
CSC2535 Spring 2013 
 

Lecture 2a: Inference in factor graphs 

Geoffrey Hinton 
 
 
 



Factor graphs: A better graphical representation 
for undirected models with higher-order factors 

•  Each potential has its own factor node that is 
connected to all the terms in the potential. 

•  Factor graphs are always bipartite. 

)()( s
s

sfp xx ∏=
If the potentials are not 
normalized we need 
an extra factor of 1/Z. 
 



Representing a third-order term in an 
undirected model 

•  The third-order factor is much more visually 
apparent than the clique of size 3. 

•  It easy to divide a factor into the product of 
several simpler factors.  
– This allows additional factorization to be 

represented. 



Converting trees to factor graphs 

•  When we convert any singly connected 
graphical model to a factor graph, it remains 
singly connected.  
– This preserves the simplicity of inference. 

•  Converting a singly connected directed graph to 
an undirected graph may not preserve the 
property of being singly connected. 



Computing a marginal in a factor graph 
with nodes that have discrete values 

•  To obtain the marginal probability function for    
we  could consider each possible value of     
and sum the joint probability over all possible 
values of all the other random variables. 
– This would take a time that was exponential 

in the number of other variables. 
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Expression trees 

•  We can compute the values of 
arithmetic expressions in a tree. 

•  We can do the same thing using 
probability distributions instead 
of scalar values. 
–  The product operation gets 

replaced by a pointwise 
product. 

–  The sum operation get 
replaced by something more 
complicated. 
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Converting a factor graph to an expression tree 
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To compute a marginal, 
the factor graph is 
drawn with the variable 
of interest at the top. 
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The messages passed up the tree 

•  A message is a function that specifies how much it likes 
each of the possible values of a variable. 
– How much it likes the value is a *probability. 

•  The message from a variable to a factor is the product 
of the messages the variable receives from the factors 
below it. 
– So its a function over the values of the sending 

variable. It summarizes the relevant aspects of the 
combined opinions of all the stuff below that variable. 

•  The message from a factor to a variable is more 
complicated. 
–  It is a function over the values of the receiving 

variable.  It summarizes the relevant aspects of the 
combined opinions of all the stuff below that factor.  



The message from a factor to a variable 

•  A factor can see the vector of *probabilities for each of 
the variables below it. It needs to convert  these vectors 
into a vector of *probabilities for the variable above it. 

•  For each combination of values of the variables below it, 
the factor node does the following: 
– First it computes the product, P, of the *probabilities 

that the variables below have for that combination.  
– Then, for each value of the variable above, it  

multiplies P by the value of the factor to get a function 
over the values of the variable above it. 

•  Finally, the factor node adds up these functions over all 
possible combinations of values of the variables below it. 



The messages in math 
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The messages at the leaf nodes 

•  For a variable 
that is only 
connected to 
one factor: 

•  For a factor 
that is only 
connected to 
one variable: 
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Starting and finishing: 
 Method 1(only for trees) 

•  Start by sending messages from all the leaf 
variables and factors. 

•  Then send a message whenever all of the 
messages it depends on are present. 

•  To get the marginals for all variables, allow 
messages to flow in both directions. 
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Starting and finishing: 
Method 2 (works with loops) 

•  Start by sending a message of 1 from every 
variable (not just the leaf ones). 

•  Then compute messages as normal. 
•  After a time equal to the diameter of the graph 

this will settle to the right answer (if the graph is 
singly connected). 
–  It wastes a lot of computation if the graph is 

singly connected. 
•  It often computes useful answers in loopy 

graphs! 


