PARALLEL MODELS

~ OF ASSOCIATIVE MEMORY
| Updated Edition

Ed:ted by
Geoffrey E. Hmton |

University of Toronto

James A. Anderson

Brown University

_ @ LAWRENCE ERLBAUM ASSOCIATES, PUBLISHERS :
1989 Hillsdale, New Jersey : Hove and London

Comments on Chapter 6

Geoffrey E. Hinton
University of Toronto

This chapter describes one of the first attempts to implement propositional
knowledge using distributed representations. It introduces the idea of a *“role-
specific”’ representation that combines the identity of an object with its role

in some larger structure. Once roles and identities have been conjoined in -

this way it is easy to implement a compositional representation of the larg-
er structure using a set of role-specific representations of its parts. =
The chapter demonstrates that this way of representing structures has
some attractive consequences prov1ded appropriate patterns of activity are
used. If similar objects are represented by similar patterns we get automat-
ic generalization. In particular, if the units that are active in the representa-
tion of a type are a subset of the units that are active in the representation
of an instance of that type we get automatic property-inheritance. Derthick
(1987) has shown how these ideas can be extended to allow more complex
representations that have role-hierarchies. He has also shown that this kind
of system can be given a formal semantics(Derthick, 1987). McClelland
and Kawamoto (1986) have shown how role-specific representations can
be used to implement a connectionist system that maps from surface roles

to semantic roles. Their systeth uses semantic information to decide be-

tween alternative possible mappings.
The main weakness of the chapter is that it does not pr0v1de a satisfac-

tory method of automatically generating the patterns of activity that act as
role-specific representations. The chapter does stress the importance of this
problem, and the section on learning mentions an unsupervised learning

procedure that is described in detail in Pearlmutter and Hinton (1986). With

B S s

188 HINTON

the advent of more powerful learning procedures like back-propagation
(Rumelhart, Hinton, & Williams, 1986), it became feasible for the network
itself to discover appropriate internal representations (Hinton, 1986).

‘One apparent disadvantage of role-specific representations is that each
object must have a different internal representation for each possible role
that it can play in a larger structure. It would be very uneconomical to dupli-
cate the hardware across all possible roles, but fortunately this is not neces-
sary. Section 9.1 of the chapter shows that it is possible to share hardware
" among similaf roles provided each iridividual structure only involves a small
number of roles. Each active unit is then coarsely tuned in both identity
space and role space, and each binding of an identity to a role is encoded
by a set of active units.

Another apparent disadvantage is that there need be nothing in common
between different role-specific represcntations of the same object. So it ap-
pears that there are many regularities that will not be captured by this
representational scheme. Suppose, for example, that the network learns that
Zenon and Jerry are very similar when they are filling the *‘agent’’ role.
How can it automatically generalize this similarity to the representations
of Zenon and Jerry in the patient role? Part of the answer is given in Sec-
tion 10 of the chapter, which shows how the many role-specific represen-
tations of an object could interact with a single, role-independent, canonical
representation. If this canonical representation is used to supervise the learn-
ing of the role-specific representations, it is possible to capture the regular-
ities that exist between the various role-specific representations. This method
of capturing the regularities has not yet been implemented, but it promises
to be much more economical than theé only implemented alternative which
is to copy the weights of the canonical representaﬁon each time a roIe-spec1ﬁc
representation is required (McClelland, 1986).

The end of the chapter raises the question of how a connectionist net-
work could enforce consistent variable bindings when matching some propo-
sitions to an inference schema. At the time the chapter was written this
seemed like a very difficult task, but Touretzky and Hinton (1985) have
now demonstrated one way of performing it in a connectionist network.

REFERENCES

Derthick, M. A. A connectionist architecture for representing and feasoning about structured
knowledge. Proceedings of the Eighth Annual Conference of the Cognitive Science Socie-
ty, Amherst, Mass., 1987.

Hinton, G. E. Learning distributed representat:tons of concepts, Proceedings of the Eighth
Annual Conference of the Cognitive Science Society, Amherst, Mass., 1986.

McCleltand, J. L. The programmable blackboard model of reading. In J. L. McClelland, &

L.u;c.-:'-..-u.m.:'u::pr.‘ Jie ot e

COMMENTS ON CHAPTER 6 189

D. E. Rumelhart, (Eds.), Parallel distributed processing: Explorations in the microstruc-

ture of cognition. Vol. 2: Applications, Cambridge, Mass.: MIT Press, 1986.

McClelland, I. L. & Kawamoto, A. H. Mechanisms of sentence processing: Assigning roles
to constituents of sentences. InJ. L. McClelland & D. E. Rumelhart (Eds.), Paralle! dis-
tributed processing: Explorations in the microstructure of cognition. Vol. 2: Applications.
Cambridge, Mass.: MIT Press, 1986.

Pearlmutter, B. A. & Hinton, G. E. G-maximization: An unsupervised learning procedure
for discovering regularities. In J. Denker (Ed.), Neural networks for computing. Amerl-
can Institute of Physics, 1986.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. Learning representations by back-
propagating errors. Nature, 1986, 323, 533-536.

Touretzky, D. 8. & Hinton, G. E. Symbols among the neurons: Details of a conmlectlomst
inference architecture. Proceedings of the Ninth International Joint Conference on Artifi-
cial Intelligence, Los Angeles, Calif., 1985.

B

lmplementiong Semantic
Networks in Parallel Hardware

Geoffrey E. Hinton
M.R.C. Applied Psychology Unit
Cambridge, England

6.1. INTRODUCTION

There are two very different ways of implementing semantic networks (see Fig.
6.1) in networks of simple hardware units. The obvious approach is to make
different nodes in the semantic net correspond to different hardware units and to

make links between semantic nodes correspond to hardware links between units.

This type of direct implementation is advocated by Fahlman (Chapter 5, this
- volume) and Feldman (Chapter 2, this volume). It is also implicit in models that
talk about “‘activation’’ spreading from one semantic node to another (Collins &
Loftus, 1975; Levin, 1976). ,

A radically different approach is to make each node in the semantic net
correspond to a particular pattern of activity on a large assembly of units. Dif-
ferent semantic nodes may then be represented by different patterns of activity on
the same set of units. The parallelism provided by the multiple hardware units is
used to give a rich microstructure to the individual concepts, that correspond to
semantic nodes rather than being used to allow many concepts to interact simul-
taneously. The semantic net formalism can then be seen as a crude description of
the interactions between complex patterns of activity. The formalism captures the

way in which concepts interact, but it ignores the microstructure of the concepts .

that is provided by the particular patterns of activity used to represent them in the
hardware. _ : :

I argue that the second approach is a more promising model of how concepts
are represented in the nervous system and that an understanding of the particular
patterns of activity used for particular concepts (their microstructure) is important
because the interactions between concepts that are formalized as a single link in a

192 HINTON

FATHER FATHER

+ FATHER

(@)

(JOHN FATHER LEN)
(MARY FATHER LEN)
(JOHN SISTER MARY)
(KATE FATHER JOHN)

~(b)

FIG. 6.1. Two formalisms for representing relational information. In (a) the
roles of the constituents of a relationship are determined by their positions at the
head, tail, or side of an arrow. In (b) the position in a string determines the role.

semantic net are actually generated by millions of simultancous interactions at
the level of their microstructures. An understanding of these mlcrocomputatlons
is the key to understanding how existing concepts are recalled appropriately, how
relationships between concepts change, and how new concepts arise.

It is important to realise that the behavior of any network of hardware units
can be described either at the level of activities in individual units or at a higher
level where particular distributed patterns of activity are given particular names.
This is illustrated in Fig. 6.2. Figure 6.2(a) depicts a set of units and the physical
interconnections between them. This set is intended to be merely a part of a
larger parallel machine. For simplicity each unit is assumed to have two possible
states of activity, and Fig. 6.2(b) shows a hypothetical sequence of states of
activity of all the units. Figure 6.2(c) shows the sequential relationships between
the patterns of activity of the units in Fig. 6.2a. Notice that although the dia-
gramatic formalism is the same in Fig. 6.2(a) and 6.2(c) the interpretation of that
formalism is quite different. In Fig. 6.2(a) the nodes correspond to different parts
of the machine; links correspond to particular physical connections; and many
different nodes can be active at once. None of these descrlptlons apphes to Fig.

—

B e

6. IMPLEMENTING SEMANTIC NETS 193

6.2(c). Here the different nodes are implemented in the machine as mutually
exclusive, distributed representations, that is, different patterns of activity on the
same set of units. | .

- We have seen that the very same physical events can be described at two quite
different levels. It is an open question as to which level of description is being
used when a psychologist uses the semantic net formalism to describe a person’s

knowledge.

6.2. APROGRAMMABLE PARALLEL COMPUTER

Artificial intelligence differs from experimental psychology or neurophysiology
in its criterion for what counts as a good model. Instead of being primarily
concerned with explaining behavioral or neurophysiological data, it aims to
produce working programs that can demonstrably perform a task. In domains like

ABGDEF
D1TOoOO0C1
o1 1t10
D01t 11|
01110[3
c1010]|@
oO11 10
010 01
10000
010 01
(a) (b)

(c)

FIG.6.2. (a) The physical interconnections between some-units that form part of
a parallel machine. (b} A hypothetical sequence of states of activity of the units in

_(a) as a result of mutual interactions and input from the rest of the machine. (c) A
graphical representation of the transitions between states shown in (b). Although
this graph looks like the graph in (a), it has a quite different interpretation,

ol A 1 i

194 HINTON

language understanding or visual perception, this approach has led to many
insights about nonobvious difficulties that any information-processing system
must overcome. Because of the prevailing technology, however, the goal of
generating a working model has typically meant generating working models on
existing digital computers. These computers are very different from the brain,
and the differences affect the models. This problem can be circumvented by
using a digital computer to simulate a different kind of computer that is much
more like the brain. The methodology of building working programs can then be
preserved, but fiow the programs are o be designed for the brainlike, simulated
computer. _

The simulated computer must be similar enough to the brain so that it is
reasonable to expect that the computational techniques that work well on it will
also work well in the brain. It is probably not necessary, however, to mimic all
the details of the neural hardware exactly in order to discover higher-level,
software principles that ‘are applicable to a wide range of highly parallel com-
puters composed of many simple computing elements with rich hardware connec-
tivity.

In order to investigate a particular idea about how the semantic net formahsm
might be implemented in neural nets, a simple but powerful parallel computer .

“was defined and simulated. The computer consisted of a number of perceptron-
like units (see Chapter 1, Section 1.2.2). Each unit had an input line from every
unit (including itself). At any moment each input line was either active or
inactive (1 or 0). Each line had an associated real-valued weight, and a unit
produced a 1 as its output at the next moment of time if the sum of the weights
on its active input lines exceeded its threshold. Otherwise it produced a 0. The
‘output of a unit determined the states of activity at the next moment of all the
input lines emanating from that unit. This type of computer is a particular
example of a matrix model (see Chapter 1, Section 1.2.3). The current states of
all the units define a binary state vector. The next state vector is generated by
- multiplying the current one by the matrix of weights and comparing each compo-
nent of this vector with the corresponding component in the vector of thresholds,
as shown in Flg 6.3(a).

External input to the system was achieved either by setting the initial states of
the units or by giving each unit an external input that could have any real value..
This value was added to the sum of the weights on the active lines before
thresholding.

In programming a computer of this type to perform a given task, several
different kinds of decision must be made. First, the total set of units must be
conceptually divided into subsets for representing different entities in the task
domain. If local representations are used, there will be a single unit for each
entity. If distributed representations are used, different states of activity of the
same subset of units will represent different entities, and it will be necessary to
choose a particular pattern of activity to represent each entity.

6. IMPLEMENTING SEMANTIC NETS 195

114 12 9 : .
input vector 013 0 2 Matrix of weights
111 8 4 L
11 14 10 thresholds
0 1 1 output vector
(a}
before after
1{4 12 9 18 12 6
. 0§13 0 2 0(13 0 2
111 8 4 115 8 1
11 14 10 7 14 13
(1) (1) © 1 1 0
(b) i o (e)

FIG. 6.3. (a) The matrix of weights for a system containing three units. Each
column corresponds to a unit. The output of a unit is generated by adding up all the
weights in its columi that are in rows that have a | as input. This sum is then

~ compared with the threshold. (b) A system that is required to give the output
shown in pa_renthescs when it gets the input vector shown. It does not do so,
so the weights and thresholds must be changed. (¢} The set of wgights and thresh-
olds that would be obtained by applying the perceptron convergence procedure ’
if the correct outputs are required to be achieved by a margin of at least 6. The
first unit in (b), for example, has active weights of-4 and 1 and a threshold of
11, so it fails to “‘fire”’ by 6. It is therefore failing to achieve the required margin
by 12. So each of the three relevant quantities is changed by 4 in the appropriate

direction.

Once these decisions about representations have been made, it is necessary to
“select the weights in the matrix so that they cause the appropriate sequences of
representations (i.e., binary state vectofs). This sounds like a tedious and tricky
task, but it can be done automatically if the required sequences of binary state
vectors are known. The requirement that one state vector should be succeeded by
another is equivalent to a sef of separate requirements on each unit; namely, that
the state of the unit specified by the second state vector should be caused by the
‘inputs to the unit specified by the first state vector. Thus, requiring a set of
sequences of state vectors amounts to requiring each individual unit to respond to
some paiterns of activity of its input lines with a 1 and to other patterns with
a 0. The perceptron convergence theorem (see Chapter 1, Section 1.2.2) specifies
a way of finding a set of weights that will achieve any required set of responses

196 HINTON

to input patterns, provided any such set of weights exists. Figure 6.3 gives a
simple example of how the matrix of welghts would be changed to make one
binary state vector succeed another.

Although the individual units are perceptrons and the perceptron convergence
procedure is being used to set the weights, the whole approach is very different
from the way perceptrons were originally used. The units ‘*look’’ at the internal
state of the machine not at a perceptual input, and the convergence procedure is
used not for learning but for achieving sequences of internal states that have been

specified by thé programmer. e

6.3. FROM SEMANTIC NETS TO STATE VECTORS |

The information in any network consisting of nodes connected by labeled, di-
rected arcs is equivalent to a set of triples, each of which consists of two nodes
- and an arc label. Any device that can produce the missing component of a triple
when given the other two elements can be said to contain the information in the
semantic network. Cases in which the third component of a triple is not uniquely
determined by the other two are particularly interesting and are considered later.

- The method that was used for implementing a semantic net in the associative
computer defined earlier involved dividing the hardware units info four groups
(called assemblies). The first three assemblies were called ROLE1, REL (short
for relation), and ROLE?2. The states of activity of these assemblies were used to
represent the identities of the two nodes and the arc label involved in a relation-
ship. The associative computer could be queried about a particular triple by
putting it into -an initial state in which two of the first three assemblies had
patterns of activity representing two components of the triple, and the remaining
assemblies started off with all their units inactive. The coﬁi’puter would comiplete
the triple by settling down into a state in which the missing component of the
triple was represented by the state of activity of the relevant assembly,

The fourth assembly was called PROP (short for proposition). For each par-
ticular triple stored by the associative computer there was a corresponding par-
ticular state of the proposition assembly. Recall of triples from two of their
components was achieved by making these states of the PROP assembly have the .

following properties:

1. Any two of the components of a triple would cause states of the PROP
assembly similar to the state that represented the complete triple.

2. States of the PROP assembly that were similar to a state representing a
complete triple would cause subsequent states even more similar to the state
representing that triple. '

3. A state of the PROP assembly representing a particular triple would cause
the appropriate states of the ROLE1, REL, and ROLE2 assemblies. :

6. IMPLEMENTING SEMANTIC NETS 197

How these three properties of the PROP assembly were achieved is described
in the next section after the behavior of a syétem having these properties has been
demonstrated.

Figure 6.4 shows the output of a two- part computer program consisting of a
simulator, which simulates a parallel computer, and a handler, which handles the
interactions between the user and the parallel computer. The handler transiates
the first instruction into a set of operations (explained later) that modify the
weights of the parallel computer so as to store the three triples JOHN FATHER
LEN), (JOHN-SISTER MARY), and (KATE FATHER BILL). The second
instruction, (RECALL ‘(JOHN FATHER 0)), tells the handler to set up a par-
ticular initial binary state vector in the parallel computer and to print out a
* description of each subsequent bmary state vector. The deSCI'IpthH 1S generated
by comparing the state of each assembly with a stored list of binary states that
have been assigned particular names. If there is no perfect match, the name of the
nearest match is used with a numerical suffix indicating the number of places
where the match failed. The particular PROP state that represents a complete

<STOREALL "{ {JOHN FATHER LEN)
(JOHN SISTER MARY)
" (KATE FATHER BILL}))

*(RECALL '(JOHN FATHER 0)}

" ROLE1 REL - ROLE2 - PROP

JOHN FATHER 0 ' 0

JOHN FATHER 0 JOHNFATHERLEN4
JOHN FATHER LEN = JOHNFATHERLEN
JOHN FATHER LEN JOHNFATHERLEN

HRECALL (JOMN O LEN)) |
"ROLET = REL ROLE2 PROP

JOHN 0 LEN ' 0

JOHN 0 LEN [
JOHN FATHER LEN JOHNFATHERLEN2
JOHN FATHER LEN = JOHNFATHERLEN

FIG. 6.4. The output of a program that simulates a parailel computer. The
STOREALL instruction causes modifications to the interactions between the
hardware units. Each RECALL instruction sets up an initial binary state vector for
the parallel computer, which then settles down into a stable state that includes a
representation of the initially missing component of the triple. In order to make the
input and output intelligible, a separate program translates binary state vectors into
- words and vice versa. Numerical suffixes on words indicate imperfect matches
between the actual binary state vectors and ones with known naines (see text).

e

198 HINTON

triple is printed out by concatenating the names for the constituents of the triple.
This is just a convention for naming the binary state vector and has nothing to do
~ with the way the simulated parallel computer works. Similarly, the stored lists of
named binary states are not part of the simulated computer and are not available
to it. '

Figure 6.4 shoWs that an initial state vector repré'senting two components of a
triple causes a subsequent PROP state close to the one for that triple, which
subsequently settles into exactly the PROP state for that triple. Notice that, in this
example, even an 1mperfect PROP state'is sufficient to cause the rmssm g compo-

nent of a triple.

6.4. CONTEXT-SENSITIVE ASSOCIATIONS AND
HIGHER-LEVEL UNITS

In order to store triples effectively in an associative computer, it is necessary to
‘make the relational term of the triple act as a context to which the association
between the other two terms is sensitive. Suppose, for example, that we wish to
store the four triples shown in Fig. 6.5. It is clear that the first term in the triple
does not determine the third term. It all depends on what the relational term is. It
is also clear that the relational term by itself does not determine the third term
either. : _ :

It is fairly easy to show that, in a system of the kind presented here, such
context-sensitive associations cannot be achieved if the direct effects of two
patterns combine to produce a third pattern. In the example in Fig. 6.5, the
required third term is either “‘one’’ or ‘‘two.”’ The patterns for these two terms-
must differ somewhere, so let us focus on one unit that is, say, on when the third
assembly has the pattern for “‘one’” and off when it has the pattern for*‘two.”’
Consider how the patterns in the other two assemblies influence this unit. The
effect of a pattern in one assembly on a unit.in another assemb]y is simply the
sum of the weights on the lines coming from the active units in the pattern. So the
patterns for ‘‘one’’.or “‘two’’ in the first assembly and the patterns for “‘same’’ or
““different’’ in the second assembly will contribute fixed amounts, Q,, O, O,
and Q,, respectively. For the unit to behave correctly it is necessary that:

(ONE SAME -~ ONE)
(ONE DIFFERENT TWO)
(Two DIFFERENT ONE)
(TWO SAME . TWO)

FIG. 6.5. Given this set of four triples, any two components of a triple uniquely
determine the remaining component, but simply adding together the effects of the
two known components cannot correctly determine the missing one (see text).

6. ' IMPLEMENTING SEMANTIC NETS 199

0, +0,>8 | . | | (6-1)
0, +0,<6 o | - (6-2)
Q:+Q, =0 (6-3)
0, + Q.0 (6-4)

Combining (6-1) with (6-4) yields:

Qi+ Qs+ 0+ Q0 > 26 | N)

- but combining (6-2) with (6-3) yields:
0, +0:+ 0, + Qg =20

Hence there is no way of choosing the weights to achieve the desired interac-
tions. This is essentially the same as the proof that a perceptron cannot compute
an exclusive-or (Minsky & Papert, 1969). - '

The importance of this proof is that it shows that simply combining the effects
of two patterns does not provide context sensitivity. The only way to achieve this
property is by having extra units, which are not used to represent the constituents
of a triple and which respond to conjunctions of active units in at least two
assemblies. For example, an extra unit might respond to the conjunction of the
patterns for ‘‘one”’ and “same
cause the pattern for ‘‘one’” in the third assembly.

- The PROP assembly consists entirely of these extra units. The set of pattems

to which a unit responds positively can be called its ‘‘receptive field.” The
number of possible receptive fields is extremely large, even for units with fairly

(6-6)

small number of inputs; thus it is out of the question to have all possible receptive -

fields represented by the units in PROP. Ideally the receptive fields of the extra
units should be chosen so as to make the units as helpful as possible in causing
the required completions of triples. We return to this issue of selecting helpful
receptive fields in Section 6.8. For the simulation, the receptive fields were
chosen randomly by assigning random welghts to the input lines of the units in
PROP.

When a particular tripIe was coded by the patterns in the ROLE1, REL, and
ROLE2 assemblies, it caused a particular pattern of activity in PROP. The
mapping from triples to patterns in PROP was random, and the process of storing
a particular set of triples in the assoctative computer did not change this mapping.
What did change was the i inverse mapping from states of the PROP assembly to
states of the other three assemblies. Using the perceptron convergence proce-
dure, the weights that deterrnined this inverse mapping were modified until the
three assembly states representing the constituents of each triple were caused by
the particular PROP state that those three states gave rise to. This made each
triple correspond to a ‘‘resonant’’ state of the whole system because the states of

=

** in the first two assemblies. This unit could then -

200 HINTON

the first three assemblies caused a state of the remaining assembly, which, in
turn, caused them. |

The resonance was further mcreased by using the perceptron convergence
procedure to modify the weights between units within the PROP assembly until
each PROP state that corresponded to a stored triple caused itself as its own
successor (in the absence of any input from other assemblies). The result of
associating each PROP state with itself in this way was that states similar to one
of the autoassociated PROP states tended to become even more like that state.
The reason for this effect is that the state of each unit is jointly determined by the
effects of all the other active units, so that if a few units have their states
changed, the unchanged active units will tend to change them back again.

The way in which states of the PROP assembly are used in storing friples has
similarities to a standard computational technique called hash coding. To as-
sociate social security numbers with names, for example, one first applies a
hashing function to the string of characters that make up the name. The function
returns a number that is then used as the address for the memory location in
which the associated social security number is to be stored. The way in which
states of the first three assemblies are randomly mapped onto states of the PROP
assembly is reminiscent of hashing, but there is one major difference. Small
changes in the character string typically cause the hashing function to return a
totally different address; thus hash coding does not work when the key (the
- character string) is imperfect, unless, of course, all possible imperfections are
considered ahead of time, and the information is separately associated with every

- variation of the key.

The mapping from thples to PROP states, on the other hand, has the property

that similar combinations of states for the first three assemblies lead to similar
PROP states. The reason for this is that some of the units in PROP will be driven
either far above or far below threshold by the states of the first three assemblies.
Therefore although smali changes in these assemblies will slightly alter the input
to these nonmarginal PROP units, the alterations will be insufficient to change
their states. When only two of the constituents of a triple are represented in the
first three assemblies, the ensuing PROP state will be somewhat different from
the state caused by the complete triple, but it will be more similar to it than to
the PROP states corresponding to other triples. It will, therefore, tend to be
“‘captured’’ by the autoassociated PROP state for the whole triple.

We have now seen how the three properties of the PROP states that were
described in section 6.3 were achieved. Figure 6.6 shows the various different
ways in which the simulation treated the weights determining the effects of one
assembly state on another. The units in the first three assemblies have high
thresholds but are also self-excitatory. This causes them to act like flip-flops, so
the initial states of activity of these assemblies tend to remain stable during the

settling process

6. IMPLEMENTING SEMANTIC NETS

: positive random
| ROLE 1 on none none | and
diagonal fixed
N ~ '
; . positive random
T - REL none on none - and
diagonal ' fixed
A% :
E _ positive | random
¢ HROLEZ2 none none on and .
T ' ' diagonal fixed
0
R ,
. PROP variable | variable | variable | variable
ROLE 1 REL ROLE 2 PROP
OUTPUT VECTOR
(a)
each unit

helps itse_!f

each unit
helps itself

variable

each unit
helps itself -

(b)

FIG. 6.6. (a) The matrix of weights arranged for the system that stores triples.
Many of the submatrices are null. For the three assemblies that code the con-
stituents of a triple, the submatrices determining the effect of an assembly state on
itself have all 0 weights except for the leading diagonal. This makes these as-
semblies retain whatever patterns they are given. The thresholds (not shown) are

all positive. (b) An alternative representation of the way in which the weights are.

initiatized and altered.

201

202 HINTON

6.5. PROPERTY INHERITANCE

A major issue in artificial intelligence is how to relate the representations of a
token and a type so as to ensure that facts or properties associated with the type
are inherited by the token. One method is to make a new copy of the type each

time a new token is required. This straightforward approach is space-consuming

because all the properties of the type are duplicated for every token. Also if any
new knowledge is acquired about the type, it must be explicitly added to all the
tokens that already exist. The obvious alternative to making a full copy of the
type is to give each token a pointer back to its type, so that whenever a question
arises about the token, the type can be inspected. This approach is currently the

generally accepted one. It allows property inheritance in hierarchies in which

type/token relationships hold between adjacent levels. Suppose, for example,
that Clyde is a particular elephant and that the system needs to know how many
legs he has. If there is no information about this attached directly to the Clyde
representation, then the representation of Clyde’s superordinate type, elephant, is
checked. If the answer is not attached to the elephant representation, then its
superordinate type, quadruped, is examined, and so on. :
Property inheritance appears to be a basic characteristic of human conceptual
representations, and consequently the ease with which it is achieved by a repre-
sentational scheme is a measure of the adequacy of the scheme as a model of
human knowledge structures. An approach such as Fahlman’s (Chapter 5, this
volume), which uses local representations in a parallel machine, needs to have
specific hard-wired connections between the representations of types and tokens
in order to allow property inheritance. If new connections can be created as

required (See Feldman, Chapter 2, this volume), Fahlman’s scheme is a neat -

~ solution to property inheritance. However there is also a solution which does not
require specific connections. If distributed representations are chosen:" appro-
priately, property inheritance just drops out. :

Suppose that the pattern of microfeatures (individual active units) that repre—
sents a type is simply the set of microfeatures common to the patterns that
represent the tokens of that type. Any effects that are caused by the pattern for the
type will automatically transfer to the patterns for the tokens, unless they are
_overriden by the effects of the additional microfeatures in a particular token.
Thus property inheritance is automatic and there is also a way of preventing it in
exceptional cases. Furthermore, generalization will be a basic system property,
because type pattems will automatically acquire any effects possessed by all their
token patterns.

‘Automatic generalization is not always desirable. For example, the property
of being an individual elephant should not be allowed to transfer to the repre-
sentation of the type “‘elephant’’ even though it fits all the tokens. The pattern for
the type must be more complex than just the intersection of the microfeatures in

6. IMPLEMENTING SEMANTIC NETS 203

- the patterns for the tokens. However, the naive idea that abstraction is just the
ommission of the microfeatures that vary within the class seems to have some
very useful computational consequences in an assoc1at1ve computer of the type
presented here.

Figure 6.7 shows the mput and output of the computer program when it is
instructed to store three triples and then to complete two of them. Figure 6.8
shows what happens if the program is then asked to complete triples that have not
been explicitly stored. Remarkably, it gets the right answers. Figure 6.9 shows
why. The pattern for CLYDE contains the pattern for ELEPHANT, so the effects
of this pattern are inherited by CLYDE. Similarly, the pattern for BILL contains
the pattern for PERSON. Figure 6.10 shows what happens if four triples are
stored, including one in which a token, SCOTT, behaves differently from its
type, PERSON. The two recall tests show that the exception is learnt and that this
does not prevent BILL from inheriting his color from PERSON, though the
inheritance becomes slightly shaky.

In a sense, distributed representations finesse the property inheritance prob-
lem by making the representation of the type be a constituent of the representa-
tion of each token. This solution would lead to wasteful, multiple representations
of the type in any system that stored individual representations separately, but
this problem does not arise in systems where the ability to recreate an active
representation is not achieved by storing that representation or anything like it.

*(STOREALL ‘{(ERNIE COLOR GREY)
(ELEPH COLOR GREY)
(PERSON COLOR PINK)))

 +{RECALL “{ELEPH COLOR 0}))

.ROLE 1 REL ROLE 2 PROP
ELEPH COLOR 0 0
ELEPH COLOR 0 7
ELEPH COLOR GREY . ELEPHCOLORGREY4
ELEPH COLOR GREY, ELEPHCOLORGREY1

*(RECALL ‘(PERSON COLOR 0))

ROLE 1 REL - ROLE 2 PROP

PERSON COLOR 0 0

PERSON COLOR -0 PERSONCOLORPINK4
PERSON COLOR PINK PERSONCOLORPINK1
PERSON COLOR PINK PERSONCOLORPINK

FIG. 6.7. Three triples are stored and recall is tested for two ‘of them.

PR [

204 .HINTON

*{RECALL "(CLYDE COLOR 0))

ROLE 1 REL ROLE 2 PROP

CLYDE COLOR 0 0

CLYDE COLOR o 3

CLYDE COLOR GREY “?

CLYDE COLOR GREY ELEPHCOLORGREY2

*(RECALL‘(BILL COLOR 0)} ‘.

ROLE1 REL ROLE 2 PROP

BILL COLOR 0 | 0

BILL COLOR 0 ?

BILL COLOR - PINK PERSONCOLORPINK2
BILL COLOR PINK PERSONCOLORPINK

FIG. 6.8. After storing the colors of elephants and people, the system is asked
about the colors of CLYDE and BILL. It completes the triples correctly, even
though these facts have not been explicitly stored. Figure 6.9 shows why.

*(SHOWSTATES ‘ROLE 1}

‘000000 000000 O
111000 000000 ELEPH
000111 000000 PERSON
111000 111000 CLYDE
111000 000111 ERNIE
000111 101010 SCOTT
0060111 010101 BILL

FIG. 6.9. The patterns of activity used to represent various objects in the assem-:"
bly ROLE 1. The states of the first six units code the type of object (elephant or -
person). The remaining six units are used to code a particular token by further
specifying a type. The similarity between the patterns for a type and a token cause
them to have similar effects on the PROP assembly. This causes appropriate

generalization.

6.6. TWO TYPES OF CONCEPTUAL STRUCTURE

In order to store a semantic net in the manner described above, it is necessary to
choose a particular pattern of activity (i.e., a set of microfeatures) to represent
each node in the semantic net. A simple first approach is to choose a random
pattern for each node and to ensure that no two nodes are too similar, This allows
associations between patterns to be implemented, but it fails to capture the
similarities of nodes to one another. For example, the method of achieving
property inheritance demonstrated in the previous section relies on & particular

4*:-1._;w|w;_\.u;h|w..|r...\.. ST

6. IMPLEMENTING SEMANTIC NETS 205 _

*{STOREALL ‘{(ERNIE COLOR GREY)
{ELEPH COLOR GREY) -
(PERSON COLOR PINK)
(SCOTT COLOR WHITE)))

*(RECALL (SCOTT COLOR 0})

ROLE1 ~ REL ROLE2 PROP
'scon ' COLOR 0 0

SCOTT COLOR 0 -7 _

SCOTT COLOR WHITE SCOTTCOLORWHITE1
SCOTT COLOR WHITE SCOTTCOLORWHITE

*(RECALL '(BILL COLOR 0))

ROLE 1 REL " ROLE2 PROP
BILL COLOR o 0
BILL 'COLOR 0 7
BILL 'COLOR PINK ?
BILLY COLOR ? " PERSONCOLORPINK4
*(SETTLEMORE)
BILLI COLOR 2 ~ PERSONCOLORPINK2'
BILLY COLOR - - PINK PERSONCOLORPINKS -
BILL1 " COLOR PINK PERSONCOLORPINK3

FIG. 6.10. An exception to the rule that people are pink is inéludg:d in the list of
triples to be stored. This does not prevent the system from correctly ansu;'ering a
query about the color of BILL. However the interférence caused by the exception
makes the system take longer to settle, and it shghtly degrades some of the patterns

in the final state.

kind of similarity in which the set of microfeatures for a token contains, as a
- subset, the microfeatures for the type. This example makes it clear that the
*“direct content’’ of a concept (its set of microfeatures) interacts in interesting
ways with its ‘‘associative content”’ (it'links to other concepts). The reason for
' this interaction, of course, is that the associative content is caused by the direct
content. Each association is implemented by the process of completing a triple,
and this process involves creatmg a resonance which depends on the direct
- contents of the concepts being associated. :

The distinction between direct content and associative content may be an
important contribution of this approach to psychology. There is good evidence
(Mandler, 1980) that human memory for items involves two separate compo-

. nents, which Mandler has called ‘‘integrative’” and ‘‘elaborative’’ structure. The
essential idea is that an item has internal coherence as well as external relations to

R

206 HINTON

other items. Within the traditional semantic net framework, it is hard to model
“this distinction. If, however, integrative structure is interpreted as direct content,
and elaborative structure as associative content, it is easy to see that the two are

- qualitatively different.

The semantic net formalism captures an aspect of conceptual structure (the

associations between c_oncepts) that subjects are able to make verbally explicit. It
also captures the higher levels of our perceptual representations, which seem to
involve structural descriptions in which scenes or objects are decomposed into
their constituénts (Hinton, 1979; Palmer, 1977; Reed, 1974). These structural
descriptions are just semantic nets in which the relationships are spatial. A quite
different formalism, in which a concept is only a large set of features, is impor-
tant in explaining similarity judgments (Tversky, 1977). It is also common in
models of pattern recognition, which typically assume that a shape can be repre-
sented as a set of features. A battle has raged between these two formalisms.

Both sides seem to have assumed that the two formalisms are competmg to

explain the same phenomena.
It is clear that both formalisms are applicable to the computer simulation

presented above. Concepts are patterns of activity (sets of microfeatures), and
associations involve interactions between these patterns. The semantic net for-
malism is a high-level description of the associative content and the feature-set
formalism is a low-level description of the direct content. There is no conflict.
Neither formalism alone can capture the way in which direct content influ-
ences associative content and vice versa. The property inheritance example
shows that the interaction between these two types of content can provide a neat
solution to a major problem for semantic nets. The next section shows how
another major problem may have a similarly neat solution. .

£
¥

6.7. MEMORY SEARCH AS A CONSTRUCTIVE
' PROCESS -

It is a commonplace in Artificial Intelligence that data structures alone are not
enough. There must also be effective search procedures which can find pieces of
data that satisfy descriptions (Norman & Bobrow, 1979). A particular node in a
semantic net, for example, might be described by saying that it is in relation R to
node A and relation S to node B. If many different nodes satisfy each part of the
description separately, but only one node satlsfles the whole description, then it
is nontrivial to find this node. .

An obvious but inefficient method is to store separate lists of the nodes
satisfying each part of the description and then to find the intersection of the
relevant lists. This method requires a lot of extra storage, for the lists, and also
involves computing intersections every time a memory search is performed. An

6. IMPLEMENTING SE.MANTIC NETS 207

obvious use for parallel hardware is to facilitate memory search. How can this be
done in an associative computer?

Scott Fahlman (Chapter 5, this volume) shows how the search problem can be
solved efficiently in a parallel computer in which there is a hardware processor
for each node in the semantic net. Each part of a complex description is used to
place a specific marker on all the nodes which satisfy it. A message is then
broadcast to all the nodes telling each of them to report back if it has all the

‘markers. I shall outline a method that is similar in spirit to this marker- -passing

algorithm but is a natural development of the idea that concepts correspond to
patterns of activity rather than to particular hardware units. The method resem-
bles Fahlman’s in its use of discrete markers, but it differs in that it dedicates
particular pieces of hardware to particular markers rather than to particular se-
mantic nodes. In fact a concept becomes nothing more than a particular bundle

of markers (i.e., microfeatures).
Given any semantic net, it would be possible to choose patterns of activity to

represent the individual nodes in such a way that every triple was implicitly

coded by the presence of specific ‘‘relational’” microfeatures within the patterns

for the relevant nodes. For example, if there was a triple (4 R B), the pattern for

A would include a microfeature that it shared with all the other concepts that
stood 1n relation R to B. Similarly, the pattern for R would have a microfeature
that it shared with all other relations holding between A and B. Each triple would

then be coded in two very different ways, once in the interactions between whole
assembly states, and once in the direct contents of each of 1ts constituent con-

cepts.

Given this dual encoding, a node satisfying the patterns (? R B) and (‘7 5C).

could be found in three sequential stages. First, an attempt would be made to
complete the triple (7 R B), and this would cause a particular microfeature in the
ROLE1 assembly. Next, an attempt would be inade to complete (? § C), using as
the initial state of ROLE] the pattern caused by the previously attempted comple-
tion. The combination of S and C would cause another particular microfeature in
ROLEL, and the search problem would than have been reduced to a pattern
completlon problem within ROLEL. This subproblem has its own difficulties,
but the aim of this section is merely to show how a problem of one type, finding
an implicitly specified node in a semantic net, can be reduced o a problem of a
different type that an associative computer handles well.

There is one major difficulty with the search scheme as it stands. It requires
that each assembly contain a specific unit for each combination of states of the
other two assemblies. So although concepts do not require their own units,
combinations of pairs of concepts do. This is unacceptable. Fortunately, it is also
unnecessary. Instead of using a single microfeature within A to code the triple (A4
R B), a small pattern of microfeatures can be used, provided that the mlcrofea—

tures are carefully chosen.

#
L2

B e

208 HINTON

A semantic network can be said to contain implicit regularities if the nodes
and arc labels can be divided into subsets that satisfy constraints. Suppose, for
example, that in a particular network, any relational triple that has a concept from
the subset S; in ROLE] and a relational concept from the subset S, in REL, has
a concept from the subset S, in ROLE2. In this network there is an implicit
constraint on the third constituent of any triple whose first two constituents are
from the subsets S; and S,, respectively. If the patterns of activity used to
represent particular concepts are chosen carefully, this constraint will show up as
‘a simple microinference at the level of the microfeatures. All that is necessary is
that for each relevant subset there should be a specific microfeature that is only

- possessed by the concepts in that subset. If, for example, the members of S, S,
S, have the microfeatures f, f,, f;, respectively, then f; in ROLE! and £, in
REL will imply f, in ROLE2. The system can implement this microinference by
having a unit in PROP that responds to the conjunction of f; and £, and causes f;

Notice that f; in this example is a more general case of the kind of relational

microfeature described above. Instead of coding that a specific other concept is -

- related by a specific relation, f, codes the more general constraint that the
concept containing it is related to a concept in the set S, by a relation in the set
§,. If there are many implicit regularities in the semantic net, there will be many
of these more general constraints, and specific conjunctions of them will code
_ specific relations to specific other concepts. This method of encoding specific

relationships as conjunctions of more general constraints is much more efficient
than using specific relational microfeatures.

- The problem of finding a concept that satisfies both (? R B) and (? S C)can
now be solved in essentially the same way as before, but instead of causing a
single relational microfeature in the ROLE! assembly, the combination 6f R and
B will cause a number of more general relational microfeatures, correspondmg to
many different set memberships that can be inferred from thé set memberships of
R and of B. Similarly, the combination of § and C will cause further microfea-
tures corresponding to set memberships that can be inferred from those of S and

C. If there is a unique answer to the search problem, the two lots of inferred .

" microfeatures should be sufficient to allow microinferences within an assembly
to complete the remaining microfeatures of the answer. If there is no unique
answer, the inferred microfeatures, and any more that can be inferred from them,
will act as a representation of the set of objects that would satisfy the description.

The central idea underlying this search technique is that a particular concept is
just a conjunction of set memberships, and that it is possible to infer some set
memberships from others. A “‘search’’ is performed by using a part of a descrip-
tion to infer some of the set memberships of the desired concept, and then
completing the concept by inferring its remaining set memberships. Because the
representation of the concept is just this conjunction of set memberships, there is
no need for any comparison stage in the search. The idea that remembering
involves retrieval of items that are stored as explicit wholes, or that retrieval

6. IMPLEMENTIN.G SEMANTIC NETS 209

descriptions need to be matched against such items is entlrely 1nappropr1ate to
this way of implementing remembering.
Kohonen and his co-workers (Chapter 4, Section 4.4.2, this volume) suggest
“a rather different method of finding items that satisfy complex descriptions.: Each
part of the description is used to give subthreshold activation to all the nodes
satisfying it, and a threshold is chosen such that only the node that satisfies all
parts of the description receives enough activation to exceed the threshold. This
is a version of the spreading activation approach (Collins & Loftus, 1975). It is
like Fahlman’s marker-passing algorithm in that it requires a separate hardware
node for each item, but it is not as powerful. Instead of having collections of
markers at a node, there is a single number, the activity level, which is a much
less informative representation. What we know about the brain makes it scem
very probable that human thought involves activation spreading between
hardware units, but the whole thrust of this chapter is that the psychological level
of description is at a higher level than the hardware, and therefore models that are
appropriate at the hardware level may be inappropriate at the psychological level.
A single activity level, for example, is incapable of representing an intermediate
stage in memory search when some but not all of the microfeatures of a concept
have been constructed. _
- Many of the phenomena that are taken to support a spreading activation model
(see Ratcliff, Chapter 10, this volume) are also predicted by the model in which
remembering involves constructing the appropriate concept by activating its mic-

- rofeatures. For example, the constructive model predicts that when errors oceur-

they should be similar concepts, because these share many microfeatures. It also
predicts that a concept should prime more general concepts of which it is:an
instance because the representations of these more general concepts are simply a

subset of the microfeatures for their specific instances.

6.8. LEARNING

Within the deliberately restrictive framework of storing and searching sets of
triples, there are two rather different learning problems. In order to add a new
~ triple it is necessary to modify the way-in which the patterns for the constituents
of that triple interact with units in the PROP assembly. The training scheme used
by the current computer program is one way of doing this. However, this type of
~ associative learning in which the direct content of the concepts remains unaf-
fected is relatively uninteresting. The major learning problem is to discover how
to represent concepts as patterns of activity in such a way that the implicit
regularities in the associations between concepts can be captured by microinfer-
‘ences between their microfeatures.
Discovering appropriate microfeatures for a concept is an enormous task
because there are so many possible regularities. Given n nodes and r relations,

=

PRI TS

270 HINTON

there are 2"272" ways of choosing three subsets between which there might be a
simple microinference. For more complex inferences involving more than three
microfeatures the number is even greater. If one considers that a really useful
microfeature will be one that enters into many different microinferences, the

~ problem becomes even more horrendous.

_ In conventional implementations of semantic nets learning typically requires

extra processes that inspect the representations and notice regularities and excep-
tions (e.g., Winston, 1975). The approach presented here suggests a very dif-
ferent way of implementing learning'-Instead of having a separate system that
observes the behavior of the units and adjusts their weights so as to “‘improve”’

the inicrofeatures, each unit can be allowed to alter its own weights so as to

become a better microfeature (i.e., one that is involved in more strong microin-
ferences). To do this, each unit must have a measure of how useful its current set
of weights makes it as a microfeature. It can then change its weights so as to
improve this measure. There is not space here to give a detailed account of how
this can be done; and I have not yet applied this kind of self-improvement to the
aforementioned program, but I shall give a brief outline of the method in order to
dispel the common notion that it is impossible for a local unit to improve its
behavior unless it receives a second kind of input that explicitly tells it how well
it is domg. :

As a concrete example, consider the units in the PROP assembly of the
program for storing triples. These units were given random weights on their input
lines. This was adequate for a simple demonstration program, but it meant that
~some of the units in PROP were either always on or always off and were thus
" useless. The behavior of the system would have been better if the units in PROP
- had changed their weights so as to be more helpful. What that means, in this
context, is that they should have come to respond to common combinations of
microfeatures from which microinferences could be made. ’ B

Whenever there is an inference of the form: a & b — ¢, the joint probability
of all three events, p(a & b & ¢), is higher than the product p(a & b) X p(c),
which is the expected joint probability assuming that ¢ is independent of a and .
- This means that a unit in PROP will be useful for implementing microinferences
if it comes to respond to combinations of microfeatures that occur more often

than would be expected from their separate probabilities of occurrence. It is -

possible to make a unit change its weights so as to latch onto such combinations.
All that is necessary is to modify the weights continually so as to *‘hill-climb’” in
an appropriate measure of the extent to which the unit is responding to the
non-independence among its inputs.

One such measure is the difference between the actual frequency, 4, with
which the unit is on and the expected frequency, £, with which the unit should be
on if its inputs were statistically independent. This measure may be clarified by
the following example. Consider a unit with 10 input lines each of which has a
probability of 1/2 of being active in any particular trial. Suppose that the first 5

T

e i o

6. MPLEMENTING SEMANTIC NETS 211

lines are perfectly correlated so that on half the trials they are all on and on the
other half they are all off. If the unit develops.a threshold of 4.5, and weights of 1
- on each of the first five lines, and 0 elsewhere, it will actually *‘fire’’ on half the
trials. Because, however, it can only fire if all the first 5 lines are active and
because each line has a probability of 1/2 of being active, the expected probabil-

ity of firing, assuming independence, is only 1/32. Therefore, A = 1/2, and E

= 1/32. There is a large difference between A and E because the particular
weights and the threshold cause the unit to respond to a very strong regularity

among its inputs.
‘There are reasons for believing that the optimal measure is neither A — E nor

AJ/E, but this need not concern us here. The main point is that it is possible to.

estimate A and E and their partial derivatives with respect to the individual
weights on the basis of information that is available locally at the unit. This
means that there is enough information available locally to hill-climb in a mea-
sure that is a function of A and E£. Thus by continually making small changes in
the weights, the unit can increase the extent to which it responds to regularities
among its inputs. I have implemented an algorithm of this kind in several very
simple domains and it seems to work well, though the convergence rate is rather
slow. This type of weight modification rule is considerably more complicated
than the simple correlational synapse suggested by Hebb (1949) and others, but it
appears that something of this kind is necessary to allow the direct content of
concepts to evolve on the basis of the regularities among their associations.

There are some interesting consequences of making direct content evolve as a
result of associative content. If the system has already assimilated a set of
concepts and has had enough practice at their associations so that the implicit
regularities have become embodied in the microfeatures and microinferences,
then a concept that obeys the same implicit regularities will be easy to assimilate.
Its associations with existing concepts will allow the existing microinferences to
determine a suitable direct content for the concept, and this, in turn, will lead to
 appropriate generalization.

When an entirely novel set of concepts is introduced, there are serious prob-
lems. If the concepts do not contain perceptually specified microfeatures, then
there may be a vicious circle. There is no good way to choose the initial direct
contents, because the appropriate microfeatures and microinferences cannot
evolve until enough associative content has been specified to reveal the implicit
regularities. But to enter the associative content, it is necessary to have patterns
of activity to represent the concepts If arbitrary patterns are used to begin with,
there will be considerable interference between the various facts. Also, it will be
hard to search for concepts satisfying multiple partial descriptions because the
search process depends on having appropriate microfeatures,

It is possible to avoid the vicious circle if a new system of concepts is
isomorphic to one that has already been thoroughly assimilated. The microfea-
tures of an existing concept can be used to provide most of the direct content for

RIS

R

B e

212 HINTON

the corresponding new one. The existing microinferences will then transfer, so
that once some of the correspondences have been specified, the remaining new
concepts will receive the appropriate direct content as a result of their associative

content and the ex1stmg microinferences.

6.9. EXTENS!ONS OF THE MODEL

The aim of thlS chapter is to present a novel way of Implementmg reIatlonal
data-structures in parallel hardware. The particular example used is unrealistic in
many respects, and the aim of this section is to point out these deficiencies so that
the simplifications and ad hoc details in the example are not confused with the
principles that it is intended to illustrate. I also indicate the directions in which
the model could be extended to cope with some of its major limitations.

6.9.1. Multiple Roles

It is clear that people can represent propositions like ‘‘the hippy kissed the
debutante in the park,’’ which contain more than three constituents. It would be a
trivial extension of the program to allow multiple roles like “‘location’’ and
“time of occurrence’”. So long.as there is a fixed and relatively small set of
discrete roles, it is possible to set aside an assembly for each role. However, this
. simple approach is inadequate if there are a large number of roles and if some are
similar but not identical to others. Consider, for example, the two sentences:
““‘Mary beat John at tennis,”” and *‘Mary helped John with his sums.’’ It seems
wasteful to have an assembly that is permanently set aside for whatever tole the
“‘at tennis’ is occupying, and it is unclear whether the sums play the same role in
the second sentence as the tennis does in the first. It seems that each relation
(verb) has an associated role structure, and that the roles in one structure may be
similar to, but not identical with, the roles in another.

It would be possible to extend the program to allow the set of available roles to
be determined by the relation involved and to allow two roles in different rela-
tions to be similar without being identical. Currently, activity in a unit in a
particular role assembly represents that there is an object from a specific set in
this particular role. The “‘receptive field’’ of the unit therefore covers a number
of possible objects but only one role. The extreme specificity of ‘a unit with
respect to role is what allows the units to be divided into separate assemblies for
the purposes of a higher-level description. This specificity could be relaxed so
that activity in a unit represented the three-way conjunction of an object-type, a
role-type, and a relation-type. The unit would then respond to any object from a
~specific set occupying any role from a set of similar roles in the context of any

relation from a set of similar relations. It is harder to give a simple higher-level
description of the representations in such a system, but it would allow much more

6. IMPLEMENTING SEMANTICNETS 213

flexibility in the role structures. If two relations had similar roles, the set of units
that would be activated by filling a role in one relation with a specific object
would be similar to, but not identical with, the set of units actlvated by filling the
similar role in the other relation with the same object.

6.9.2. Procedures and Control Processes

There has been no attempt to model procedural knowledge. All the examples that
have been presented of the simulated parallel computer involve a separate con-
ventional program that sets up the initial assembly states and makes the parallel
system run for a few iterations. The only thing the paralle] hardware does is settle
into a stable state, part of which represents the answer to a query. This is a very
limited kind of processing. Clearly, a real system would need to have organized
sequences of computations. The process of settling into a stable state would then
“correspond to a single step of a larger computation. -In other words, a more

co'mplex parallel system would be organized to perform computations by a se- -

quence of settlings. Each such settling would involve a great deal of parallel
computation so that the individual settlings in the sequence could implement
properties like content-addressable memory. The next section outlines a way of
implementing more complex computations that would involve a sequence of
settlings at the level of individual proposition representations. '

' 6.9.3. Inference |
Memory must allow inference as well as simple retnval of-the facts that were
explicitly stored. If, for example, we store the facts (JOHN has FATHER LEN)
and (LEN has BROTHER BILL), we should be .able to complete the triple
(JOHN has UNCLE ?). This requires an inference schema of the form (X
FATHER Y) & (¥ BROTHER Z) — (X UNCLE Z). One way of implementing
this in parallel hardware is to duplicate the structure used for storing and retriev-
“ing propositions but at a higher level. A specific proposition would fill one role in
an inference schema in much the same way as an object fills a role in a proposi-
tion. There would need to be separate assemblies for simultaneously representing
several different proposition/role combinations. However if-these assemblies
were filled sequentially, it would be unnecessary to duplicate the apparatus for
representing individual propositions. The very same apparatus could be used
sequentially for retrieving the various individual propositions used in the in-
ference and also for ‘‘unpacking”’ the representation of the inferred proposition
into its separate constituent objects. Section 6.10 shows how object roles can be
filled sequentially in creating the representation of a proposition, and the same
~method can be used at a higher level in constructing an inference.

There are, of course, many unsolved problems in implementing inferences in
this way. The appropriate inference schema needs to be invoked, and there must

uu-nu.'-fum4;..1.\5.4[”‘\|.......... eI e e e iy e e i e et

214 HINTON

be microinferences at the level of the inference schema that implement the

constraints between the bindings of the variables in the constituent propositions.
Quantifiers pose problems that have not even been explored in this context.

Nevertheless there seems to be no reason to suppose that explicit 1nference'

presents an insuperable problem to the kind of memory being proposed.

i

6.10. LOADING ASSEMBLIES WITH PATTERNS

The program for completing triples requires the known components of a triple to
be represented as patterns of activity in the appropriate assemblies. Currently the
loading of particular patterns into . particular assemblies is performed by the
conventional program that handles the parallel simulation. In a more complete
parallel system it would be necessary for the loading to be done by the parallel
system itself. Suppose, for example, that a query was presented to the system as
- a sequence of pairs of patterns, one of which represented a component of the
triple and the other of which represented the role of that component within the
triple. How could the pattern of activity representing the role be used to direct the
pattern representing the component to the correct assembly? Kohonen et al.
(Chapter 4, Section 4.5.1, this volume) refer to this as the data-switching prob-
lem, and they point out that it is hard to solve in the matrix models. _

Figure 6.11 shows the output of a program that simulates a parallel machine
composed of eight assemblies. The first two are used to represent a component of
a triple and its role within the triple. The next three form a filter that is used for
~ solving the data- -switching problem. The last three are used to accumulate the
serially presented constituents of a triple, and they correspond to the first three
~ assemblies of the previous model. Figure 6.11 shows that the pattern in the
OBIJECT assembly is copied, after two iterations, into whatever assembly is
specified by the contents of the WHROLE assembly. Figure 6.12 shows that if
the constituents of a triple are known, the pattern in the WHROLE assembly
determines which constituent gets copied into the object assembly.

The program works by using the assemblies TROLE!, TREL, and TROLE2
as a “‘skeleton’’ filter. The units in these assemblies have high thresholds, but a
particular pattern of activity in WHROLE provides enough excitatory input to all
- the units in one of the assemblies in the filter so that further excitatory input from

other assemblies is enough to turn particular units on. Units in the other two

assemblies of the filter do not receive excitatory input from WHROLE. They
therefore remain so far below threshold that none of them are turned on by the
effects of the patterns of activity in the other assemblies. Each of the assembhes

in the filter acts as a selective channel that allows mutual interaction between the

.object assembly and one of the last three assemblies. The pattern in the

WHROLE assembly has the effect of opening up just one of these channels.
The interactions between units are set up so that a patten in the object

assembly will tend to cause a corresponding pattern in each of the filter as-

B e

6. IMPLEMENTING SEMANTIC NETS 215

*(ZEROALLASSEMBLIES)
*(INPUTPAIR *(JOHN ROLE))
*(SETTLE)

OBJECT WHROLE. TROLE1 TREL TEOLEZ ROLE? REL ROLE2

JOHN ROLE 1 0 0 o 0 0 0
JOHN 0 JOHN 0 0 0 0 0
JOHN 0 0 0 0 JOHN 0 0
JOHN 0 0 0 0 JOHN 0 0

*(INPUTPAIR ‘(MARY ROLE2))
*(SETTLE)

OBJECT WHROLE TROLE1 TREL TROLE2 ROLE1 REL ROLE2

'MARY ROLE2 0 0 0 JOHN 0

MARY 0 0 0 MARY JOHN 0 0.
MARY 0 0 0 0 JOHN 0 MARY
MARY 0 0 0 0 JOHN 0 MARY

' *(INPUTPAIR ‘(MOTHER REL))

*(SETTLE)

OBJECT WHROLE TROLE1 TREL TROLE2 ROLE1 REL ROLE 2

MOTHER REL 0. 0 0 JOHN- 0 MARY-
MOTHER 0 0 MOTHER 0© JOHN 0 MARY
MOTHER ~ © 0 0 0 JOHN -MOTHER MARY..

0 0 0 0 JOHN MOTHER MARY

MOTHER

FIG. 6.11. The first instruction puts all eight assemblies into the null state. The
instructions following fix the initial states of the first two assemblies and cause the
system to iterate until it reaches a stable state. States of the OBJECT assembly and
the last three assemblies are stable because the units in these assemblies have high
thresholds but are strongly self-excitatory. States of the other assemblies are tran-
sitory because the units are not self-excitatory.

semblies and vice versa. Also, a pattern in'any of the filter assemblies will tend to
cause a corresponding pattern in one of the last three assembliés and vice versa.
Thus the pattern in WHROLE can direct the flow of information between the first

assembly and the last three by selectively opening one of the three channels

provided by TROLE1, TREL:, and TROLE2.
The mechanism is called a skeleton filter because it works by enabling a

skeleton subset of the units in the filter. It is similar in spirit to the more .

sophisticated filter described by Sejnowski (Chapter 7, this volume). ,
Figure 6.13 shows that the system can handle sequential input as fast as it can
be presented. Although it takes two iterations for input to pass through the filter,

stccessive inputs can be “‘pipelined’” so that a sequence of N mputs only re-

quires N 1 iterations.

{-um_u-!ﬁﬁhﬁ-ﬁl-l.‘er‘ TR

216 HINTON

*(SETINITIAL (0 0 0 0 0 JOHN MOTHER MARY))
*(INPUTPAIR ‘(0 ROLE‘I])
*{SETTLE)

OBJECT WHROLE TROLE1 TREL TROLE2 ROLE1 REL ROLE2

JOHN MOTHER "MARY

0 ROLE 1 0 0 0

o - o JOHN 0 0 JOHN MOTHER MARY

JOHN o . 0 0 0 JOHN MOTHER = MARY
0 0 JOHN MOTHER MARY

. JOHN 0 0

*(INPUTPAIR ‘(0 REL})
*(SETTLE)

OBJECT WHROLE TROLE1 TREL TROLE2 ROLE1 REL ROLE 2.

JOHN MOTHER MARY

0 REL 0 0 0

0 ' 0 0 MOTHER 0 - JOHN MOTHER MARY
MOTHER © 0 0 0 JOHN MOTHER MARY
MOTHER 0 0 0 0 JOHN MOTHER MARY

FIG. 6.12. If a triple is present in the last three assemblies, the initial state of the
WHRO_LE assembly determines which component of the triple is transferred to the
OBIECT assembly. It does this by temporarily opening one of the three channels
provided by TROLE1, TREL, and TROLE2.

*(INPUTSEQUENCE ‘{(JOHN ROLE 1) (MARY ROLE 2} (MOTHER REL))}

OBJECT W_HROLE "TROLE1 TREL TROLE2 ROLE1 REL ROLE 2

JOHN ROLE 1 o 0 0 .. 0 o .0

MARY ROLE 2 JOHN 0 0 ' 0 0 0

MOTHER REL 0 0 MARY JOHN 0 0 .
? 0 0 MOTHER ~ 0 JOHN 0 MARY
? 0 0 0 0 JOHN MOTHER MARY

FIG. 6.13. The INPUTSEQUENCE instruction causes a particular sequence of
pairs of states in the first two assemblies. This sequential input causes the compo-
nents of a triple to be accumulated in the last three assemblies.

6.11. SUMMARY

In our attempts to understand how information is stored and processed in the
brain we are limited by our knowledge of the brain’s hardware, by our knbwi-
edge of what people can do, and by our ideas about possible ways of organizing
information processing in parallel hardware. This chapter has tried to add to the
repertory of ideas about information processing by demonstrating a novel way of
storing and searchmg complex ﬂexxbie data-structures in highly pa_rallel

hardware.

6. iMPLEMENTING SEMANTIC NETS 217

Current digital computers implement flexible data-structures by using poin-
ters. One data-structure is given a link to another by being given its address. This
scheme depends on the addressing mechanism and the storage of different data-

structures in different places. An alternative scheme which has been proposed by

“Minsky (1980), Fahlman (Chapter 5, this volume), and Feldman (Chapter 2, this
- volume) is to replace the addresses by real hardware connections. This removes
the need for an addressing mechanism, but it makes it hard to sec how new
-connections can be established rapidly. A third possibility is that concepts are
represented by large patterns of activity, and that data-structures are stored by
modifying the interactions between these patterns. The aim of this chapter has

been to show that this idea is feasible by building a very simple working model.

ACKNOWLEDGMENTS

"I would like to thank Eileen Conway, Ed Hutchins, Don Norman, Chris Riesbeck, and
Dave Rumelhart for their help. The preparation of this chapter and the research reported in
it were performed while I was a Visiting Scholar with the Program in Cognitive Science,
at the University of California, San Diego, supported by a grant from the Siodn Founda-

tion.

REFERENCES = o

Collins, A. M., & Loftus, E. F. A spreading activation theory of semantic,processing. Psychologi-
¢al Réeview, 1975, 82, 407-428. ' '

Hebb, D. O. Organization of behavior. New York: Wiley, 1949,

Hinton, G. E. Some demonstrations of the effects of structural descriptions in mental imagery.

Cognitive Science, 1979, 3, 231-250.

Levin, }. A. Proteus: An activation framework for cognitive process models (ISHWP -2), Marina Del

Rey, California: Information Sciences Institute, 1976.

Mandler, G. Recognizing: The judgment of previous occurrence. Psychologaca[Review, 1980, 87,
252-271.

Minsky, M. K-lines: A theory of memory. Cognitive Science, 1980, 4, 117-133,

Minsky, M., & Papert, S. Perceptrons. Cambridge, Mass.: MIT Press, 1969.

Norman, D. A., & Bobrow D. G. Descriptions:+An intermediate stage in memory retrieval. Cogni-

tive Psychology, 1979, 11, 107-123. : _
Palmer, S. E. Hierarchical structure in perceptual representation. Cognitive Psychology, 1977, 9,

441-474,

Reed, S. K. Structural descriptioﬁs and the limitations of visual images. Memory & Cognition,
1974, 2, 329-336.

Tversky, A. Features of similarity. Psychological Review, 1977, 84, 327-352.

Winston, P. H. Learning structural descriptions from examples.-In P. H. Winston (Ed.), The
Psychology of Computer Vision. New York: McGraw-Hill, 1975.

xm.up-wm.q.‘.‘.qr.‘u\m.......‘ I

