing: Explorations in the microstructure of cognition.
Cambridge, MA: Bradford Books.

Saund, E, '(1986). Abstraction and representation of continuous variables in connectionist
networks. Proceedings of the Fifth National Conference on Artificial Intelligence. Los
Altos, California, Morgan Kauffman.

Sejnowski, T. J. & Rosenberg C. R. (1986). NETtalk: A paralfiel hetwbrk that learns to read
aloud Technical Report 86-01 . Department of Electrical Engineering and Computer

Science, Johns Hopkins University, Baltimore, MD.,

(EILAM |

