CSC2515 Fall 2007 Introduction to Machine Learning

Lecture 10: Sequential Data Models

Example: sequential data

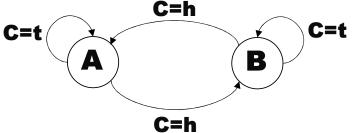
Until now, considered data to be i.i.d.

Turn attention to sequential data

- Time-series: stock market, speech, video analysis
- Ordered: text, genes

Simple example: Coins A (p(h) = .6); B (p(h) = .7); C (p(h) = .2) Process: **C=h**

- 1. Let X be coin A or B
- 2. Loop until tired:
 - 1. Flip coin X, record result
 - 2. Flip coin C
 - 3. If C=heads, switch X



Simple example: Markov model

- If underlying process unknown, can construct model to predict next letter in sequence
- In general, product rule expresses joint distribution for sequence

$$P(X_1, X_2, ..., X_T) = \prod_{t=1}^T P(X_t | X_{t-1}, ..., X_1)$$

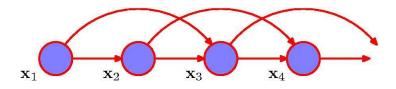
• *First-order Markov chain*: each observation independent of all previous observations except most recent

$$P(X_t | X_{t-1}, ..., X_1) = P(X_t | X_{t-1})$$

- ML parameter estimates are easy
- Each pair of outputs is a training case; in this example: $P(X_t = B | X_{t-1} = A) = #[t \text{ s.t. } X_t = B, X_{t-1} = A] / #[t \text{ s.t. } X_{t-1} = A]$

Higher-order Markov models

- Consider example of text
- Can capture some regularities with *bigrams* (e.g., **q** nearly always followed by **u**, very rarely by **j**)
- But probability of a letter depends on more than just previous letter
- Can formulate as *second-order* Markov model (*trigram* model)



• Need to take care: many counts may be zero in training dataset

Hidden Markov model (HMM)

- Return to coins example -- now imagine that do not observe ABBAA, but instead sequence of heads/tails
- Generative process:

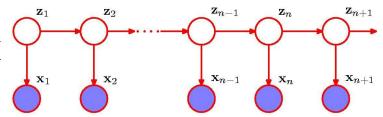
1. Let Z be coin A or B

2. Loop until tired:

1.Flip coin Z, record result X

2.Flip coin C

3.If C=heads, switch Z



Z is now hidden *state* variable – 1^{st} order Markov chain generates state sequence (path), governed by *transition matrix* **A**

$$P(Z_t = k | Z_{t-1} = j) = A_{jk}$$

State as multinomial variable : $P(\mathbf{z}_t | \mathbf{z}_{t-1}) = \prod_k \prod_j A_{jk}^{z_{t-1,j} z_{t,k}}$

Observations governed by *emission probabilities*, convert state path into sequence of observable symbols or vectors: $P(X_t|Z_t)$

 \mathbf{x}_1

 \mathbf{x}_1

Relationship to other models

 \mathbf{z}_{n-1}

 \mathbf{x}_{n-1}

 \mathbf{z}_n

 \mathbf{X}_n

 \mathbf{x}_n

 \mathbf{z}_{n+1}

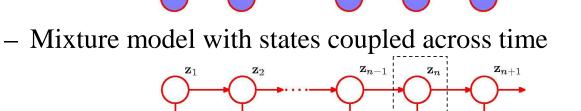
 \mathbf{x}_{n+1}

 \mathbf{x}_{n+1}

- Can think of HMM as:
 - Markov chain with stochastic measurements

 \mathbf{x}_2

X2



• Hidden state is 1st-order Markov, but output not Markov of any order

 \mathbf{x}_{n-1}

• Future is independent of past give present, but conditioning on observations couples hidden states

HMM: Main tasks

• Joint probabilities of hidden states and outputs:

$$P(\mathbf{x}, \mathbf{z}) = \prod_{t=1}^{T} P(z_t | z_{t-1}) P(x_t | z_t)$$

- Three problems
 - 1. Computing probability of observed sequence: forward-backward algorithm
 - 2. Infer most likely hidden state sequence: Viterbi algorithm
 - 3. Learning parameters: Baum-Welch (EM) algorithm

Probability of observed sequence

• Compute marginals to evaluate probability of observed seq.: sum across all paths of joint prob. of observed outputs and state path

$$P(\mathbf{X}) = \sum_{\mathbf{Z}} P(\mathbf{X}, \mathbf{Z})$$

Take advantage of factorization to avoid exp. cost (# paths = K^T) $P(\mathbf{X}) = \sum_{z_1} \sum_{z_2} \cdots \sum_{z_T} \prod_{t=1}^T P(z_t | z_{t-1}) P(x_t | z_t)$ $= \sum_{z_1} P(z_1) P(x_1 | z_1) \sum_{z_2} P(z_2 | z_1) P(x_2 | z_2)$ $\cdots \sum_{z_T} P(z_T | z_{T-1}) P(x_T | z_T)$

Forward recursion (α)

Define
$$\alpha(z_{t,j}) = P(x_1, ..., x_t, z_t = j)$$

Clever recursion can compute huge sum efficiently

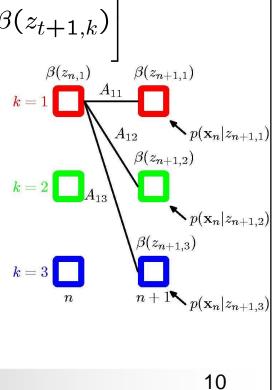
$$\begin{aligned} \alpha(z_{1,j}) &= P(x_1, z_1 = j) = P(x_1 | z_1 = j) P(z_1 = j) \\ \alpha(z_{2,j}) &= P(x_2 | z_2 = j) \left[\sum_{k} P(z_2 = j | z_1 = k) P(x_1 | z_1 = k) P(z_1 = k) \right] \\ &= P(x_2 | z_2 = j) \left[\sum_{k} A_{kj} \alpha(z_{1,k}) \right] \\ \alpha(z_{t+1,j}) &= P(x_{t+1} | z_{t+1} = j) \left[\sum_{k} A_{kj} \alpha(z_{t,k}) \right] \\ k = 1 \begin{bmatrix} A_{11} & A_{11} & A_{21} & A_{21} \\ A_{21} & A_{21} & A_{21} & A_{21} & A_{21} \\ A_{21} & A_{21} & A_{21} & A_{21} & A_{21} \\ A_{21} & A_{21} & A_{21} & A_{21} & A_{21} \\ A_{21} & A_{21} & A_{21} & A_{21} & A_{21} & A_{21} \\ A_{21} & A_{21} \\ A_{21} & A_{21}$$

Backward recursion (β)

Define
$$\beta(z_{t,j}) = P(x_{t+1}, ..., x_T | z_t = j)$$

 $\beta(z_{t,j}) = \left[\sum_k A_{jk} P(x_{t+1} | z_{t+1} = k) \beta(z_{t+1,k})\right]$
 $\beta(z_{T,j}) = 1$
 $\beta(z_{T,j}) = 1$

 $\alpha(z_{t,j})$: total inflow of prob. to node (t,j) $\beta(z_{t,j})$: total outflow of prob. from node (t,j)



Forward-Backward algorithm

Estimate hidden state given observations

Define
$$\gamma(z_{t,i}) = P(z_t = i | x_1, \dots, x_T)$$

$$\begin{aligned} \gamma(z_{t,i}) &= P(\mathbf{X}|z_t = i)P(z_t = i)/P(\mathbf{X}) \\ &= P(x_1, ..., x_t | z_t = i)P(x_{t+1}, ..., x_T | z_t = i)P(z_t = i)/P(\mathbf{X}) \\ &= P(x_1, ..., x_t, z_t = i)P(x_{t+1}, ..., x_T | z_t = i)/P(\mathbf{X}) \\ &= \alpha(z_{t,i})\beta(z_{t,i})/P(\mathbf{X}) \end{aligned}$$

One forward pass to compute all $\alpha(z_{t,i})$, one backward pass to compute all $\beta(z_{t,i})$: total cost $O(K^2T)$ Can compute likelihood at any time *t* based on $\alpha(z_{t,j})$ and $\beta(z_{t,j})$

$$L = P(\mathbf{X}) = \sum_{i} \alpha(z_{t,i}) \beta(z_{t,i})$$

Baum-Welch training algorithm: Summary

Can estimate HMM parameters using maximum likelihood
If state path known, then parameter estimation easy
Instead must estimate states, update parameters, reestimate states, etc. → *Baum-Welch* (form of EM)
State estimation via forward-backward, also need transition statistics (see next slide)
Update parameters (transition matrix **A**, emission parameters φ) to maximize likelihood

Transition statistics

Need statistics for adjacent time-steps:

Define $\xi(z_{ij}(t)) = P(z_{t-1} = i, z_t = j | \mathbf{X})$ $\xi(z_{i,j}(t)) = P(z_{t-1} = i, x_1, ..., x_{t-1})$ $P(z_t = j, x_t, ..., x_T | z_{t-1} = i, x_1, ..., x_{t-1}) / P(\mathbf{X})$ $= P(z_{t-1} = i, x_1, ..., x_{t-1}) P(z_t = j | z_{t-1} = i)$ $P(x_t | z_t = j) P(x_{t+1}, ..., x_T | z_t = j) / L$ $= \alpha(z_{t-1,i}) A_{ij} P(x_t | z_t = j) \beta(z_{t,j}) / L$

Expected number of transitions from state *i* to state *j* that begin at time *t*-1, given the observations

Can be computed with the same $\alpha(z_{t,j})$ and $\beta(z_{t,j})$ recursions

Parameter updates

Initial state distribution: expected counts in state *i* at time 1

$$\pi_k = \frac{\gamma(z_{1,k})}{\sum_{j=1}^K \gamma(z_{1,j})}$$

Estimate transition probabilities:

$$A_{ij} = \frac{\sum_{t=2}^{T} \xi(z_{ij}(t))}{\sum_{t=2}^{T} \sum_{k} \xi(z_{ik}(t))} = \frac{\sum_{t=2}^{T} \xi(z_{ij}(t))}{\sum_{t=2}^{T} \gamma(z_{t,i})}$$

Emission probabilities are expected number of times observe symbol in particular state:

$$\mu_{i,k} = \frac{\sum_{t=1}^{T} \gamma(z_{t,k}) x_{t,i}}{\sum_{t=1}^{T} \gamma(z_{t,k})}$$

Viterbi decoding

How to choose single best path through state space?

Choose state with largest probability at each time *t*: maximize expected number of correct states

- But not single best path, with highest likelihood of generating the data
- To find best path *Viterbi decoding*, form of dynamic programming (forward-backward algorithm)

Same recursions, but replace Σ with **max** (weather example)

Forward: retain best path into each node at time *t*

Backward: retrace path back from state where most probable path ends

Using HMMs for recognition

Can train an HMM to classify a sequence:

- 1. train a separate HMM per class
- 2. evaluate prob. of unlabelled sequence under each HMM
- 3. classify: HMM with highest likelihood

Assumes can solve two problems:

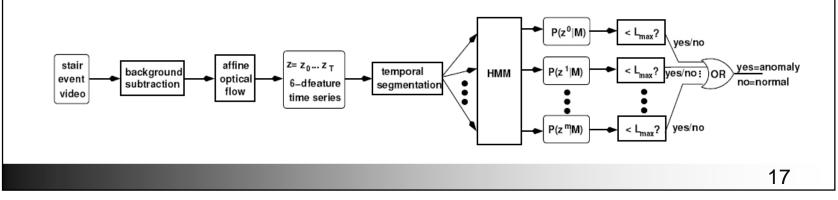
- 1. estimate model parameters given some training sequences (we can find local maximum of parameter space near initial position)
- 2. given model, can evaluate prob. of a sequence

Application example: classifying stair events

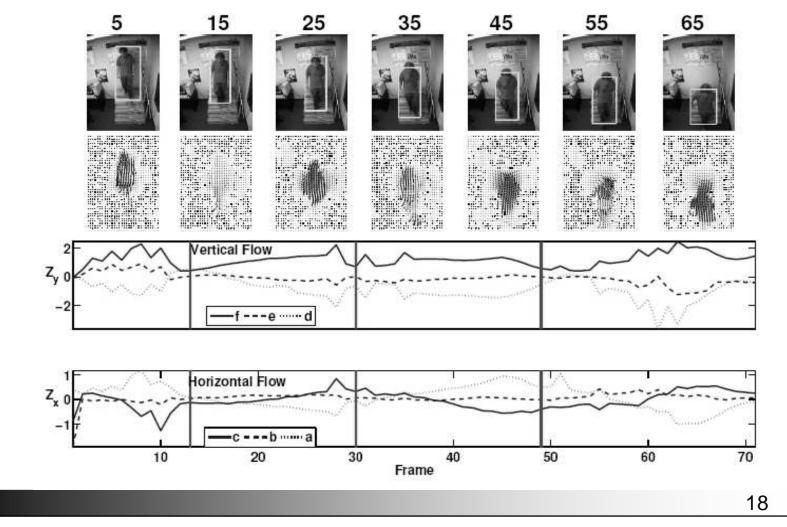
Aim: automatically detect unusual events on stairs from video Idea: compute visual features describing person's motion during descent, apply HMM to several sequences of feature values

One-class training:

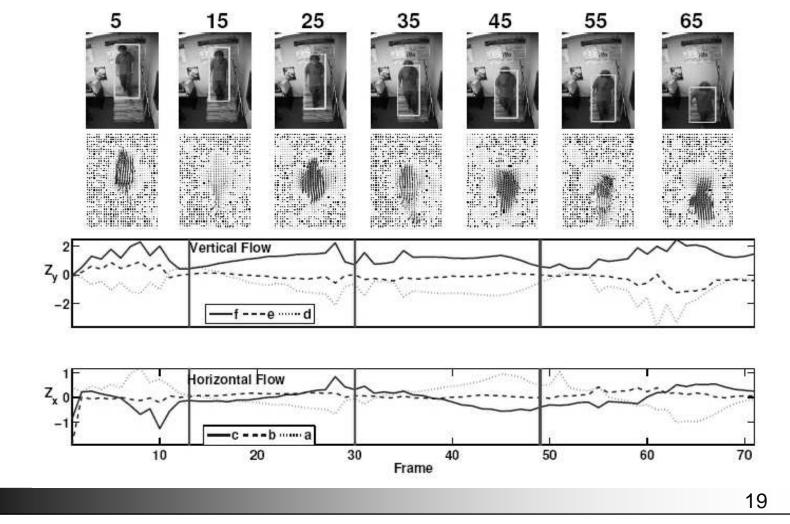
- 1. train HMM on example sequences from class: normal stair descent
- 2. set likelihood threshold *L* based on labelled validation set:
- $C(L) = \frac{W}{N_n} \sum_{i=1}^{N_n} g(\log P(\mathbf{X}^i), L) + \frac{(1-W)}{N_a} \sum_{j=1}^{N_a} (1 g(\log P(\mathbf{X}^j), L))$ 3. classify by thresholding HMM likelihood of test sequence

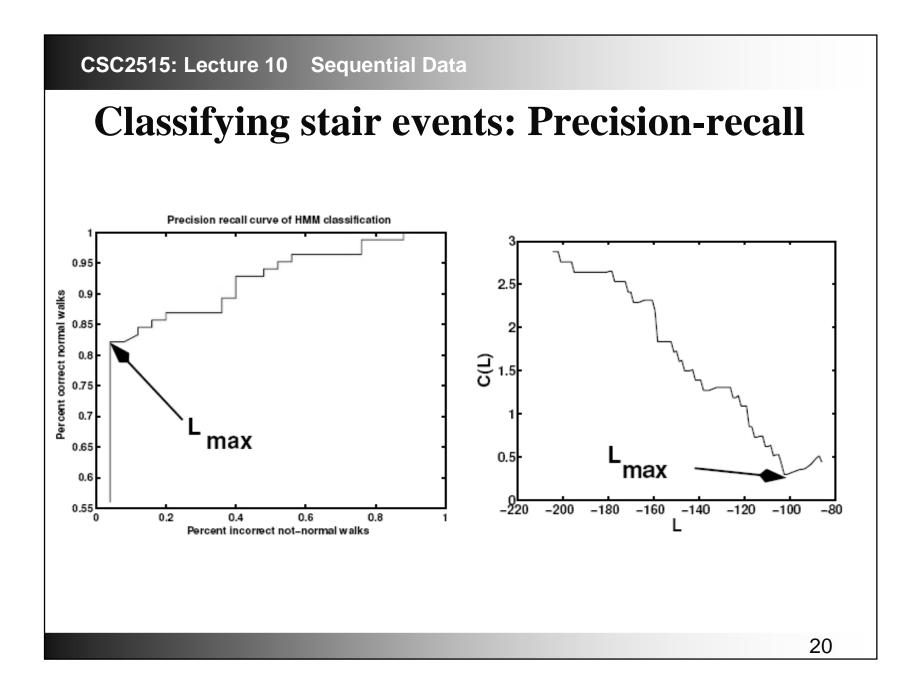


Classifying stair events: Normal event



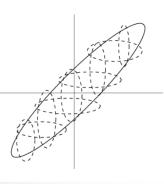
Classifying stair events: Anomalous event





HMM Regularization

- 1. High dimensional state space:
 - transition matrix has K^2 entries
 - can constrain to be relatively sparse: each state has only a few possible successor states (*c*)
 - inference now O(cKT), number of parameters O(cK+KM)
 - can construct state ordering, only allow transitions to later states: "linear", "chain", or "left-to-right" HMMs
- 2. High dimensional observations:
 - in continuous data space, full covariance matrices have many parameters – use mixtures of diagonal covariance Gaussians



HMM Extensions

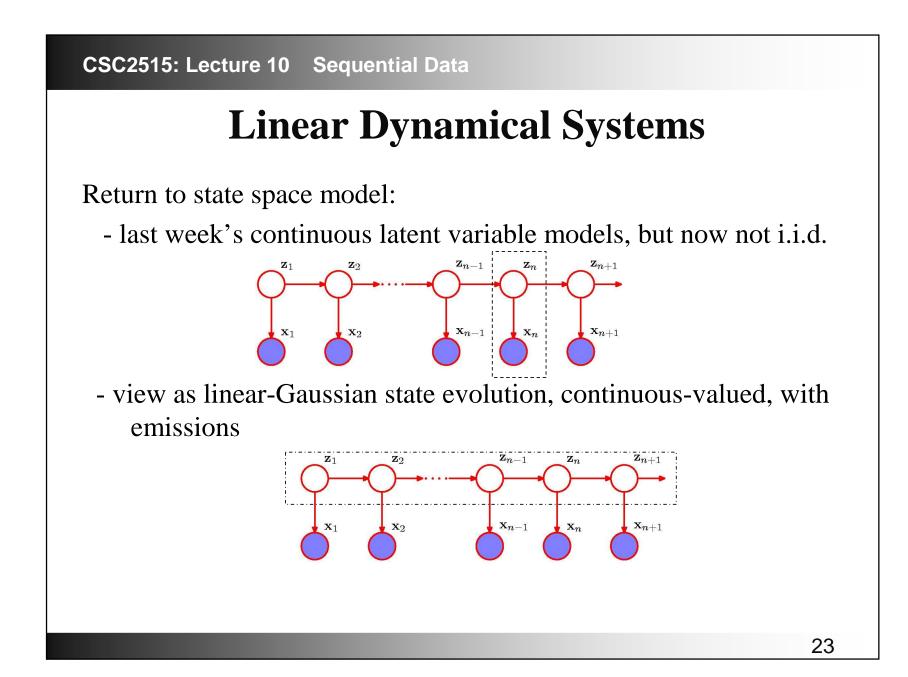
- 1. Generalize model of state duration:
 - vanilla HMM restricted in model of how long stay in state prob. that model will spend *D* steps in state *k* and then transition out:

$$P(D) = (A_{kk})^D (1 - A_{kk}) \propto \exp(-D \log A_{kk})$$

 \mathbf{u}_{n+1}

 \mathbf{z}_{n+1}

- instead associate distribution with time spent in state k: P(t|k) (see *semi-Markov* models for sequence segmentation applications)
- 2. Combine with auto-regressive Markov model:
 - include long-range relationships
 - directly model relations between observations
- 3. Supervised setting:
 - include additional observations
 - input-output HMM



LDS generative process

Consider generative process:

$$z_1 = \mu_0 + u$$

$$z_t = Az_{t-1} + w_t$$

$$x_t = Cz_t + v_t$$

where $\mathbf{u}, \mathbf{w}_t, \mathbf{v}_t$ are all mean zero Gaussian noise terms

Can express in terms of linear-Gaussian conditional distributions

$$p(\mathbf{z}_t | \mathbf{z}_{t-1}) = \mathcal{N}(\mathbf{z}_t | \mathbf{A} \mathbf{z}_{t-1}, \Gamma)$$

$$p(\mathbf{x}_t | \mathbf{z}_t) = \mathcal{N}(\mathbf{x}_t | \mathbf{C} \mathbf{z}_t, \Sigma)$$