
CSC2535 2013
Advanced Machine Learning

Lecture 4

Restricted Boltzmann Machines

Geoffrey Hinton

Three ways to combine
probability density models

•  Mixture: Take a weighted average of the distributions.
–  It can never be sharper than the individual distributions.

It’s a very weak way to combine models.
•  Product: Multiply the distributions at each point and then

renormalize (this is how an RBM combines the distributions defined
by each hidden unit)
–  Exponentially more powerful than a mixture. The

normalization makes maximum likelihood learning
difficult, but approximations allow us to learn anyway.

•  Composition: Use the values of the latent variables of one
model as the data for the next model.
–  Works well for learning multiple layers of representation,

but only if the individual models are undirected.

Two types of generative neural network

•  If we connect binary stochastic neurons in a
directed acyclic graph we get a Sigmoid Belief
Net (Radford Neal 1992).

•  If we connect binary stochastic neurons using
symmetric connections we get a Boltzmann
Machine (Hinton & Sejnowski, 1983).
–  If we restrict the connectivity in a special way,

it is easy to learn a Boltzmann machine.

Restricted Boltzmann Machines
(Smolensky ,1986, called them “harmoniums”)

•  We restrict the connectivity to make
learning easier.
–  Only one layer of hidden units.

•  We will deal with more layers later
–  No connections between hidden units.

•  In an RBM, the hidden units are
conditionally independent given the
visible states.
–  So we can quickly get an unbiased

sample from the posterior distribution
when given a data-vector.

–  This is a big advantage over directed
belief nets

hidden

i

j

visible

The Energy of a joint configuration
(ignoring terms to do with biases)

∑−=
ji

ijji whvv,hE
,

)(

weight between
units i and j

Energy with configuration
v on the visible units and
h on the hidden units

binary state of
visible unit i

binary state of
hidden unit j

ji
ij

hv
w
hvE

=
∂

∂
−

),(

A picture of the maximum likelihood learning
algorithm for an RBM

0>< jihv ∞>< jihv

i

j

i

j

i

j

i

j

t = 0 t = 1 t = 2 t = infinity

∞><−><=
∂

∂
jiji

ij
hvhv

w
vp 0)(log

Start with a training vector on the visible units.

Then alternate between updating all the hidden units in
parallel and updating all the visible units in parallel.

a fantasy

A quick way to learn an RBM

0>< jihv 1>< jihv

i

j

i

j

t = 0 t = 1

)(10 ><−><=Δ jijiij hvhvw ε

Start with a training vector on the
visible units.

Update all the hidden units in
parallel

Update the all the visible units in
parallel to get a “reconstruction”.

Update the hidden units again.

This is not following the gradient of the log likelihood. But it
works well. It is approximately following the gradient of another
objective function (Carreira-Perpinan & Hinton, 2005).

reconstruction data

Collaborative filtering: The Netflix
competition

•  You are given most of
the ratings that half a
million Users gave to
18,000 Movies on a
scale from 1 to 5.
–  Each user only rates a

small fraction of the
movies.

•  You have to predict the
ratings users gave to the
held out movies.
–  If you win you get

$1000,000

M1 M2 M3 M4 M5 M6

U1 3

U2 5 1
U3 3 5
U4 4 ? 5

U5 4

U6 2

Lets use a “language model”
The data is strings
of triples of the
form: User, Movie,
rating.
U2 M1 5
U2 M3 1
U4 M1 4
U4 M3 ?
All we have to do is
to predict the next
“word” well and we
will get rich.

U4 M3

rating

scalar
product

M
3 feat

M
3 feat

U
4 feat

U4 feat

matrix
factorization

3.1

An RBM alternative to matrix factorization
•  Suppose we treat each user

as a training case.
–  A user is a vector of movie

ratings.
–  There is one visible unit per

movie and its a 5-way softmax.
–  The CD learning rule for a

softmax is the same as for a
binary unit.

–  There are ~100 hidden units.
•  One of the visible values is

unknown.
–  It needs to be filled in by the

model.

 M1 M2 M3 M4 M5 M6 M7 M8

about 100 binary hidden units

How to avoid dealing with all those missing
ratings

•  For each user, use an RBM that only has visible units
for the movies the user rated.

•  So instead of one RBM for all users, we have a
different RBM for every user.
–  All these RBMs use the same hidden units.
–  The weights from each hidden unit to each movie are shared

by all the users who rated that movie.
•  Each user-specific RBM only gets one training case!

–  But the weight-sharing makes this OK.
•  The models are trained with CD1 then CD3, CD5 &

CD9.

How well does it work?
(Salakhutdinov et al. 2007)

•  RBMs work about as
well as matrix
factorization methods,
but they give very
different errors.
–  So averaging the

predictions of RBMs
with the predictions of
matrix-factorization is
a big win.

•  The winning group
used multiple different
RBM models in their
average of over a
hundred models.
–  Their main models

were matrix
factorization and
RBMs.

An improved version of Contrastive
Divergence learning

•  The main worry with CD is that there will be deep
minima of the energy function far away from the
data.
– To find these we need to run the Markov chain for

a long time (maybe thousands of steps).
– But we cannot afford to run the chain for too long

for each update of the weights.
•  Maybe we can run the same Markov chain over

many weight updates? (Neal, 1992)
–  If the learning rate is very small, this should be

equivalent to running the chain for many steps
and then doing a bigger weight update.

Persistent CD
(Tijmen Teileman, ICML 2008 & 2009)

•  Use minibatches of 100 cases to estimate the
first term in the gradient. Use a single batch of
100 fantasies to estimate the second term in the
gradient.

•  After each weight update, generate the new

fantasies from the previous fantasies by using
one alternating Gibbs update.
– So the fantasies can get far from the data.

Contrastive divergence as an
adversarial game

•  Why does persisitent CD work so well with only
100 negative examples to characterize the
whole partition function?

– For all interesting problems the partition
function is highly multi-modal.

– How does it manage to find all the modes
without starting at the data?

The learning causes very fast mixing

•  The learning interacts with the Markov chain.

•  Persisitent Contrastive Divergence cannot be

analysed by viewing the learning as an outer loop.
– Wherever the fantasies outnumber the

positive data, the free-energy surface is
raised. This makes the fantasies rush around
hyperactively.

How persistent CD moves between the
modes of the model’s distribution

•  If a mode has more fantasy
particles than data, the free-
energy surface is raised until
the fantasy particles escape.
– This can overcome free-

energy barriers that would
be too high for the Markov
Chain to jump.

•  The free-energy surface is
being changed to help mixing
in addition to defining the
model.

Modeling real-valued data

•  For images of digits it is possible to represent
intermediate intensities as if they were probabilities by
using “mean-field” logistic units.
–  We can treat intermediate values as the probability

that the pixel is inked.
•  This will not work for real images.

–  In a real image, the intensity of a pixel is almost
always almost exactly the average of the neighboring
pixels.

–  Mean-field logistic units cannot represent precise
intermediate values.

A standard type of real-valued visible unit

•  We can model pixels as
Gaussian variables.
Alternating Gibbs
sampling is still easy,
though learning needs to
be much slower.

ijj
ji i
iv

hidj
jj

visi i

ii whhbbv,E ∑∑∑ −−
−

=
,

2

2

2
)()(

σ
εε σ

hv

E
 à

energy-gradient
produced by the total
input to a visible unit

parabolic
containment
function

→ii vb

Welling et. al. (2005) show how to extend RBM’s to the
exponential family. See also Bengio et. al. (2007)

Gaussian-Binary RBM’s

•  Lots of people have failed to get
these to work properly. Its
extremely hard to learn tight
variances for the visible units.
–  It took a long time for us to

figure out why it is so hard to
learn the visible variances.

•  When sigma is small, we need
many more hidden units than
visible units.
–  This allows small weights to

produce big top-down effects.

iji
i

ij w
w

σ
σ

When sigma is much less
than 1, the bottom-up effects
are too big and the top-down
effects are too small.

i

j

Replacing binary variables by
integer-valued variables

 (Teh and Hinton, 2001)

•  One way to model an integer-valued variable is
to make N identical copies of a binary unit.

•  All copies have the same probability,
of being “on” : p = logistic(x)
– The total number of “on” copies is like the

firing rate of a neuron.
–  It has a binomial distribution with mean N p

and variance N p(1-p)

A better way to implement integer values

•  Make many copies of a binary unit.
•  All copies have the same weights and the same

adaptive bias, b, but they have different fixed offsets to
the bias:

....,5.3,5.2,5.1,5.0 −−−− bbbb

→x

A fast approximation

•  Contrastive divergence learning works well for the sum of

binary units with offset biases.
•  It also works for rectified linear units. These are much faster

to compute than the sum of many logistic units.
output = max(0, x + randn*sqrt(logistic(x)))

)1log()5.0(logistic
1

x
n

n

enx +≈−+∑
∞=

=

How to train a bipartite network of rectified
linear units

•  Just use contrastive divergence to lower the energy of
data and raise the energy of nearby configurations that
the model prefers to the data.

data>< jihv
recon>< jihv

i

j

i

j

)(recondata ><−><=Δ jijiij hvhvw ε

Start with a training vector on the
visible units.

Update all hidden units in parallel
with sampling noise

Update the visible units in parallel
to get a “reconstruction”.

Update the hidden units again reconstruction data

 3D Object Recognition: The NORB dataset
 Stereo-pairs of grayscale images of toy objects.

- 6 lighting conditions, 162 viewpoints
- Five object instances per class in the training set
-  A different set of five instances per class in the test set
- 24,300 training cases, 24,300 test cases

Animals

Humans

Planes

Trucks

Cars

Normalized-
uniform
version of
NORB

Simplifying the data

•  Each training case is a stereo-pair of 96x96 images.
– The object is centered.
– The edges of the image are mainly blank.
– The background is uniform and bright.

•  To make learning faster I used simplified the data:
– Throw away one image.
– Only use the middle 64x64 pixels of the other

image.
– Downsample to 32x32 by averaging 4 pixels.

Simplifying the data even more so that it can
be modeled by rectified linear units

•  The intensity histogram for each 32x32 image has a
sharp peak for the bright background.

•  Find this peak and call it zero.
•  Call all intensities brighter than the background zero.
•  Measure intensities downwards from the background

intensity.

0

Test set error rates on NORB after greedy
learning of one or two hidden layers using

rectified linear units
Full NORB (2 images of 96x96)
•  Logistic regression on the raw pixels 20.5%
•  Gaussian SVM (trained by Leon Bottou) 11.6%
•  Convolutional neural net (Le Cun’s group) 6.0%
 (convolutional nets have knowledge of translations built in)

Reduced NORB (1 image 32x32)
•  Logistic regression on the raw pixels 30.2%
•  Logistic regression on first hidden layer 14.9%
•  Logistic regression on second hidden layer 10.2%

The
receptive
fields of
some
rectified
linear
hidden
units.

Generating the parts of an object

•  One way to maintain the
constraints between the parts is
to generate each part very
accurately
–  But this would require a lot of

communication bandwidth.
•  Sloppy top-down specification of

the parts is less demanding
–  but it messes up relationships

between features
–  so use redundant features

and use lateral interactions to
clean up the mess.

•  Each transformed feature helps
to locate the others
–  This allows a noisy channel

sloppy top-down
activation of parts

clean-up using
known interactions

pose parameters

features with
top-down
support

“square
”

+

Its like soldiers on
a parade ground

Semi-restricted Boltzmann Machines
•  We restrict the connectivity to make

learning easier.
•  Contrastive divergence learning requires

the hidden units to be in conditional
equilibrium with the visibles.
–  But it does not require the visible units

to be in conditional equilibrium with the
hiddens.

–  All we require is that the visible units
are closer to equilibrium in the
reconstructions than in the data.

•  So we can allow connections between
the visibles.

hidden

i

j

visible

Learning a semi-restricted Boltzmann Machine

0>< jihv 1>< jihv

i

j

i

j

t = 0 t = 1

)(10 ><−><=Δ jijiij hvhvw ε

1. Start with a
training vector on the
visible units.

2. Update all of the
hidden units in
parallel

3. Repeatedly update
all of the visible units
in parallel using
mean-field updates
(with the hiddens
fixed) to get a
“reconstruction”.

4. Update all of the
hidden units again.

reconstruction data

)(10 ><−><=Δ kikiik vvvvl ε

k i i k k k

update for a
lateral weight

Learning in Semi-restricted Boltzmann
Machines

•  Method 1: To form a reconstruction, cycle
through the visible units updating each in turn
using the top-down input from the hiddens plus
the lateral input from the other visibles.

•  Method 2: Use “mean field” visible units that
have real values. Update them all in parallel.
– Use damping to prevent oscillations

)()(11
i

t
i

t
i xpp σλλ −+=+

total input to i damping

Results on modeling natural image patches
using a stack of RBM’s (Osindero and Hinton)

•  Stack of RBM’s learned one at a time.
•  400 Gaussian visible units that see

whitened image patches
–  Derived from 100,000 Van Hateren

image patches, each 20x20
•  The hidden units are all binary.

–  The lateral connections are
learned when they are the visible
units of their RBM.

•  Reconstruction involves letting the
visible units of each RBM settle using
mean-field dynamics.
–  The already decided states in the

level above determine the effective
biases during mean-field settling.

Directed Connections

Directed Connections

Undirected Connections

400
Gaussian
units

Hidden
MRF with
2000 units

Hidden
MRF with
500 units

1000 top-
level units.
No MRF.

Without lateral connections
real data samples from model

With lateral connections
real data samples from model

A funny way to use an MRF

•  The lateral connections form an MRF.
•  The MRF is used during learning and generation.
•  The MRF is not used for inference.

–  This is a novel idea so vision researchers don’t like
it.

•  The MRF enforces constraints. During inference,
constraints do not need to be enforced because the data
obeys them.
–  The constraints only need to be enforced during

generation.
•  Unobserved hidden units cannot enforce constraints.

–  To enforce constraints requires lateral connections or
observed descendants.

Why do we whiten data?

•  Images typically have strong pair-wise correlations.
•  Learning higher order statistics is difficult when there are

strong pair-wise correlations.
–  Small changes in parameter values that improve the

modeling of higher-order statistics may be rejected
because they form a slightly worse model of the much
stronger pair-wise statistics.

•  So we often remove the second-order statistics before
trying to learn the higher-order statistics.

Whitening the learning signal instead
of the data

•  Contrastive divergence learning can remove the effects
of the second-order statistics on the learning without
actually changing the data.
–  The lateral connections model the second order

statistics
–  If a pixel can be reconstructed correctly using second

order statistics, its will be the same in the
reconstruction as in the data.

–  The hidden units can then focus on modeling high-
order structure that cannot be predicted by the lateral
connections.

•  For example, a pixel close to an edge, where interpolation
from nearby pixels causes incorrect smoothing.

Time series models

•  Inference is difficult in directed models of time
series if we use non-linear distributed
representations in the hidden units.
–  It is hard to fit Dynamic Bayes Nets to high-

dimensional sequences (e.g motion capture
data).

•  So people tend to avoid distributed
representations and use much weaker methods
(e.g. HMM’s).

Time series models

•  If we really need distributed representations (which we
nearly always do), we can make inference much simpler
by using three tricks:
–  Use an RBM for the interactions between hidden and

visible variables. This ensures that the main source of
information wants the posterior to be factorial.

–  Model short-range temporal information by allowing
several previous frames to provide input to the hidden
units and to the visible units.

•  This leads to a temporal module that can be stacked
–  So we can use greedy learning to learn deep models

of temporal structure.

An application to modeling
motion capture data

(Taylor, Roweis & Hinton, 2007)
•  Human motion can be captured by placing

reflective markers on the joints and then using
lots of infrared cameras to track the 3-D
positions of the markers.

•  Given a skeletal model, the 3-D positions of the
markers can be converted into the joint angles
plus 6 parameters that describe the 3-D position
and the roll, pitch and yaw of the pelvis.
–  We only represent changes in yaw because physics

doesn’t care about its value and we want to avoid
circular variables.

The conditional RBM model
(a partially observed CRF)

•  Start with a generic RBM.
•  Add two types of conditioning

connections.
•  Given the data, the hidden units

at time t are conditionally
independent.

•  The autoregressive weights can
model most short-term temporal
structure very well, leaving the
hidden units to model nonlinear
irregularities (such as when the
foot hits the ground). t-2 t-1 t

i

j

h

v

Causal generation from a learned model

•  Keep the previous visible states fixed.
–  They provide a time-dependent

bias for the hidden units.
•  Perform alternating Gibbs sampling

for a few iterations between the
hidden units and the most recent
visible units.
–  This picks new hidden and visible

states that are compatible with
each other and with the recent
history.

i

j

Higher level models

•  Once we have trained the model, we can
add layers like in a Deep Belief Network.

•  The previous layer CRBM is kept, and its
output, while driven by the data is treated
as a new kind of “fully observed” data.

•  The next level CRBM has the same
architecture as the first (though we can
alter the number of units it uses) and is
trained the same way.

•  Upper levels of the network model more
“abstract” concepts.

•  This greedy learning procedure can be
justified using a variational bound.

i

j

k

 t-2 t-1 t

Learning with “style” labels

•  As in the generative model of
handwritten digits (Hinton et al.
2006), style labels can be
provided as part of the input to
the top layer.

•  The labels are represented by
turning on one unit in a group of
units, but they can also be
blended.

i

j

 t-2 t-1 t

k

€

l

Show demo’s of multiple styles of
walking

These can be found at
www.cs.toronto.edu/~gwtaylor/

