
CSC2535 Spring 2013

Lecture 2a: Inference in factor graphs

Geoffrey Hinton

Factor graphs: A better graphical representation
for undirected models with higher-order factors

•  Each potential has its own factor node that is
connected to all the terms in the potential.

•  Factor graphs are always bipartite.

)()(s
s

sfp xx ∏=
If the potentials are not
normalized we need
an extra factor of 1/Z.

Representing a third-order term in an
undirected model

•  The third-order factor is much more visually
apparent than the clique of size 3.

•  It easy to divide a factor into the product of
several simpler factors.
– This allows additional factorization to be

represented.

Converting trees to factor graphs

•  When we convert any singly connected
graphical model to a factor graph, it remains
singly connected.
– This preserves the simplicity of inference.

•  Converting a singly connected directed graph to
an undirected graph may not preserve the
property of being singly connected.

Computing a marginal in a factor graph
with nodes that have discrete values

•  To obtain the marginal probability function for
we could consider each possible value of
and sum the joint probability over all possible
values of all the other random variables.
– This would take a time that was exponential

in the number of other variables.

∑=
nx

n pxp
\

)()(
x

x

nx
nx

Expression trees

•  We can compute the values of
arithmetic expressions in a tree.

•  We can do the same thing using
probability distributions instead
of scalar values.
–  The product operation gets

replaced by a pointwise
product.

–  The sum operation get
replaced by something more
complicated.

)(cbaacab +=+

cb

+a

×

Converting a factor graph to an expression tree

1x

Af ×Bf

3x

2x

1x

Af
Bf

3x

2x

×

∗.

∑
2\ xAx

∑
2\ xBx

To compute a marginal,
the factor graph is
drawn with the variable
of interest at the top.

∗. ∗.

The messages passed up the tree

•  A message is a function that specifies how much it likes
each of the possible values of a variable.
– How much it likes the value is a *probability.

•  The message from a variable to a factor is the product
of the messages the variable receives from the factors
below it.
– So its a function over the values of the sending

variable. It summarizes the relevant aspects of the
combined opinions of all the stuff below that variable.

•  The message from a factor to a variable is more
complicated.
–  It is a function over the values of the receiving

variable. It summarizes the relevant aspects of the
combined opinions of all the stuff below that factor.

The message from a factor to a variable

•  A factor can see the vector of *probabilities for each of
the variables below it. It needs to convert these vectors
into a vector of *probabilities for the variable above it.

•  For each combination of values of the variables below it,
the factor node does the following:
– First it computes the product, P, of the *probabilities

that the variables below have for that combination.
– Then, for each value of the variable above, it

multiplies P by the value of the factor to get a function
over the values of the variable above it.

•  Finally, the factor node adds up these functions over all
possible combinations of values of the variables below it.

The messages in math

∏
∈ʹ′

>−>− ʹ′
=

s

mssm
fs

mxfmfx xx
\)ne(xm

)()(µµ

∑ ∏ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

∈ʹ′
ʹ′>−>− ʹ′

mx\)ne(

)()()(
s s

smms
fm

mfxssmxf fx
x

xx µµ

variable

message

factor
factors below

variables
below

sum over all combinations
of values of variables below

The messages at the leaf nodes

•  For a variable
that is only
connected to
one factor:

•  For a factor
that is only
connected to
one variable:

1)(=>− mfx x
sm

µ

)()(msmxf xfx
ms

=>−µ

mx

sf

mx

sf

leaf

leaf

Starting and finishing:
 Method 1(only for trees)

•  Start by sending messages from all the leaf
variables and factors.

•  Then send a message whenever all of the
messages it depends on are present.

•  To get the marginals for all variables, allow
messages to flow in both directions.

)(,)()(
)(ne

∑∏ ∗

∈
>−

∗ ==
mm

ms
x

m
xs

mxfm xpZxxp µ

Starting and finishing:
Method 2 (works with loops)

•  Start by sending a message of 1 from every
variable (not just the leaf ones).

•  Then compute messages as normal.
•  After a time equal to the diameter of the graph

this will settle to the right answer (if the graph is
singly connected).
–  It wastes a lot of computation if the graph is

singly connected.
•  It often computes useful answers in loopy

graphs!

