CSC2535 Spring 2013

Lecture 2a: Inference in factor graphs

Geoffrey Hinton

Factor graphs: A better graphical representation
for undirected models with higher-order factors

1 o T3

r =] [£x)

If the potentials are not
normalized we need
Fa I o fa an extra factor of 1/Z.

« Each potential has its own factor node that is
connected to all the terms in the potential.

» Factor graphs are always bipartite.

Representing a third-order term in an
undirected model

Z1 X2 X1 T2 Z1 T2

Jo

T3 3 L3

* The third-order factor is much more visually
apparent than the clique of size 3.

* |t easy to divide a factor into the product of
several simpler factors.

— This allows additional factorization to be
represented.

Converting trees to factor graphs

T T2 X1 T2 X1 T2

T3 3

 When we convert any singly connected
graphical model to a factor graph, it remains
singly connected.

— This preserves the simplicity of inference.

« Converting a singly connected directed graph to
an undirected graph may not preserve the
property of being singly connected.

Computing a marginal in a factor graph
with nodes that have discrete values

p(x,) = Z p(x)

* To obtain the marginal probability function for X,
we could consider each possible value of X,
and sum the joint probability over all possible
values of all the other random variables.

— This would take a time that was exponential
in the number of other variables.

Expression trees

« \We can compute the values of
ab + ac = a(b + C‘) arithmetic expressions in a tree.

* We can do the same thing using
probability distributions instead

@ of scalar values.
— The product operation gets
replaced by a pointwise

@ Q product.
— The sum operation get

replaced by something more

@ @ complicated.

Converting a factor graph to an expression tree

To compute a marginal,
the factor graph is
drawn with the variable
of interest at the top.

The messages passed up the tree

* A message is a function that specifies how much it likes
each of the possible values of a variable.

— How much it likes the value is a *probability.

 The message from a variable to a factor is the product
of the messages the variable receives from the factors
below it.

— So its a function over the values of the sending
variable. It summarizes the relevant aspects of the
combined opinions of all the stuff below that variable.

 The message from a factor to a variable is more
complicated.

— It is a function over the values of the receiving
variable. It summarizes the relevant aspects of the
combined opinions of all the stuff below that factor.

The message from a factor to a variable

» A factor can see the vector of *probabilities for each of
the variables below it. It needs to convert these vectors
into a vector of *probabilities for the variable above it.

 For each combination of values of the variables below it,
the factor node does the following:

— First it computes the product, P, of the *probabilities
that the variables below have for that combination.

— Then, for each value of the variable above, it
multiplies P by the value of the factor to get a function
over the values of the variable above it.

» Finally, the factor node adds up these functions over all
possible combinations of values of the variables below it.

The messages in math

message

~N

luxm —> f (xm) =

7N

variable factor

fufs—>xm (xm) = Z

S m

)

(

\

H ‘ufs'—>xm (xm)

s‘ene(x ,,

\

s (X;)

sum over all combinations
of values of variables below

AVS

factors below

luxmr—>fs (Xm')
m'ene(f,)

\

variables
below

|

/

The messages at the leaf nodes

fs

 For a variable _1
that is only L (X,,) =
connected to

one factor:
leaf

 For a factor

that is only xufs ->X, (xm) = fS ('xm)
connected to
one variable:

leaf

Starting and finishing:
Method 1(only for trees)

« Start by sending messages from all the leaf
variables and factors.

 Then send a message whenever all of the
messages it depends on are present.

« To get the marginals for all variables, allow
messages to flow in both directions.

p*(xm)= qufs—>xm(xm)9 Z=2p*(xm)

s€ne(x,,)

Starting and finishing:
Method 2 (works with loops)

Start by sending a message of 1 from every
variable (not just the leaf ones).

Then compute messages as normal.

After a time equal to the diameter of the graph
this will settle to the right answer (if the graph is
singly connected).

— It wastes a lot of computation if the graph is
singly connected.

It often computes useful answers in loopy
graphs!

