CSC2515: Lecture 10 Sequential Data

CSC2515 Fall 2007 Introduction to Machine Learning

Lecture 10: Sequential Data Models

CSC2515: Lecture 10 Sequential Data

Example: sequential data

Until now, considered data to be i.i.d.
Turn attention to sequential data

- Time-series: stock market, speech, video analysis
- Ordered: text, genes

Simple example: Coins A (p(h)=.6); B $(\mathrm{p}(\mathrm{h})=.7) ; \mathrm{C}(\mathrm{p}(\mathrm{h})=.2)$
Process:

1. Let X be coin A or B
2. Loop until tired:
3. Flip coin X , record result
4. Flip coin C

5. If $\mathrm{C}=$ heads, switch X

Fully observable formulation: data is sequence of coin selections AAAABBBBAABBBBBBBAAAAABBBBB

CSC2515: Lecture 10 Sequential Data

Simple example: Markov model

- If underlying process unknown, can construct model to predict next letter in sequence
- In general, product rule expresses joint distribution for sequence

$$
P\left(X_{1}, X_{2}, \ldots, X_{T}\right)=\prod_{t=1}^{T} P\left(X_{t} \mid X_{t-1}, \ldots, X_{1}\right)
$$

- First-order Markov chain: each observation independent of all previous observations except most recent

$$
P\left(X_{t} \mid X_{t-1}, \ldots, X_{1}\right)=P\left(X_{t} \mid X_{t-1}\right)
$$

- ML parameter estimates are easy
- Each pair of outputs is a training case; in this example:

$$
P\left(X_{t}=B \mid X_{t-1}=A\right)=\#\left[t \text { s.t. } X_{t}=B, X_{t-1}=A\right] / \#\left[t \text { s.t. } X_{t-1}=A\right]
$$

CSC2515: Lecture 10 Sequential Data

Higher-order Markov models

- Consider example of text
- Can capture some regularities with bigrams (e.g., q nearly always followed by \mathbf{u}, very rarely by \mathbf{j})
- But probability of a letter depends on more than just previous letter
- Can formulate as second-order Markov model (trigram model)

- Need to take care: many counts may be zero in training dataset

CSC2515: Lecture 10 Sequential Data

Hidden Markov model (HMM)

- Return to coins example -- now imagine that do not observe ABBAA, but instead sequence of heads/tails
- Generative process:

1. Let Z be coin A or B
2. Loop until tired:
3. Flip coin Z , record result X
2.Flip coin C
3.If $\mathrm{C}=$ heads, switch Z

Z is now hidden state variable $-1^{\text {st }}$ order Markov chain generates state sequence (path), governed by transition matrix \mathbf{A}

$$
P\left(Z_{t}=k \mid Z_{t-1}=j\right)=A_{j k}
$$

State as multinomial variable: $\quad P\left(\mathbf{z}_{t} \mid \mathbf{z}_{t-1}\right)=\prod_{k} \prod_{j} A_{j k}^{z t-1, j} z_{t, k}$
Observations governed by emission probabilities, convert state path into sequence of observable symbols or vectors: $\quad P\left(X_{t} \mid Z_{t}\right)$

CSC2515: Lecture 10 Sequential Data

Relationship to other models

- Can think of HMM as:
- Markov chain with stochastic measurements

- Mixture model with states coupled across time

- Hidden state is $1^{\text {st }}$-order Markov, but output not Markov of any order
- Future is independent of past give present, but conditioning on observations couples hidden states

CSC2515: Lecture 10 Sequential Data

HMM: Main tasks

- Joint probabilities of hidden states and outputs:

$$
P(\mathbf{x}, \mathbf{z})=\prod_{t=1}^{T} P\left(z_{t} \mid z_{t-1}\right) P\left(x_{t} \mid z_{t}\right)
$$

- Three problems

1. Computing probability of observed sequence: forward-backward algorithm
2. Infer most likely hidden state sequence: Viterbi algorithm
3. Learning parameters: Baum-Welch (EM) algorithm

CSC2515: Lecture 10 Sequential Data

Probability of observed sequence

- Compute marginals to evaluate probability of observed seq.: sum across all paths of joint prob. of observed outputs and state path

$$
P(\mathbf{X})=\sum_{\mathbf{Z}} P(\mathbf{X}, \mathbf{Z})
$$

- Take advantage of factorization to avoid exp. cost $\left(\#\right.$ paths $\left.=K^{T}\right)$

$$
\begin{gathered}
P(\mathbf{X})=\sum_{z_{1}} \sum_{z_{2}} \cdots \sum_{z_{T}} \prod_{t=1}^{T} P\left(z_{t} \mid z_{t-1}\right) P\left(x_{t} \mid z_{t}\right) \\
=\sum_{z_{1}} P\left(z_{1}\right) P\left(x_{1} \mid z_{1}\right) \sum_{z_{2}} P\left(z_{2} \mid z_{1}\right) P\left(x_{2} \mid z_{2}\right) \\
\cdots \sum_{z_{T}} P\left(z_{T} \mid z_{T-1}\right) P\left(x_{T} \mid z_{T}\right)
\end{gathered}
$$

CSC2515: Lecture 10 Sequential Data

Forward recursion (α)

Define $\alpha\left(z_{t, j}\right)=P\left(x_{1}, \ldots, x_{t}, z_{t}=j\right)$
Clever recursion can compute huge sum efficiently

$$
\begin{aligned}
\alpha\left(z_{1, j}\right) & =P\left(x_{1}, z_{1}=j\right)=P\left(x_{1} \mid z_{1}=j\right) P\left(z_{1}=j\right) \\
\alpha\left(z_{2, j}\right) & =P\left(x_{2} \mid z_{2}=j\right)\left[\sum_{k} P\left(z_{2}=j \mid z_{1}=k\right) P\left(x_{1} \mid z_{1}=k\right) P\left(z_{1}=k\right)\right] \\
& =P\left(x_{2} \mid z_{2}=j\right)\left[\sum_{k} A_{k j} \alpha\left(z_{1, k}\right)\right] \\
\alpha\left(z_{t+1, j}\right) & =P\left(x_{t+1} \mid z_{t+1}=j\right)\left[\sum_{k} A_{k j} \alpha\left(z_{t, k}\right)\right]
\end{aligned}
$$

CSC2515: Lecture 10 Sequential Data

Backward recursion (β)

Define $\beta\left(z_{t, j}\right)=P\left(x_{t+1}, \ldots, x_{T} \mid z_{t}=j\right)$
$\beta\left(z_{t, j}\right)=\left[\sum_{k} A_{j k} P\left(x_{t+1} \mid z_{t+1}=k\right) \beta\left(z_{t+1, k}\right)\right]$
$\beta\left(z_{T, j}\right)=1$
$\alpha\left(z_{t, j}\right)$: total inflow of prob. to node (t, j)
$\beta\left(z_{t, j}\right)$: total outflow of prob. from node (t, j)

CSC2515: Lecture 10 Sequential Data

Forward-Backward algorithm

Estimate hidden state given observations
Define $\gamma\left(z_{t, i}\right)=P\left(z_{t}=i \mid x_{1}, \ldots, x_{T}\right)$
$\gamma\left(z_{t, i}\right)=P\left(\mathbf{X} \mid z_{t}=i\right) P\left(z_{t}=i\right) / P(\mathbf{X})$
$=P\left(x_{1}, \ldots, x_{t} \mid z_{t}=i\right) P\left(x_{t+1}, \ldots, x_{T} \mid z_{t}=i\right) P\left(z_{t}=i\right) / P(\mathbf{X})$
$=P\left(x_{1}, \ldots, x_{t}, z_{t}=i\right) P\left(x_{t+1}, \ldots, x_{T} \mid z_{t}=i\right) / P(\mathbf{X})$
$=\alpha\left(z_{t, i}\right) \beta\left(z_{t, i}\right) / P(\mathbf{X})$
One forward pass to compute all $\alpha\left(z_{t, i}\right)$, one backward pass to compute all $\beta\left(z_{t, i}\right)$: total cost $\mathrm{O}\left(K^{2} T\right)$
Can compute likelihood at any time t based on $\alpha\left(z_{t, j}\right)$ and $\beta\left(z_{t, j}\right)$

$$
L=P(\mathbf{X})=\sum_{i} \alpha\left(z_{t, i}\right) \beta\left(z_{t, i}\right)
$$

CSC2515: Lecture 10 Sequential Data

Baum-Welch training algorithm: Summary

Can estimate HMM parameters using maximum likelihood
If state path known, then parameter estimation easy
Instead must estimate states, update parameters, reestimate states, etc. \rightarrow Baum-Welch (form of EM)
State estimation via forward-backward, also need transition statistics (see next slide)
Update parameters (transition matrix A, emission parameters ϕ) to maximize likelihood

CSC2515: Lecture 10 Sequential Data

Transition statistics

Need statistics for adjacent time-steps:

$$
\begin{gathered}
\text { Define } \xi\left(z_{i j}(t)\right)=P\left(z_{t-1}=i, z_{t}=j \mid \mathbf{X}\right) \\
\xi\left(z_{i, j}(t)\right)=P\left(z_{t-1}=i, x_{1}, \ldots, x_{t-1}\right) \\
=P\left(z_{t}=j, x_{t}, \ldots, x_{T} \mid z_{t-1}=i, x_{1}, \ldots, x_{t-1}\right) / P(\mathbf{X}) \\
=P\left(z_{t-1}=i, x_{1}, \ldots, x_{t-1}\right) P\left(z_{t}=j \mid z_{t-1}=i\right) \\
=P\left(x_{t} \mid z_{t}=j\right) P\left(x_{t+1}, \ldots, x_{T} \mid z_{t}=j\right) / L \\
=\alpha\left(z_{t-1, i}\right) A_{i j} P\left(x_{t} \mid z_{t}=j\right) \beta\left(z_{t, j}\right) / L
\end{gathered}
$$

Expected number of transitions from state i to state j that begin at time $t-1$, given the observations
Can be computed with the same $\alpha\left(z_{t, j}\right)$ and $\beta\left(z_{t, j}\right)$ recursions

CSC2515: Lecture 10 Sequential Data

Parameter updates

Initial state distribution: expected counts in state i at time 1

$$
\pi_{k}=\frac{\gamma\left(z_{1, k}\right)}{\sum_{j=1}^{K} \gamma\left(z_{1, j}\right)}
$$

Estimate transition probabilities:

$$
A_{i j}=\frac{\sum_{t=2}^{T} \xi\left(z_{i j}(t)\right)}{\sum_{t=2}^{T} \sum_{k} \xi\left(z_{i k}(t)\right)}=\frac{\sum_{t=2}^{T} \xi\left(z_{i j}(t)\right)}{\sum_{t=2}^{T} \gamma\left(z_{t, i}\right)}
$$

Emission probabilities are expected number of times observe symbol in particular state:

$$
\mu_{i, k}=\frac{\sum_{t=1}^{T} \gamma\left(z_{t, k}\right) x_{t, i}}{\sum_{t=1}^{T} \gamma\left(z_{t, k}\right)}
$$

CSC2515: Lecture 10 Sequential Data

Viterbi decoding

How to choose single best path through state space?
Choose state with largest probability at each time t : maximize expected number of correct states
But not single best path, with highest likelihood of generating the data
To find best path - Viterbi decoding, form of dynamic programming (forward-backward algorithm)
Same recursions, but replace \sum with \max (weather example)
Forward: retain best path into each node at time t
Backward: retrace path back from state where most probable path ends

CSC2515: Lecture 10 Sequential Data

Using HMMs for recognition

Can train an HMM to classify a sequence:

1. train a separate HMM per class
2. evaluate prob. of unlabelled sequence under each HMM
3. classify: HMM with highest likelihood

Assumes can solve two problems:

1. estimate model parameters given some training sequences (we can find local maximum of parameter space near initial position)
2. given model, can evaluate prob. of a sequence

CSC2515: Lecture 10 Sequential Data

Application example: classifying stair events

Aim: automatically detect unusual events on stairs from video Idea: compute visual features describing person's motion during descent, apply HMM to several sequences of feature values

One-class training:

1. train HMM on example sequences from class: normal stair descent
2. set likelihood threshold L based on labelled validation set:

$$
C(L)=\frac{W}{N_{n}} \sum_{i=1}^{N_{n}} g\left(\log P\left(\mathbf{X}^{i}\right), L\right)+\frac{(1-W)}{N_{a}} \sum_{j=1}^{N_{a}}\left(1-g\left(\log P\left(\mathbf{X}^{j}\right), L\right)\right)
$$

3. classify by thresholding HMM likelihood of test sequence

CSC2515: Lecture 10 Sequential Data

Classifying stair events: Normal event

CSC2515: Lecture 10 Sequential Data

Classifying stair events: Anomalous event

CSC2515: Lecture 10 Sequential Data

Classifying stair events: Precision-recall

CSC2515: Lecture 10 Sequential Data

HMM Regularization

1. High dimensional state space:

- transition matrix has K^{2} entries
- can constrain to be relatively sparse: each state has only a few possible successor states (c)
- inference now $\mathrm{O}(c K T)$, number of parameters $\mathrm{O}(c K+K M)$
- can construct state ordering, only allow transitions to later states: "linear", "chain", or "left-to-right" HMMs

2. High dimensional observations:

- in continuous data space, full covariance matrices have many parameters - use mixtures of diagonal covariance Gaussians

CSC2515: Lecture 10 Sequential Data

HMM Extensions

1. Generalize model of state duration:

- vanilla HMM restricted in model of how long stay in state - prob. that model will spend D steps in state k and then transition out:

$$
P(D)=\left(A_{k k}\right)^{D}\left(1-A_{k k}\right) \propto \exp \left(-D \log A_{k k}\right)
$$

- instead associate distribution with time spent in state $k: \mathrm{P}(t \mid k)$ (see semi-Markov models for sequence segmentation applications)

2. Combine with auto-regressive Markov model:

- include long-range relationships
- directly model relations between observations

3. Supervised setting:

- include additional observations
- input-output HMM

CSC2515: Lecture 10 Sequential Data

Linear Dynamical Systems

Return to state space model:

- last week's continuous latent variable models, but now not i.i.d.

- view as linear-Gaussian state evolution, continuous-valued, with emissions

CSC2515: Lecture 10 Sequential Data

LDS generative process

Consider generative process:

$$
\begin{aligned}
\mathbf{z}_{1} & =\mu_{0}+\mathbf{u} \\
\mathbf{z}_{t} & =\mathbf{A} \mathbf{z}_{t-1}+\mathbf{w}_{t} \\
\mathbf{x}_{t} & =\mathbf{C} \mathbf{z}_{t}+\mathbf{v}_{t}
\end{aligned}
$$

where $\mathbf{u}, \mathbf{w}_{t}, \mathbf{v}_{t}$ are all mean zero Gaussian noise terms

Can express in terms of linear-Gaussian conditional distributions

$$
\begin{aligned}
p\left(\mathbf{z}_{t} \mid \mathbf{z}_{t-1}\right) & =\mathcal{N}\left(\mathbf{z}_{t} \mid \mathbf{A} \mathbf{z}_{t-1}, \Gamma\right) \\
p\left(\mathbf{x}_{t} \mid \mathbf{z}_{t}\right) & =\mathcal{N}\left(\mathbf{x}_{t} \mid \mathbf{C} \mathbf{z}_{t}, \Sigma\right)
\end{aligned}
$$

