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Things that make it hard to recognize objects

Segmentation: Real scenes are  Deformation: Objects can deform in a

cluttered with other objects: variety of non-affine ways:
— Its hard to tell which pieces go — e.g a hand-written 2 can have a
together as parts of the same large loop or just a cusp.
object. * Affordances: Object classes are often
— Parts of an object can be defined by how they are used:
hidden behind other objects. — Chairs are things designed for
Lighting: The intensities of the sitting on so they have a wide
pixels are determined as much by variety of physical shapes.

the lighting as by the objects.



More things that make it hard to recognize objects

Viewpoint: Changes in viewpoint
cause changes in images that standard
learning methods cannot cope with.

— Information hops between input

dimensions (i.e. pixels)

)

N,

Imagine a medical database in

which the age of a patient

sometimes hops to the input

dimension that normally codes

for weight!

— To apply machine learning we

would first want to eliminate
this dimension-hopping.
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Some ways to achieve viewpoint invariance

« We are so good at viewpoint
invariance that it is hard to
appreciate how difficult it is.

— Its one of the main
difficulties in making
computers perceive.

— We still don’t have
generally accepted
solutions.

 There are several different approaches:

Use redundant invariant features.

Put a box around the object and use
normalized pixels.

Lecture 5c: Use replicated features
with pooling. This is called
“convolutional neural nets”

Use a hierarchy of parts that have
explicit poses relative to the camera
(this will be described in detail later in

the course).



The invariant feature approach

* Extract alarge, redundant set of e With enough invariant features,
features that are invariant under there is only one way to assemble
transformations them into an object.

— e.g. pair of roughly parallel — We don’ t need to represent
lines with a red dot between the relationships between
them. \ features directly because they

\ are captured by other

— This is what baby herring gulls features.
use to know where to peck for * But for recognition, we must avoid
food. forming features from parts of

different objects.



The judicious normalization approach

Put a box around the object and use it as a coordinate frame
for a set of normalized pixels.

— This solves the dimension-hopping problem. If we choose &
the box correctly, the same part of an object always occurs \0
on the same normalized pixels.

— The box can prow'de invariance to many degrees of We recognize
freedom: translation, rotation, scale, shear, stretch ... this letter before

But choosing the box is difficult because of: we do mental
— Segmentation errors, occlusion, unusual orientations. rotation to

We need to recognize the shape to get the box right! d?Cide 'if it's a
mirror image.

0



The brute force normalization approach

 When training the recognizer, use well-segmented, upright images to fit the
correct box.

e At test time try all possible boxes in a range of positions and scales.

— This approach is widely used for detecting upright things like faces and
house numbers in unsegmented images.

— It is much more efficient if the recognizer can cope with some variation in
position and scale so that we can use a coarse grid when trying all
possible boxes.
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The replicated feature approach
(currently the dominant approach for neural networks)

Use many different copies of the same feature
detector with different positions.

The red connections all
have the same weight.
— Could also replicate across scale and orientation

(tricky and expensive) O O

— Replication greatly reduces the number of free ‘
parameters to be learned. O

Use several different feature types, each with its own

map of replicated detectors.

— Allows each patch of image to be represented in
several ways.




Backpropagation with weight constraints

It’s easy to modify the backpropagation

algorithm to incorporate linear

constraints between the weights.

We compute the gradients as usual,
and then modify the gradients so that

they satisfy the constraints.
— So if the weights started off

satisfying the constraints, they will

continue to satisfy them.

To constrain: w;=w,

we need: Aw;=Aw,

0E oE
compute. — and —
dw, oW,
0E OE

for w; and w,

use +
dw;  dw,



What does replicating the feature detectors achieve?

« Equivariant activities: Replicated features do not make the neural activities
iInvariant to translation. The activities are equivariant.

representation by | « = « = translated
active neurons - - - - representation

. translated
'mage image

« Invariant knowledge: If a feature is useful in some locations during training,
detectors for that feature will be available in all locations during testing.




Pooling the outputs of replicated feature detectors

« Get a small amount of translational invariance at each level by
averaging four neighboring replicated detectors to give a single
output to the next level.

— This reduces the number of inputs to the next layer of

feature extraction, thus allowing us to have many more
different feature maps.

— Taking the maximum of the four works slightly better.

* Problem: After several levels of pooling, we have lost
information about the precise positions of things.

— This makes it impossible to use the precise spatial
relationships between high-level parts for recognition.



Le Net

Yann LeCun and his collaborators developed a really good recognizer for
handwritten digits by using backpropagation in a feedforward net with:

Many hidden layers
Many maps of replicated units in each layer.
Pooling of the outputs of nearby replicated units.

A wide net that can cope with several characters at once even if they
overlap.

A clever way of training a complete system, not just a recognizer.

This net was used for reading ~10% of the checks in North America.
Look the impressive demos of LENET at http://yann.lecun.com



The architecture of LeNet5

C3: f. maps 16@10x10
S4: f. maps 16@5x5

CS: layer pg: jayer OUTPUT
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INPUT
39y32 6@28x28
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Priors and Prejudice

We can put our prior knowledge
about the task into the network by
designing appropriate:

— Connectivity.

— Weight constraints.

— Neuron activation functions

This is less intrusive than hand-
designing the features.

— But it still prejudices the network
towards the particular way of
solving the problem that we had in
mind.

Alternatively, we can use our prior
knowledge to create a whole lot
more training data.

— This may require a lot of work
(Hofman&Tresp, 1993)

— It may make learning take much
longer.

It allows optimization to discover
clever ways of using the multi-layer
network that we did not think of.

— And we may never fully understand
how it does it.



The brute force approach

LeNet uses knowledge about the
iInvariances to design:

— the local connectivity
— the weight-sharing
— the pooling.
This achieves about 80 errors.

— This can be reduced to about
40 errors by using many
different transformations of
the input and other tricks
(Ranzato 2008)

Ciresan et. al. (2010) inject
knowledge of invariances by
creating a huge amount of carefully
designed extra training data:

— For each training image, they
produce many new training
examples by applying many
different transformations.

— They can then train a large,
deep, dumb net on a GPU
without much overfitting.

They achieve about 35 errors.



The errors made by the Ciresan et. al. net
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The top printed digit is the
right answer. The bottom two
printed digits are the
network’s best two guesses.

The right answer is almost
always in the top 2 guesses.

With model averaging they
can now get about 25 errors.



How to detect a significant drop in the error rate

* |s30errorsin 10,000 test cases significantly better than 40 errors?
— It all depends on the particular errors!

— The McNemar test uses the particular errors and can be much more
powerful than a test that just uses the number of errors.

model1l | modell model1l | modell
wrong rlght wrong rlght
model 2 model 2
wrong wrong
model 2 i 9959 model 2 P 9945
right right




Neural Networks for Machine Learning

Lecture 5d
Convolutional neural networks for object
recognition

Geoffrey Hinton
with

Nitish Srivastava
Kevin Swersky



From hand-written digits to 3-D objects

* Recognizing real objects in color photographs downloaded from the web is
much more complicated than recognizing hand-written digits:

— Hundred times as many classes (1000 vs 10)
— Hundred times as many pixels (256 x 256 color vs 28 x 28 )
— Two dimensional image of three-dimensional scene.
— Cluttered scenes requiring segmentation
— Multiple objects in each image.
* Will the same type of convolutional neural network work?



The ILSVRC-2012 competition on ImageNet

The dataset has 1.2 million high- + Some of the best existing
resolution training images. computer vision methods were
The classification task: tried on this dataset by leading

_ ‘ » : computer vision groups from
Get the “correct” class in your Oxford, INRIA, XRCE. ...

top 5 bets. There are 1000
classes.

The localization task:

— For each bet, put a box
around the object. Your box
must have at least 50%
overlap with the correct box.

— Computer vision systems
use complicated multi-stage
systems.

— The early stages are
typically hand-tuned by
optimizing a few parameters.



Examples from the test set (with the network’s guesses)

cheetah hand glass
cheet+h bullet tr#in scissor*
leopard passenger car han+ glass
snow leopard subway train f+ing pan
Egyptian cat electric locomotive st+thoscope




University of Toronto (Alex Krizhevsky) + 16.4% 34.1%

Error rates on the ILSVRC-2012 competition

classification

lassification o
classiticatio &localization

University of Tokyo e 26.1% 53.6%
Oxford University Computer Vision Group e 26.9% 50.0%
INRIA (French national research institute in CS) + e 27.0%

XRCE (Xerox Research Center Europe)
University of Amsterdam

29.5%



A neural network for ImageNet

« Alex Krizhevsky (NIPS 2012) * The activation functions were:
developed a very deep — Rectified linear units in every
convolutional neural net of the type hidden layer. These train much
pioneered by Yann Le Cun. Its faster and are more expressive
architecture was: than logistic units.

— 7 hidden layers not counting — Competitive normalization to
some max pooling layers. suppress hidden activities

— The early layers were when nearby units have
convolutional. stronger activities. This helps

— The last two layers were with variations in intensity.

globally connected.



Tricks that significantly improve generalization

Train on random 224x224 patches
from the 256x256 images to get
more data. Also use left-right
reflections of the images.

At test time, combine the
opinions from ten different
patches: The four 224x224
corner patches plus the central
224x224 patch plus the

reflections of those five patches.

Use “dropout” to regularize the
weights in the globally
connected layers (which contain
most of the parameters).

— Dropout means that half of
the hidden units in a layer
are randomly removed for
each training example.

— This stops hidden units from

relying too much on other
hidden units.



The hardware required for Alex’s net

He uses a very efficient implementation of convolutional nets on two
Nvidia GTX 580 Graphics Processor Units (over 1000 fast little cores)

— GPUs are very good for matrix-matrix multiplies.

— GPUs have very high bandwidth to memory.

— This allows him to train the network in a week.

— It also makes it quick to combine results from 10 patches at test time.

We can spread a network over many cores if we can communicate the
states fast enough.

As cores get cheaper and datasets get bigger, big neural nets will improve
faster than old-fashioned (i.e. pre Oct 2012) computer vision systems.



Finding roads in high-resolution images

Vlad Mnih (ICML 2012) used a
non-convolutional net with local
fields and multiple layers of
rectified linear units to find roads
in cluttered aerial images.

— It takes a large image patch
and predicts a binary road
label for the central 16x16
pixels.

— There is lots of labeled training
data available for this task.

The task is hard for many reasons:
— Occlusion by buildings trees and cars.
— Shadows, Lighting changes
— Minor viewpoint changes

The worst problems are incorrect labels:
— Badly registered maps

— Arbitrary decisions about what counts as a
road.

Big neural nets trained on big image patches
with millions of examples are the only hope.



The best road-finder
on the planet?
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