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Abstract

A persistent worry with computational models of unsupervised
learning is that learning will become more difficult as the prob-
lem is scaled. We examine this issue in the context of a novel
hierarchical, generative model that can be viewed as a non-
linear generalization of factor analysis and can be implemented
in a neural network. The model performs perceptual inference
in a probabilistically consistent manner by using top-down,
bottom-up and lateral connections. These connections can be
learned using simple rules that require only locally available
information. We first demonstrate that the model can extract
a sparse, distributed, hierarchical representation of global dis-
parity from simplified random-dot stereograms. We then in-
vestigate some of the scaling properties of the algorithm on
this problem and find that: (1) Increasing the image size leads
to faster and more reliable learning; (2) Increasing the depth of
the network from one to two hidden layers leads to better rep-
resentations at the first hidden layer, and (3) Once one part of
the network has discovered how to represent disparity, it “su-
pervises” other parts of the network, greatly speeding up their
learning.

Introduction
In order to understand how a perceptual system can learn
without any supervision it is useful to define the notion of
a generative model. A generative model is a probabilistic
model of how the underlying physical properties of the world
cause sensory data. For example, an imaging model relates
surface properties, spatial relationships and lighting condi-
tions to the intensities detected on the retina. The generative
model provides a rigorous basis for perceptual inference. By
inverting the generative model, the perceptual system can in-
fer the probabilities of different causes for the sensory data.
By adhering to its generative model it can allow top-down ex-
pectations to combine with bottom-up inputs while maintain-
ing a probabilistically consistent interpretation of the world.
A generative model also provides a sensible objective func-
tion for unsupervised learning. Learning can be viewed as
maximizing the likelihood of the observed data under the gen-
erative model, which is mathematically equivalent to discov-
ering efficient ways of coding the sensory data.

Many models of how cortex learns can be understood in
terms of two relatively simple generative models developed

1A slightly shorter version of this paper will appear as Ghahra-
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by statisticians. On the one side are clustering models, typi-
fied by the mixture of Gaussians. In this model, the sensory
data is assumed to have been generated by picking one of
K possible prototypes and adding Gaussian noise. The goal
of learning is to determine the K prototypes that best fit the
data and the variance of the Gaussian noise for each of the
sensory units. Competitive learning algorithms (e.g. Rumel-
hart and Zipser, 1985; Carpenter and Grossberg, 1988) can
generally be viewed as ways of fitting mixture of Gaussian
generative models. Kohonen’s self-organizing maps (Koho-
nen, 1982) and Durbin and Willshaw’s elastic net (1987) are
variations of mixture of Gaussian models in which additional
constraints are imposed that force neighboring hidden units
to have similar generative weight vectors. These constraints
typically lead to a model of the data that is worse when mea-
sured by the likelihood of the data.

On the other side are dimensionality reduction models, typ-
ified by factor analysis (Everitt, 1984). In factor analysis, the
D-dimensional sensory data is assumed to have been gen-
erated by linearly combining K independent Gaussian vari-
ables, the factors, and then adding Gaussian noise. The goal
of learning is to find the linear transformation from theK fac-
tors that maximizes the likelihood of the sensory data. This
goal is only well-defined for K < D, and therefore the fac-
tors can be thought of as a reduced dimensionality representa-
tion of the sensory data. In the limit where the variance of the
noise added to each of the D dimensions of the sensory data
is assumed to go to zero, factor analysis reduces to principal
components analysis (PCA). Unsupervised learning models
based on Hebbian learning can generally be viewed as imple-
menting variants of PCA (Oja, 1982). Models of this kind
have been found to develop center-surround and orientation-
selective properties similar to those of cells in the visual sys-
tem (Linsker, 1988).

In this paper, we first describe the need for models that go
beyond factor analysis and mixtures of Gaussians. The goal
of these models is to discover hierarchical distributed repre-
sentations that are non-linearly related to the perceptual da-
ta. We briefly review previous attempts at developing such
a model. We then present a new model, the rectified Gaus-
sian belief net (Hinton and Ghahramani, 1997). This model
makes strong suggestions about the role of both top-down and
lateral connections in cortex and it also suggests why topo-
graphic maps are so prevalent. Using simplified random-dot
stereograms we show that this model discovers a hierarchical
distributed representation of global disparity. Finally, we ex-
amine the scaling properties of the model on the stereogram



problem.

Sparse Distributed Representations

Factor analysis and mixtures of Gaussians are at opposite
ends of a spectrum of possible learning algorithms. In factor
analysis, the representation is “componential” or “distribut-
ed” because it involves states in all of the hidden units. How-
ever, it is also linear and is therefore limited to capturing the
information in the pairwise covariances of the visible units.
All the higher-order structure is invisible to it. At the other
end of the spectrum, mixtures of Gaussians have localist rep-
resentations because each data vector is assumed to be gen-
erated from a single hidden unit. This is an exponentially in-
efficient representation: each datapoint is represented by the
identity of the winning hidden unit (i.e. the cluster it belongs
to). So for the representation to contain, on average, n bits of
information about the data, there must be at least 2n hidden
units. However, it is non-linear and with enough hidden units
it can capture all of the higher-order structure in the data.

The really interesting generative models lie in the middle
of the spectrum. They use non-linear distributed representa-
tions of the type advocated by Barlow (1989) and Olshausen
and Field (1996). To see why such representations are need-
ed, consider a typical image that contains multiple objects. To
represent the pose and deformation of each object we want a
componential representation of the object’s parameters. To
represent the multiple objects we need several of these com-
ponential representations at once.

The difficulty with such models lies in the computation
of the posterior distribution over hidden states when given
a datapoint. This distribution, or an approximation to it, is
required both for learning the generative model and for per-
ceptual inference once the model has been learned. Mixtures
of Gaussians and factor analysis are standard statistical mod-
els precisely because the exact computation of the posterior
distribution is tractable. For models with non-linear distribut-
ed representations, computing the posterior distribution (or
even the most probable state) of the hidden units given a data
point is in general intractable, as it involves considering all
exponentially-many possible settings of the hidden units.

Scaling

One worry with such models is that while the approximations
commonly used for learning and inference may work on s-
mall problems, they may not scale well to larger problems
with more realistic datasets. This has certainly been the ex-
perience with combinatorial optimization problems (such as
the travelling salesman problem) in which the best solution to
one part of the problem is usually incompatible with the best
solution to another part of the problem. This is called a “frus-
trated” system and is just what vision is not like. It is gener-
ally easier to interpret two neighboring patches of an image
than to interpret one patch in isolation because context almost
always facilitates interpretation. In the latter part of this pa-
per we test the conjecture that, for a vision problem such as
discovering depth from random-dot stereograms, scaling both
the size of the input and the number of hidden layers will lead
to faster rather than slower perceptual inference and learning.

Rectified Gaussian Belief Nets
We now describe a new model called the Rectified Gaussian
Belief Net (RGBN) that combines sparse distributed repre-
sentations with a hierarchical structure. The RGBN uses u-
nits with states that are either positive real values or zero, so
it can represent real-valued latent variables directly. Its main
disadvantage is that the recognition process involves Gibbs
sampling which could be very time consuming. In practice,
however, 10 to 20 samples per unit have proved adequate for
some small but interesting tasks.

We first describe the RGBN without considering neural
plausibility. Then we show how lateral interactions within
a layer can be used to perform explaining away correctly 3.
This makes the RGBN far more plausible as a neural model
and leads to a very natural explanation for the prevalence of
topographic maps in cortex.
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Figure 1: (left) The rectified Gaussian. (right) a Schematic of the
posterior density of an unrectified state of a unit. b Bottom-up and
top-down energy functions corresponding to a.

The generative model for RGBN’s consists of multiple lay-
ers of units each of which has a real-valued unrectified state,
yj , and a rectified state, ~yj , which is zero if yj is negative
and equal to yj otherwise. This rectification is the only non-
linearity in the network. The value of yj is Gaussian dis-
tributed with a standard deviation �j and mean, ŷj that is de-
termined by the generative bias, g0j , and the combined effects
of the rectified states of units, k, in the layer above:

ŷj = g0;j +
X

k

~ykgkj (1)

The rectified state ~yj therefore has a Gaussian distribution
above zero, but all of the mass of the Gaussian that falls below
zero is concentrated in an infinitely dense spike at zero as
shown in figure 1. This infinite density creates problems if
we attempt to use Gibbs sampling over the rectified states, so
we perform Gibbs sampling on the unrectified states.

Sampling from the posterior distribution
Consider a unit, j, in some intermediate layer of a multilayer
RGBN. Suppose that we fix the unrectified states of all the

3“Explaining away” refers to the situation where causes that are
a priori independent become dependent conditioned on some ob-
served effect. For example, having the sprinkler on and whether
it rains or not may be a priori independent. Now, assume that we
observe that the ground is wet. Either cause can explain away the
observation. One of them is probably true, but both of them togeth-
er are unlikely, and therefore the two causes may be a posteriori
anti-correlated.



other units in the net. To perform Gibbs sampling, we need to
stochastically select a value for yj according to its posterior
distribution given the unrectified states of all the other units.

If we think in terms of energy functions, which are equal to
the negative log probabilities (up to a constant), the rectified
states of the units in the layer above contribute a quadratic en-
ergy term by determining ŷj . The unrectified states of units,
i, in the layer below contribute nothing if ~y j is 0, and if ~yj is
positive they each contribute a quadratic term because of the
effect of ~yj on ŷi.

E(yj) =
(yj � ŷj)

2

2�2
j

+
X

i

(yi �
P

h
~yhghi)

2

2�2
i

(2)

where h is an index over all the units in the same layer as j
including j itself. Terms that do not depend on y j have been
omitted from Eq. 2. For values of yj below zero there is a
quadratic energy function which leads to a Gaussian posterior
distribution. The same is true for values of yj above zero, but
it is a different quadratic (see figure 1b). The Gaussian pos-
terior distributions corresponding to the two quadratics must
agree at yj = 0 (figure 1a). Because the posterior distribution
is piecewise Gaussian it is possible to perform Gibbs sam-
pling exactly and fairly efficiently.

Learning the parameters of an RGBN
Given samples from the posterior distribution, the generative
weights of a RGBN can be learned by using the online delta
rule:

�gji = �~yj(yi � ŷi) (3)

The variance of the local Gaussian noise of each unit, � 2

j
, can

be also learned by an online rule:

��2
j
= �[(yj � ŷj)

2
� �2

j
] (4)

Alternatively, �2
j

can be fixed at 1 for all hidden units and
the effective local noise level can be controlled by scaling the
generative weights.

The Role of Lateral Connections
Lee and Seung (1997) introduced a clever way of using lateral
connections to handle explaining away effects. Consider the
network shown in figure 2. One contribution,E, to the energy
of the state of the network is the squared difference between
the unrectified states of the units in the bottom layer, yj , and
the top-down expectations generated by the states of units in
the layer above. Assuming the local noise models for the
visible units all have unit variance, and ignoring biases and
constant terms that are unaffected by the states of the units

E =
X

j

(yj � ŷj)
2 =
X

j

(yj �
P

k
ykgkj)

2: (5)

This expression can be rearranged to give
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Setting rjk = gkj and mkl = �

P
j
gkjglj we get

E =
X

j

y2
j
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j

yjrjk �
X

k

yk
X

l

ylmkl: (7)

This energy function can therefore be implemented in a
network with recognition weights, rjk , and symmetric later-
al interactions, mkl. The lateral and recognition connections
allow a unit, k, to compute how E for the layer below de-
pends on its own state and therefore they allow it to follow
the gradient of E or to perform Gibbs sampling in E.

k

glj

rjk
rjl

gkj

j

l
mkl

Figure 2: A network with lateral connections to handle explaining
away effects.

If we are willing to use Gibbs sampling, Seung’s trick al-
lows a proper implementation of factor analysis in a neural
network because it makes it possible to sample from the ful-
l covariance posterior distribution in the hidden state space.
Seung’s trick can also be used in an RGBN and it eliminates
the most neurally implausible aspect of this model which is
that a unit in one layer appears to need to send both its state y
and the top-down prediction of its state ŷ to units in the layer
above. Using the lateral connections, the units in the layer
above can, in effect, compute all they need to know about the
top-down predictions.

In computer simulations, we can simply set each lateral
connectionmkl to be�g

k
�gl. It is also possible to learn these

lateral connections in a more biologically plausible way by
driving units in the layer below with unit-variance indepen-
dent Gaussian noise and using a simple anti-Hebbian learn-
ing rule. Similarly, a purely local learning rule can be imple-
mented to learn recognition weights equal to the generative
weights. If units at one layer are driven by unit-variance in-
dependent Gaussian noise, and these in turn drive units in the
layer below using the generative weights, then Hebbian learn-
ing between the two layers will learn the correct recognition
weights (Hinton and Ghahramani, 1997).

There is one remaining difficulty that is a consequence of
our decision to perform Gibbs sampling on the unrectified s-
tates. A unit needs to send its unrectified state to units in
the layer above and its rectified state to units in the layer be-
low. In the simulations we report in this paper we do not
implement RGBNs using the lateral connection trick or the
more biologically plausible learning rules. In another pa-
per we have explored the use of lateral connections for in-
ference (as described here) and also to induce topographic
self-organisation of the features in the hidden layer (Ghahra-
mani and Hinton, 1998).

Discovering disparity in simplified stereo pairs
A problem in which discovering the higher order structure
of a dataset has presented difficulties for some previous un-
supervised learning algorithms is the one-dimensional stere-
o disparity problem (Becker and Hinton, 1992). Consider
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Figure 3: a Sample data from the simplified stereo disparity prob-
lem. The top and bottom row of each 2� 18 image are the inputs to
the left and right eye, respectively. b Sample outputs generated by
the model after learning.

a b c

Figure 4: Generative weights of a three-layered RGBN after being
trained on the stereo disparity problem. a Weights from the top layer
hidden unit to the 24 middle-layer hidden units. b Biases of the
middle layer hidden units, and c weights from the hidden units to
the 2� 18 visible array. Note that the apparent topography is due to
the constrained connectivity between hidden and visible units, not a
result of the learning algorithm.

the following multi-stage generative process for stereo pairs.
Random dots of uniformly distributed intensities are scat-
tered sparsely on a one-dimensional surface, and the image
is blurred with a Gaussian filter. This surface is then random-
ly placed at one of two different depths, giving rise to two
possible left-to-right disparities between the images seen by
each eye. Separate Gaussian noise is then added to the image
seen by each eye. To avoid problems as we scaled the image
sizes, we used a variant of this generative process with circu-
lar boundary conditions, also known as the shifter problem,
and constant feature density as the image size was increased.
Eight example images generated in this manner are shown in
figure 3a.

We trained a three-layer RGBN consisting of 36 visible u-

nits, 24 units in the middle hidden layer and 1 unit in the
top hidden layer on the 18-pixel wide stereo disparity prob-
lem. Each of the 24 hidden units in the middle hidden layer
was connected to 9 consecutive visible units from each eye,
i.e. it had a total of 18 connections from the layer below.
Neighbouring hidden units had overlapping receptive fields
shifted by 3 pixels.4 We refer to this architecture as a 1-24-
36 network with fan-in of 18. The network was trained on
10000 images picked at random from a training set of 1000
images. For each image we used 16 iterations of Gibbs sam-
pling to approximate the posterior distribution over hidden
states. Each iteration consisted of sampling every hidden unit
once in a random order. The states on every iteration after
the 4th were used for learning, with a learning rate of 0.1 for
the weights, 0.01 for the variances and a weight decay pa-
rameter of 0.01. Since the top level of the generative process
makes a discrete decision between left and right shifts, we
tried both the RGBN and a trivial extension of the RGBN in
which the top level unit saturates both at 0 and 1. We show
results for this extension, as it gave slightly cleaner represen-
tations at the top level. Results were relatively insensitive to
other parametric changes.

Thirteen of the hidden units learned to become local right-
disparity detectors, while the other eleven became local left-
disparity detectors (figure 4c). The unit in the top hidden lay-
er has positive weights connecting it to right disparity detect-
ing hidden units in the layer below, and negative weights to
the left disparity detectors (figure 4a). When presented with
novel input images, the top unit had activity greater than 0.5
for 93% of images with rightward disparity and less than 0.5
for 95% of images with leftward disparity. A random sample
of images generated by the model after learning is shown in
figure 3b.

We now describe four series of experiments aimed at ex-
ploring how learning and inference scales in different archi-
tectures applied to the stereo problem.

Exp 1: The effect of scaling connectivity on learning
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Figure 5: Percent correct disparity as a function of learning time
for networks with differing fan-in and 1-48-72 architectures. Fan-in
connecting middle-level hidden units to the visible units was varied
from 8 (solid), 18 (dashed), 36 (dot-dashed) and 72 (full connectivi-
ty; dotted). Each curve is averaged over 5 runs.

The goal of the first experiment was to determine the ef-
4Since the number of visible units is always 1.5 times the number

of hidden units and we have circular wrap-around in the connectiv-
ity, a shift of 3 ensures that the receptive fields wrap around each
retina 4 times.



fect on learning of different connectivity patterns (i.e. fan-in)
between visible and hidden units. This is of interest for t-
wo reasons. First, it is not clear a priori what the effect of
scaling the number of inputs to each hidden unit will have.
Second, we wished to determine an optimal fan-in to be used
in subsequent experiments. For the 1-48-72 architecture, we
varied the fan-in between 8 (4 connections from each eye)
and 72 (full connectivity). Throughout learning, the network-
s were tested on test sets of 1000 noisy images to determine
whether the top unit had discovered a representation of dis-
parity. The learning curves, measured by the percent correct
disparity inferred by the top unit, varied considerably as a
function of fan-in (figure 5). A fan-in of 18 (9 connections
from each eye) resulted in faster learning and higher asymp-
tote than larger or smaller fan-ins. This is probably due to the
fact that the basic correlation length of features in the image
is on the order of 2-3 pixels. A fan-in of 8 (4 pixels per eye)
gives a low probability that a hidden unit will have an entire
feature in its receptive field, while fan-ins of 36 and 72 will
recult in many features in each hidden unit’s receptive field,
and the hidden unit has to learn to ignore all but one of them.
We used a fan-in of 18 for the remainder of the experiments.

Exp 2: Larger images improve learning
The goal of the second experiment was to determine the effect
of scaling the number of visible and hidden units. We com-
pared learning and inference on the stereo disparity problem
in four different network sizes: 1-12-18, 1-24-36, 1-48-72,
and 1-72-108, all with a fan-in of 18.

Using the same measure as in experiment 1, we evaluat-
ed learning of disparity for each of these architectures. The
results clearly indicate that larger networks learn a respre-
sentation of disparity faster and with a higher performance
asymptote than smaller networks (figure 6). This experiment
suggests that, for this simple vision problem, increasing the
network size to accommodate a larger image leads to faster
rather than slower learning.
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Figure 6: Percent correct disparity as a function of learning time
averaged over 5 runs for networks of differing size: 1-72-108 (solid),
1-48-72 (dashed), 1-24-36 (dot-dashed), 1-12-18 (dotted).

We also examined the speed of perceptual inference, as
measured by the convergence of the activity of the top layer
unit, for these different network sizes after learning. The top
unit activity converged to 0 or 1 more quickly and reliably for
larger networks, as indicated by the mean and standard devi-
ation of the activity as a function of Gibbs samples (figure 7).
Since the amount of depth information is greater in larger net-
works this is not surprising. However, had we not found this

scaling behaviour, it would have been difficult to justify using
Gibbs sampling in larger networks.
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Figure 7: Mean a–d and standard deviation e–h activity of the top
unit during Gibbs sampling after learning when the clamped image
had leftward (solid) and rightward (dashed) disparity; averaged over
1000 images. Differing size networks: 1-12-18 (a,e), 1-24-36 (b,f),
1-48-72 (c,g), 1-72-108 (d,h).

Exp 3: Deeper networks learn better hidden
representations
The goal of this experiment was to investigate the effect of
network depth on learning. We compared a 1-24-36 network
with a 0-24-36 network, i.e. an identical network lacking the
unit at the top layer. Under one hypothesis, the presence of
the top unit should slow learning since at first it is simply in-
troducing noise and spurious correlations in the layer below.
On the other hand, the network may be able to use the top u-
nit to clean up representations at the level below and therefore
speed learning.
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Figure 8: Average of 5 runs each of networks with a top layer hid-
den unit (solid lines) and without one (dashed lines).

To compare the networks with and without a unit at the
top layer, we calculated the percent of variance accounted for
by the best linear reconstruction of the noise-free features in
the image that could be obtained from the middle hidden lay-
er representations. This measures how faithfully the middle
hidden units have captured the image features, independently
of the generative weights from hidden to visible units. This
measure increased very rapidly at the beginning of learning
for both types of networks. After this initial phase, the net-
works with a top hidden unit had a consistently better middle



hidden representation than the networks without a top hidden
unit, although the effect was small (figure 8).

We also looked at networks with 2 hidden units in the top
layer, but the behaviour of these was not significantly differ-
ent from networks with one hidden unit (data not shown).

Exp 4: One sub-network can teach another

Left Eye Input

Right Eye Input

Network A Network B

Layer 1 Hidden Units

Visible Units

Layer 2 Hidden Unit

Figure 9: The double-network architecture, with two banks of 2�9

visible units, two banks of 12 first layer hidden units, and a single
shared second layer hidden unit.

The aim of the last experiment was to see if connect-
ing a network that had already learned to represent disparity
from one part of the image to a second network with random
weights would result in faster learning in the second network.
We used a double network architecture consisting of two 1-
12-18 networks sharing the top hidden unit, as shown in fig-
ure 9. The two networks had no interconnections (other than
the shared top unit) and saw two different images with the
same disparity. We will call one side of the double network
the “teacher” and the other side the “student”. We took a
1-12-18 network that had learned disparity (the teacher) and
attached a similar network with random weights (the studen-
t). During learning, we compared the percent correct dispar-
ity inferred under three conditions: (1) inference using the
combined student-teacher network (solid lines); (2) inference
using only the student part of the network (dashed line); and
(3) a control in which the student was trained on its own with-
out a teacher (figure 10). The results suggest that the student
network greatly benefits from having the top unit in common
with the teacher network.
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Figure 10: The percent correct disparity for the combined student-
teacher network (solid lines), for the student tested alone (dashed
lines), and for a control network of the same size as the student (dot-
ted line). We show all five runs of each configuration (a) and the
averages (b).

Discussion
In this paper we have shown empirically that increasing the
width and depth of a hierarchical network can result in faster
learning and inference. To our knowledge, this is the first sys-
tematic study of scaling properties of an unsupervised learn-
ing algorithm for a hierarchical generative model. It is im-
portant not to overstate the generalisability of these result-
s: we have explored a single learning algorithm on a single
problem. However, we believe that these results are signifi-
cant and encouraging for the following reason: in everyday
perception there is a great deal of redundancy across space,
time, and different modalities. Plausible models of unsuper-
vised learning in the brain and sensible unsupervised pattern
recognition systems should be able to make good use of this
redundancy. The experiments in this paper provide evidence
that nonlinear hierarchical networks fit this criterion.
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