
CSC2535: 2013
Advanced Machine Learning

Lecture 2b: Variational Inference and

Learning in Directed Graphical Models

Geoffrey Hinton

An apparently crazy idea

•  Its hard to learn directed models in which
varaibles have a large number of parents
because its hard to infer (or sample from) the
posterior distribution over hidden configurations
(i.e. the joint distribution of the latent variables).

•  Crazy idea: do inference wrong.
– Maybe we can show that learning will still

work.

Approximate inference
•  For models like sigmoid belief nets, it is intractable to

compute the exact posterior distribution over hidden
configurations. So what happens if we use a tractable
approximation to the posterior?
–  e.g. assume the posterior over hidden configurations

for each datavector factorizes into a product of
distributions for each separate hidden cause.

•  If we use the approximation for learning, there is no
guarantee that learning will increase the probability that
the model would generate the observed data.

•  But maybe we can find a different and sensible objective
function that is guaranteed to improve at each update of
the parameters.

A trade-off between how well the model fits
the data and the accuracy of inference

 This makes it feasible to fit very complicated models, but

the approximations that are tractable may be poor.

∑ ⎥⎦
⎤

⎢⎣
⎡ −=−

d
dPdQKLdpF)()(||)()|(log)(θθ

How well the model
fits the data

The inaccuracy
of inference

parameters data

approximating
posterior
distribution

true
posterior
distribution

 new
objective
function

Two ways to derive F

•  We can derive variational free energy as the
objective function that is minimized by both steps
of the Expectation and Maximization algorithm
(EM).

•  We can also derive it by using Minimum
Description Length ideas.

Overview

•  Clustering with K-means and a proof of
convergence that uses energies.

•  Clustering with a mixture of Gaussians and a
proof of convergence that uses free energies.

•  The MDL view of clustering and the bits-back

argument
•  The MDL justification for incorrect inference.
•  The MDL view of SBN’s
•  The wake-sleep algorithm.

start skip

Clustering

•  We assume that the data was generated from a
number of different classes. The aim is to cluster
data from the same class together.
– Why not put each datapoint into a separate

class?
•  What is the objective function that is optimized

by sensible clusterings?

The k-means algorithm

•  Assume the data lives in a
Euclidean space.

•  Assume we want k classes.
•  Assume we start with randomly

located cluster centers

 The algorithm alternates between
two steps:

 Assignment step: Assign each

datapoint to the closest cluster.

 Refitting step: Move each cluster

center to the center of gravity of
the data assigned to it.

Assignments

Refitted
means

Why K-means converges

•  Whenever an assignment is changed, the sum
squared distances of datapoints from their
assigned cluster centers is reduced.

•  Whenever a cluster center is moved the sum
squared distances of the datapoints from their
currently assigned cluster centers is reduced.

•  Test for convergence: If the assignments do not
change in the assignment step, we have
converged.

A generative view of clustering

•  We need a sensible measure of what it means to cluster
the data well.
–  This makes it possible to judge different methods.
–  It may make it possible to decide on the number of

clusters.
•  An obvious approach is to imagine that the data was

produced by a generative model.
–  Then we can adjust the parameters of the model to

maximize the probability that it would produce exactly
the data we observed.

The mixture of Gaussians generative model

•  First pick one of the k Gaussians with a probability that is
called its “mixing proportion”.

•  Then generate a random point from the chosen
Gaussian.

•  The probability of generating the exact data we observed
is zero, but we can still try to maximize the probability
density.
–  Adjust the means of the Gaussians
–  Adjust the variances of the Gaussians on each

dimension.
–  Adjust the mixing proportions of the Gaussians.

Fitting a mixture of Gaussians

 The EM algorithm alternates
between two steps:

E-step: Compute the posterior
probability that each Gaussian
generates each datapoint.

M-step: Assuming that the data

really was generated this way,
change the parameters of
each Gaussian to maximize
the probability that it would
generate the data it is
currently responsible for.

.95

.5

.5

.05

.5
.5

.95
.05

1

1

The E-step: Computing responsibilities

•  In order to adjust the
parameters, we must
first solve the inference
problem: Which
Gaussian generated
each datapoint?
–  We cannot be sure,

so it’s a distribution
over all possibilities.

•  Use Bayes theorem to
get posterior
probabilities for an axis
aligned Gaussian.

2
,

2
,

1 ,

2

||||

2
1)|(

)(

)|()()(

)(
)|()()|(

di

di
c
d

Dd

d di

c

i

j

cc

c

c
c

x

ip

ip

jpjpp

p
ipipip

e σ

µ

σπ

π

−
−

=

=

=

=

∏

∑

=

=

x

xx

x
xx

Posterior for
Gaussian i

Prior for
Gaussian i

Mixing proportion

Product over all data dimensions

Bayes
theorem

The M-step: Computing new mixing proportions

•  Each Gaussian gets a
certain amount of
posterior probability for
each datapoint.

•  The optimal mixing
proportion to use (given
these posterior
probabilities) is just the
fraction of the data that
the Gaussian gets
responsibility for.

N

ip
Nc

c

c

new
i

∑
=

== 1
)|(x

π

Data for
training
case c

Number of
training cases

Posterior for
Gaussian i

More M-step: Computing the new means

•  We just take the center-of
gravity of the data that
the Gaussian is
responsible for.
–  Just like in K-means,

except the data is
weighted by the
posterior probability of
the Gaussian.

–  Guaranteed to lie in
the convex hull of the
data

•  Could be big initial jump

∑

∑
=

c

c
c

cc

new
i ip

ip

)|(

)|(

x

xx
µ

More M-step: Computing the new variances

•  We fit the variance of each Gaussian, i, on each
dimension, d, to the posterior-weighted data
–  Its more complicated if we use a full-

covariance Gaussian that is not aligned with
the axes.

∑

∑ −

=

c

c
c

new
di

c
d

c

di ip

µxip

)|(

||||)|(2
,

2
, x

x
σ

end skip

How do we know that the updates improve things?

•  Updating each Gaussian definitely improves the
probability of generating the data if we generate
it from the same Gaussians after the parameter
updates.
– But we know that the posterior will change

after updating the parameters.
•  A good way to show that this is OK is to show

that there is a single function that is improved by
both the E-step and the M-step.
– The function we need is called Free Energy.

Why EM converges

•  There is a cost function that is reduced by both the E-step
and the M-step.

 Cost = expected energy – entropy

•  The expected energy term measures how difficult it is to

generate each datapoint from the Gaussians it is assigned
to. It would be happiest assigning each datapoint to the
Gaussian that generates it most easily (as in K-means).

•  The entropy term encourages “soft” assignments. It would
be happiest spreading the assignment probabilities for each
datapoint equally between all the Gaussians.

The expected energy of a datapoint

•  The expected energy of datapoint c is the average

negative log probability of generating the datapoint
–  The average is taken using the probabilities of

assigning the datapoint to each Gaussian. We can
use any probabilities we like.

()∑∑ −−
i

ii
c

i
c

c
piq),|(loglog)|(2σπ µxx

data-
point Gaussian

probability of assigning
c to Gaussian i

parameters of Gaussian i

Location of
datapoint c

The entropy term

•  This term wants the assignment probabilities to
be as uniform as possible.

•  It fights the expected energy term.

)|(log)|(c

i

c

c
iqiqentropy xx∑∑−=

log probabilities are
always negative

The E-step chooses the assignment
probabilities that minimize the cost function
(with the parameters of the Gaussians held fixed)

•  How do we find assignment probabilities for a datapoint
that minimize the cost and sum to 1?

•  The optimal solution to the trade-off between expected
energy and entropy is to make the probabilities be
proportional to the exponentiated negative energies:

•  So using the posterior probabilities as assignment
probabilities minimizes the cost function!

)|(

)exp()|(

ip

energyiqofvalueoptimal
c

i

c

x

x

π∝

−∝

),|(loglog 2
ii

c
i pitocassigningofenergy σπ µx−−=

The M-step chooses the parameters that
minimize the cost function

(with the assignment probabilities held fixed)

•  This is easy. We just fit each Gaussian to the data
weighted by the assignment probabilities that the
Gaussian has for the data.
–  When you fit a Gaussian to data you are maximizing

the log probability of the data given the Gaussian.
This is the same as minimizing the energies of the
datapoints that the Gaussian is responsible for.

–  If a Gaussian is assigned a probability of 0.7 for a
datapoint the fitting treats it as 0.7 of an observation.

•  Since both the E-step and the M-step decrease the
same cost function, EM converges.

EM as coordinate descent in Free Energy

•  Think of each different setting of the hidden and visible

variables as a “configuration”. The energy of the
configuration has two terms:
–  The log prob of generating the hidden values
–  The log prob of generating the visible values from the

hidden ones
•  The E-step minimizes F by finding the best distribution

over hidden configurations for each data point.
•  The M-step holds the distribution fixed and minimizes F

by changing the parameters that determine the energy of
a configuration.

() ()∑∑ −−−−=
i

ccc
i

i

cc iqiqipiqF)|(log)|()|(loglog)|()(xxxxx π

The advantage of using F to understand EM

•  There is clearly no need to use the optimal
distribution over hidden configurations.
– We can use any distribution that is convenient

so long as:
•  we always update the distribution in a way that

improves F
•  We change the parameters to improve F given the

current distribution.
•  This is very liberating. It allows us to justify all

sorts of weird algorithms.

start skip

An incremental EM algorithm for fitting a
mixture of Gaussians

•  The idea of this algorithm is to do “online” fitting of a
mixture of Gaussians
–  Look at one datapoint at a time and update the

parameters after each datapoint.
•  When we update the parameters of the Gaussians, the

posteriors change for all datapoints.
–  The standard EM algorithm would have to update the

posteriors for all datapoints after any change in the
parameters

•  The variational approach allows us to dispense with the
updates of the posteriors for all of the other datapoints.
–  Those datapoints will now be using an out-of-date

posterior, but that’s OK. We can do whatever we like
to the posteriors so long as it does not increase F.

Initialization

•  We can start with any initial distribution we like
across the Gaussians for each datapoint.
– But it would make sense to do one pass through

all the data setting the distribution across
Gaussians to be the posterior for each
datapoint.

•  We also need to initialize some sums over all
datapoints (lets ignore the variance update).

∑
∑

∑∑ =

c

cinit
c

ccinit

init
i

c

ccinit

c

cinit

ip

ip
ipip

)|(

)|(
,)|(,)|(

x

xx
µxxx

Updating the parameters

•  Partial E-step: Look at a single datapoint, d, and
compute the posterior distribution
for d given the current parameters.

•  M-step: Compute the effect on the parameters of
changing the distribution for d, whilst keeping all
the other approximate posteriors for all other
datapoints fixed.

∑
∑

+−

+−

=

c

colddolddnew
c

ccoldddoldddnew

dnew
i ipipip

ipipip

)|()|()|(

)|()|()|(
)(

xxx

xxxxxx
µ

stored sum

)|(dnew ip x

end skip

An MDL approach to clustering

sender receiver

quantized data perfectly reconstructed data

 cluster parameters

 code for each datapoint

data-misfit for each datapoint

center of
cluster

How many bits must we send?

•  Model parameters:
–  It depends on the priors and how accurately they are

sent.
–  Lets ignore these details for now

•  Codes:
–  If all n clusters are equiprobable, log n

•  This is extremely plausible, but wrong!
–  We can do it in less bits

•  This is extremely implausible but right.
•  Data misfits:

–  If sender & receiver assume a Gaussian distribution
within the cluster, -log[p(d)|cluster] which depends on
the squared distance of d from the cluster center.

Using a Gaussian agreed distribution

•  Assume we need to
send a value, x, with a
quantization width of t

•  This requires a
number of bits that
depends on

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been
corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then
insert it again.

2

2

2
)(

σ

µ−x

2

2

2
)()2log()log(

))(log().log(

σ

µ
σπ

−
++−≈

−≈−

xt

xqtmassprob
x

2

2

2
)(

2
1)(σ

µ

σπ

−
−

=

x

exq

What is the best variance to use?

•  It is obvious that this is minimized by setting the
variance of the Gaussian to be the variance of
the residuals.

∑

∑

−−=
∂

∂

−
++−≈

=

c
c

c
N

c

xNC

xtC

2
3

2

2

1

)(1

2
)()2log()log(

µ
σσσ

σ

µ
σπ

Sending a value assuming a mixture of two
equal Gaussians

•  The point halfway between the two Gaussians should
cost –log(p(x)) bits where p(x) is its density under the
blue curve.
–  But in the MDL story the cost should be –log(p(x))

plus one bit to say which Gaussian we are using.
–  How can we make the MDL story give the right

answer?

x

The blue curve is the
normalized sum of the
two Gaussians.

The bits-back argument

•  Consider a datapoint that is equidistant from two cluster
centers.
–  The sender could code it relative to cluster 0 or

relative to cluster 1.
–  Either way, the sender has to send one bit to say

which cluster is being used.
•  It seems like a waste to have to send a bit when you don’t

care which cluster you use.
•  It must be inefficient to have two different ways of encoding

the same point.

Gaussian 0 Gaussian 1

data

Using another message to make random decisions

•  Suppose the sender is also trying to communicate
another message
–  The other message is completely independent.
–  It looks like a random bit stream.

•  Whenever the sender has to choose between two
equally good ways of encoding the data, he uses a bit
from the other message to make the decision

•  After the receiver has losslessly reconstructed the
original data, the receiver can pretend to be the sender.
–  This enables the receiver to figure out the random bit

in the other message.
•  So the original message cost one bit less than we

thought because we also communicated a bit from
another message.

The general case

Gaussian 0 Gaussian 1

data

Gaussian 2

ii
ii

i
i p

pEpCostExpected 1log∑∑ −=

Bits required to
send cluster
identity plus
data relative to
cluster center

Random bits
required to pick
which cluster

Probability
of picking
cluster i

What is the best distribution?
•  The sender and receiver can use any distribution they

like
–  But what distribution minimizes the expected

message length
•  The minimum occurs when we pick codes using a

Boltzmann distribution:

•  This gives the best trade-off between entropy and
expected energy.
–  It is how physics behaves when there is a system that

has many alternative configurations each of which
has a particular energy (at a temperature of 1).

∑ −

−

=

j

E

E

i j

i

e
ep

Free Energy

ii
ii

i
i p

pTEpEnergyFree 1log∑∑ −=

Energy of
configuration i

Entropy of
distribution over
configurations

Probability of
finding system in
configuration i

The equilibrium free energy of a
set of configurations is the
energy that a single
configuration would have to have
to have as much probability as
that entire set.

∑
−−

=
i

T
E

T
F i

ee

Temperature

A Canadian example

•  Ice is a more regular and
lower energy packing of
water molecules than
liquid water.
–  Lets assume all ice

configurations have
the same energy

•  But there are vastly more
configurations called
water.

waterice

waterice

waterice

waterice

FFTAt
FFTAt

HH

EE

>>=

<<=

<<

<<

,274
,272

iceiceice HTEF −><=

Stochastic MDL using the wrong distribution
over codes

•  If we want to communicate the code for a datavector, the
most efficient method requires us to pick a code
randomly from the posterior distribution over codes.
–  This is easy if there is only a small number of possible

codes. It is also easy if the posterior distribution has a
nice form (like a Gaussian or a factored distribution)

–  But what should we do if the posterior is intractable?
•  This is typical for non-linear distributed representations.

•  We do not have to use the most efficient coding scheme!
–  If we use a suboptimal scheme we will get a bigger

description length.
•  The bigger description length is a bound on the minimal

description length.
•  Minimizing this bound is a sensible thing to do.

–  So replace the true posterior distribution by a simpler
distribution.

•  This is typically a factored distribution.

Fitting a sigmoid belief net using
variational inference

•  For large nets, the true posterior over the hidden
layers is intractable.

•  The obvious variational approach is to find the
best factorial approximation.
– This requires an iterative inference process

that adjusts the probability assigned to each
hidden unit so as to minimize F (with the
parameters held constant).

•  Can we avoid this iterative inner loop?
– What if we were willing to accept a non-

optimal factorial approximation.

The wake-sleep algorithm for an SBN

•  Wake phase: Use the
recognition weights to perform a
bottom-up pass.
–  Train the generative weights

to reconstruct activities in
each layer from the layer
above.

•  Sleep phase: Use the generative
weights to generate samples
from the model.
–  Train the recognition weights

to reconstruct activities in
each layer from the layer
below.

 h2

 data

 h1

 h3

2W

1W1R

2R

3W3R

•  The recognition weights are initially trained to invert the
generative model in parts of the space where there is no
data.
–  This is wasteful.

•  The recognition weights follow the gradient of the wrong
divergence. They minimize KL(P||Q) but the variational
bound requires minimization of KL(Q||P).
–  This leads to incorrect mode-averaging

•  The true posterior over the top hidden layer is typically
very far from independent.
–  So it is very badly modeled by a prior that assumes

independence.

The flaws in the wake-sleep algorithm

-10 -10

 +20 +20

 -20

Mode averaging
•  If we generate from the model,

half the instances of a 1 at the
data layer will be caused by a
(1,0) at the hidden layer and half
will be caused by a (0,1).
–  So the recognition weights

will learn to produce (0.5,0.5)
–  This represents a distribution

that puts half its mass on the
very improbable hidden
configurations (0,0) & (1,1)

•  Its much better to just pick one
mode and pay one bit for
ignoring the other mode.

minimum of
KL(Q||P) minimum of

KL(P||Q)

P

