
CSC2515 FALL 2008
INTRODUCTION TO MACHINE LEARNING

APPLICATIONS OF MACHINE LEARNING TO

LANGUAGE MODELING

Andriy Mnih

1



Statistical language modelling

• Goal: Model the joint distribution of words in a sentence.

• Such a model can be used to
– predict the next word given several preceding ones
– arrange bags of words into sentences
– assign probabilities to documents

• Applications: speech recognition, machine translation,
information retrieval.

• Most statistical language models are based on the Markov
assumption:

– The distribution of the next word depends on only n

words that immediately precede it.
– This assumption is clearly wrong but useful – it makes

the task much more tractable.

2



n-gram models

• n-gram models are simply conditional probability tables
for P (wn|w1:n−1).

– estimated by counting n-tuples of words and
normalizing

– smoothing the estimates is essential for good
performance

– many different smoothing methods exist

• n-gram models are the most widely used statistical
language models due to their simplicity and excellent
performance.

• Curse of dimensionality: number of model parameters is
exponential in n.

3



Training n-gram models

• Let #s be the number of times a sequence of words s

occurs in the training set.

• Then we can estimate a trigram model as follows:

P (w3|w1, w2) =
#w1w2w3

#w1w2

• Problem: if w3w2w1 does occur in the training set, it is
assigned zero probability.

• That’s bad – the model does not generalize to new word
triples!

• One solution: smooth the trigram estimates by
interpolating them with the bigram estimates

P (w3|w1, w2) = λ ×
#w1w2w3

#w1w2
+ (1 − λ) ×

#w2w3

#w2

• Can also smooth with the unigram estimates and the
uniform distribution.

4



Why n-gram models are hopeless for large n

• n-gram models don’t take advantage of the fact that some
words are used in similar ways.

• Suppose you know that words snow and rain are used in
similar ways, as are Monday and Tuesday.

• If you are told that the following sentence is probable:

– It’s going to rain on Monday.

• Then you can infer that the following sentence is also
probable:

– It’s going to snow on Tuesday.

• n-gram models cannot generalize this way because all
words are treated as arbitrary symbols, with each word
being equally (dis)similar to all others.

• Using distributed representations for words allows
similarity between words to be captured.

5



Distributed representations

• Estimation of high-dimensional discrete distributions
from data is hard.

– the number of parameters is exponential
– no a priori smoothness constraint on parameters /

probabilities

• Estimation of distributions over continuous spaces is
easier due to automatic smoothing.

• Idea: map discrete inputs to continuous vectors and learn
a smooth function that maps them to probability
distributions.

• Used for language modelling with neural nets and Bayes
nets.

6



Word representations embedded in 2D (I)

7



Word representations embedded in 2D (II)

8



Distributed / neural language models

• A number of neural probabilistic language models based
on distributed representations have been proposed.

• Common approach:

– Represent each word with a real-valued feature vector
– Represent the context by the sequence of the context

word feature vectors
– Train a neural network to output the distribution for the

next word from the context representation.
– Learn word feature vectors jointly with other neural net

parameters

• Neural language models can outperform n-gram language
models, especially when little training data is available.

• Main drawback: very long training and testing times.

9



Neural Probabilistic Language Model
(Bengio et al., 2000)

• The original and still the most popular neural language
model.

• A lookup table is used to map context words to feature
vectors.

• Architecture: 1-hidden layer neural net

– Input: sequence of the context word feature vectors.
– Output: distribution over the next word (softmax over

words).

• Outperforms n-gram models on small (∼ 1M words)
datasets.

• For better results, predictions of a NPLM are interpolated
with those of an n-gram model.

10



Neural Probabilistic Language Model

11



Log-bilinear model (Mnih & Hinton, 2007)

• The LBL model is similar to the NPLM, but is simpler and
slightly faster.

– Does not have non-linearities.

• Given the context w1:n−1, the LBL model predicts the
representation for the next word wn by linearly combining
the representations for the context words:

r̂ =

n−1∑

i=1

Cirwi

• Then the distribution for the next word is computed based
on the similarity between the predicted representation and
the representations of all words in the vocabulary:

P (wn = w|w1:n−1) =
exp(r̂Trw)∑
j exp(r̂Trj)

.

12



Structuring the vocabulary

• Computing the probability of the given word being the
next word requires considering all N words in the
vocabulary.

– Need to normalize over all words because the space of
words is unstructured.

• Idea (due to Bengio): Organize words in the vocabulary
into a (somewhat balanced) binary tree and exploit its
structure to speed up normalization.

– Construct a binary tree over words
∗ words are associated with leaf nodes
∗ one word per leaf

– Predicting the next word: replace one N-way decision
by a sequence of O(log N ) two-way decision.
∗ Can achieve exponential speedup!

13



Tree-based factorization

• To define a distribution over leaf nodes:

– Specify the probability of taking the left branch at each
non-leaf node.

– Then the probability of a leaf node is simply the
probability of the sequence of left/right decisions that
lead from the root node to the leaf node.

14



Approaches to tree construction

• The approach of Morin and Bengio:

– Start with the WordNet IS-A hierarchy (which is a DAG)
– Manually select one parent node per word
– Use clustering to make the resulting tree binary
– Use the NPLM model for making the left/right decisions

• Drawbacks: tree construction uses expert knowledge; the
resulting model does not work as well as its
non-hierarchical counterpart.

• An alternative (Mnih & Hinton, 2008):

– Construct the word tree from data alone (no experts
needed)

– Allow each word to occur more than once in the tree
– Use the simplified log-bilinear language model for

making the left/right decisions

15



Hierarchical log-bilinear model
(Mnih & Hinton, 2008)

• Let d be the binary string / code that encodes the sequence
of left-right decisions in the tree that lead to word w.

• Each non-leaf node in the tree is given a feature vector that
captures the difference between the words in its left and
right subtrees.

• The probability of taking the left branch at a particular
node is given by

P (di = 1|qi, w1:n−1) = σ(r̂Tqi),

where r̂ is computed as in the LBL model and qi is the
feature vector for the node.

• Then the probability of word w being the next word is
simply the probability of d under the binary decision
model:

P (wn = w|w1:n−1) =
∏

i

P (di|qi, w1:n−1).

16



Data-driven tree construction

• We would like to cluster words based on the distribution
of contexts in which they occur.

• This distribution is hard to estimate and work with due to
the high dimensionality of the space of contexts (the same
sparsity problem n-gram models suffer from).

• To avoid this problem, we represent contexts using
distributed representations and cluster words based on
their expected context representation.

• To construct a word tree:
1. Train a model using a random (balanced) tree over

words.
2. Compute the expected predicted representation over all

occurrences of the given word.
3. Perform hierarchical clustering on these expected

representations.

17



Hierarchical clustering

• We “cluster” the feature vectors using top-down
hierarchical clustering.

• At each step, we fit a mixture of two Gaussians with
spherical covariances using EM to the current group of
word representations.

• Once the mixture has been fit, we assign the words to the
two components based on the mixture component
responsibilities.

• We considered several splitting rules:

– BALANCED: Sort the responsibilities and make the split
to ensure a balanced tree.

– ADAPTIVE: Assign the word to the component with the
greater responsibility.

– ADAPTIVE(ǫ): Assign the word to a component if its
responsibility for the word is at least 0.5-ǫ.

18



Dataset and evaluation

• We compared the models on the APNews dataset:

– A collection of Associated Press news stories (16 million
words)

– Training/validation/test split: 14M/1M/1M words

• Preprocessing (Bengio):

– convert all words to lower case
– map all rare words and proper nouns to special symbols
– Result: just under 18000 unique words.

• Models were compared based on the perplexity they
assigned to the test set.

• Perplexity is the geometric average of 1
P (wn|w1:n−1)

.

19



Random vs. non-random trees

The effect of the feature dimensionality and the tree-building
algorithm on the test set perplexity of the model.

Feature Perplexity using Perplexity using Reduction
dimensionality a RANDOM tree a BALANCED tree in perplexity

25 191.6 162.4 29.2
50 166.4 141.7 24.7
75 156.4 134.8 21.6
100 151.2 131.3 19.9

20



Model evaluation

Perplexity on the test set:

Model Tree generating Perplexity Minutes
type algorithm per epoch

HLBL RANDOM 151.2 4
HLBL BALANCED 131.3 4
HLBL ADAPTIVE 127.0 4
HLBL ADAPTIVE(0.25) 124.4 6
HLBL ADAPTIVE(0.4) 123.3 7
HLBL ADAPTIVE(0.4) × 2 115.7 16
HLBL ADAPTIVE(0.4) × 4 112.1 32
LBL – 117.0 6420
KN3 – 129.8 –
KN5 – 123.2 –

• LBL and HLBL used 100D feature vectors and a context
size of 5.

• KNn is a Kneser-Ney n-gram model.

21



Observations

• Hierarchical distributed language models can outperform
non-hierarchical models when they use sufficiently
well-constructed trees over words.

– Expert knowledge is not needed for building good trees.
– Allowing words to occur more than once in a tree is

essential for good performance.

• Even when very large trees are used, the hierarchical LBL
model is more than two orders of magnitude faster than
the LBL model.

22



THE END

23


