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Three ways to combine  
probability density models 

•  Mixture:  Take a weighted average of the distributions. 
–  It can never be sharper than the individual distributions. 

It’s a very weak way to combine models. 
•  Product: Multiply the distributions at each point and then 

renormalize (this is how an RBM combines the distributions defined 
by each hidden unit) 
–  Exponentially more powerful than a mixture. The 

normalization makes maximum likelihood learning 
difficult, but approximations allow us to learn anyway. 

•  Composition: Use the values of the latent variables of one 
model as the data for the next model. 
–  Works well for learning multiple layers of representation, 

but only if the individual models are undirected. 



Two types of generative neural network 

•  If we connect binary stochastic neurons in a 
directed acyclic graph we get a Sigmoid Belief 
Net (Radford Neal 1992). 

•  If we connect binary stochastic neurons using 
symmetric connections we get a Boltzmann 
Machine (Hinton & Sejnowski, 1983). 
–  If we restrict the connectivity in a special way, 

it is easy to learn a Boltzmann machine. 



Restricted Boltzmann Machines 
(Smolensky ,1986, called them “harmoniums”) 

•  We restrict the connectivity to make 
learning easier. 
–  Only one layer of hidden units. 

•  We will deal with more layers later 
–  No connections between hidden units. 

•  In an RBM, the hidden units are 
conditionally independent given the 
visible states.   
–  So we can quickly get an unbiased 

sample from the posterior distribution 
when given a data-vector. 

–  This is a big advantage over directed 
belief nets 
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The Energy of a joint configuration 
(ignoring terms to do with biases) 
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A picture of the maximum likelihood learning 
algorithm for an RBM 
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Start with a training vector on the visible units. 

Then alternate between updating all the hidden units in 
parallel and updating all the visible units in parallel. 

a fantasy 



A quick way to learn an RBM 
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Start with a training vector on the 
visible units. 

Update all the hidden units in 
parallel 

Update the all the visible units in 
parallel to get a “reconstruction”. 

Update the hidden units again.  

This is not following the gradient of the log likelihood. But it 
works well. It is approximately following the gradient of another 
objective function (Carreira-Perpinan & Hinton, 2005). 

reconstruction data 



Collaborative filtering: The Netflix 
competition 

•  You are given most of 
the ratings that half a 
million Users gave to 
18,000 Movies on a 
scale from 1 to 5. 
–  Each user only rates a 

small fraction of the 
movies. 

•  You have to predict the 
ratings users gave to the 
held out movies. 
–  If you win you get 

$1000,000 

M1 M2 M3 M4 M5 M6 

U1   3 

U2  5  1   
U3  3  5   
U4  4  ?    5 

U5  4 

U6  2 



Lets use a “language model” 
The data is strings 
of triples of the 
form: User, Movie, 
rating. 
U2  M1  5 
U2  M3  1 
U4  M1  4 
U4  M3  ? 
All we have to do is 
to predict the next 
“word” well and we 
will get rich. 
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An RBM alternative to matrix factorization 
•  Suppose we treat each user 

as a training case.  
–  A user is a vector of movie 

ratings. 
–  There is one visible unit per 

movie and its a 5-way softmax. 
–  The CD learning rule for a 

softmax is the same as for a 
binary unit. 

–  There are ~100 hidden units. 
•  One of the visible values is 

unknown. 
–  It needs to be filled in by the 

model. 

   M1 M2 M3 M4 M5 M6  M7 M8  

about 100 binary hidden units 



How to avoid dealing with all those missing 
ratings 

•  For each user, use an RBM that only has visible units 
for the movies the user rated. 

•  So instead of one RBM for all users, we have a 
different RBM for every user. 
–  All these RBMs use the same hidden units. 
–  The weights from each hidden unit to each movie are shared 

by all the users who rated that movie.  
•  Each user-specific RBM only gets one training case! 

–  But the weight-sharing makes this OK. 
•  The models are trained with CD1 then CD3, CD5 & 

CD9. 



How well does it work? 
(Salakhutdinov et al. 2007) 

•  RBMs work about as 
well as matrix 
factorization methods, 
but they give very 
different errors. 
–  So averaging the 

predictions of RBMs 
with the predictions of 
matrix-factorization is 
a big win. 

•  The winning group 
used multiple different 
RBM models  in their 
average of over a 
hundred models. 
–  Their main models 

were matrix 
factorization and 
RBMs. 



An improved version of Contrastive 
Divergence learning 

•  The main worry with CD is that there will be deep 
minima of the energy function far away from the 
data.  
– To find these we need to run the Markov chain for 

a long time (maybe thousands of steps).  
– But we cannot afford to run the chain for too long 

for each update of the weights. 
•  Maybe we can run the same Markov chain over 

many weight updates? (Neal, 1992) 
–  If the learning rate is very small, this should be 

equivalent to running the chain for many steps 
and then doing a bigger weight update. 



Persistent CD 
(Tijmen Teileman, ICML 2008 & 2009) 

•  Use minibatches of 100 cases to estimate the 
first term in the gradient. Use a single batch of 
100 fantasies to estimate the second term in the 
gradient.  

  
•  After each weight update, generate the new 

fantasies from the previous fantasies by using 
one alternating Gibbs update. 
– So the fantasies can get far from the data. 



Contrastive divergence as an 
adversarial game 

•  Why does persisitent CD work so well with only 
100 negative examples to characterize the 
whole partition function? 

– For all interesting problems the partition 
function is highly multi-modal. 

– How does it manage to find all the modes 
without starting at the data?  



The learning causes very fast mixing 

  
•  The learning interacts with the Markov chain. 
 
•  Persisitent Contrastive Divergence cannot be 

analysed by viewing the learning as an outer loop. 
– Wherever the fantasies outnumber the 

positive data, the free-energy surface is 
raised. This makes the fantasies rush around 
hyperactively. 



How persistent CD moves between the 
modes of the model’s distribution 

•  If a mode has more fantasy 
particles than data, the free-
energy surface is raised until 
the fantasy particles escape. 
– This can overcome  free-

energy barriers that would 
be too high for the Markov 
Chain to jump. 

•  The free-energy surface is 
being changed to help mixing 
in addition to defining the 
model. 



Modeling real-valued data 

•  For images of digits it is possible to represent 
intermediate intensities as if they were probabilities by 
using “mean-field” logistic units. 
–  We can treat intermediate values as the probability 

that the pixel is inked. 
•  This will not work for real images. 

–  In a real image, the intensity of a pixel is almost 
always almost exactly the average of the neighboring 
pixels. 

–  Mean-field logistic units cannot represent precise 
intermediate values. 



A standard type of real-valued visible unit 

•  We can model pixels as 
Gaussian variables. 
Alternating Gibbs 
sampling is still easy, 
though learning needs to 
be much slower. 
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energy-gradient 
produced by the total 
input to a visible unit  

parabolic 
containment 
function 
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Welling et. al. (2005) show how to extend RBM’s to the 
exponential family. See also Bengio et. al. (2007) 



Gaussian-Binary RBM’s 

•  Lots of people have failed to get 
these to work properly. Its 
extremely hard to learn tight 
variances for the visible units. 
–  It took a long time for us to 

figure out why it is so hard to 
learn the visible variances. 

•  When sigma is small, we need 
many more hidden units than 
visible units. 
–  This allows small weights to 

produce big top-down effects. 
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When sigma is much less 
than 1, the bottom-up effects 
are too big and the top-down 
effects are too small. 
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Replacing binary variables by  
integer-valued variables 

     (Teh and Hinton, 2001) 

•  One way to model an integer-valued variable is 
to make N identical copies of a binary unit.  

•  All copies have the same probability,                               
of being “on” :  p = logistic(x) 
– The total number of “on” copies is like the 

firing rate of a neuron. 
–  It has a  binomial distribution with mean N p 

and variance N p(1-p) 



A better way to implement integer values 

•  Make many copies of a binary unit.  
•  All copies have the same weights and the same 

adaptive bias, b, but they have different fixed offsets to 
the bias: 
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A fast approximation 

 
•  Contrastive divergence learning works well for the sum of 

binary units with offset biases. 
•  It also works for rectified linear units. These are much faster 

to compute than the sum of many logistic units. 
output = max(0,  x + randn*sqrt(logistic(x))  ) 
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How to train a bipartite network of rectified 
linear units 

•  Just use contrastive divergence to lower the energy of 
data and raise the energy of nearby configurations that 
the model prefers to the data. 
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Start with a training vector on the 
visible units. 

Update all hidden units in parallel 
with sampling noise 

Update the visible units in parallel 
to get a “reconstruction”. 

Update the hidden units again  reconstruction data 



   3D Object Recognition: The NORB dataset 
   Stereo-pairs of grayscale images of toy objects. 

- 6 lighting conditions, 162 viewpoints 
- Five object instances per class in the training set 
-  A different set of five instances per class in the test set 
- 24,300 training cases, 24,300 test cases 

Animals 

Humans 

Planes 

Trucks 

Cars 

Normalized-
uniform 
version of 
NORB 



Simplifying the data 

•  Each training case is a stereo-pair of 96x96 images. 
– The object is centered. 
– The edges of the image are mainly blank. 
– The background is uniform and bright. 

•  To make learning faster I used simplified the data: 
– Throw away one image. 
– Only use the middle 64x64 pixels of the other 

image. 
– Downsample to 32x32 by averaging 4 pixels. 



Simplifying the data even more so that it can 
be modeled by rectified linear units 

•  The intensity histogram for each 32x32 image has a 
sharp peak for the bright background. 

•  Find this peak and call it zero. 
•  Call all intensities brighter than the background zero. 
•  Measure intensities downwards from the background 

intensity. 
 

0 



Test set error rates on NORB after greedy 
learning of one or two hidden layers using 

rectified linear units  
Full NORB (2 images of 96x96) 
•  Logistic regression on the raw pixels                20.5% 
•  Gaussian SVM (trained by Leon Bottou)           11.6% 
•  Convolutional neural net  (Le Cun’s group)        6.0% 
 (convolutional nets have knowledge of translations built in)                                            

Reduced NORB (1 image 32x32) 
•  Logistic regression on the raw pixels                 30.2% 
•  Logistic regression on first hidden layer            14.9%  
•  Logistic regression on second hidden layer      10.2% 



The 
receptive 
fields of 
some 
rectified 
linear 
hidden 
units. 



Generating the parts of an object  

•  One way to maintain the 
constraints between the parts is 
to generate each part very 
accurately 
–  But this would require a lot of 

communication bandwidth. 
•  Sloppy top-down specification of 

the parts is less demanding  
–  but it messes up relationships 

between features 
–  so use redundant features 

and use lateral interactions to 
clean up the mess. 

•  Each transformed feature helps 
to locate the others 
–  This allows a noisy channel 

sloppy  top-down 
activation of parts 

clean-up using 
known interactions 

pose parameters  

features with 
top-down 
support 

“square
” 

+ 

Its like soldiers on 
a parade ground 



Semi-restricted Boltzmann Machines 
•  We restrict the connectivity to make 

learning easier. 
•  Contrastive divergence learning requires 

the hidden units to be in conditional 
equilibrium with the visibles. 
–  But it does not require the visible units 

to be in conditional equilibrium with the 
hiddens. 

–  All we require is that the visible units 
are closer to equilibrium in the 
reconstructions than in the data. 

•  So we can allow connections between 
the visibles. 
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Learning a semi-restricted Boltzmann Machine 
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1. Start with a 
training vector on the 
visible units. 

2. Update all of the 
hidden units in 
parallel 

3. Repeatedly update 
all of the visible units 
in parallel using 
mean-field updates 
(with the hiddens 
fixed) to get a 
“reconstruction”. 

4. Update all of the 
hidden units again.  

reconstruction data 
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Learning in Semi-restricted Boltzmann 
Machines  

•  Method 1: To form a reconstruction, cycle 
through the visible units updating each in turn 
using the top-down input from the hiddens plus 
the lateral input from the other visibles.  

•  Method 2: Use “mean field” visible units that 
have real values. Update them all in parallel. 
– Use damping to prevent oscillations 
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Results on modeling natural image patches 
using a stack of RBM’s (Osindero and Hinton)  

•  Stack of RBM’s learned one at a time. 
•  400 Gaussian visible units that see 

whitened image patches 
–  Derived from 100,000 Van Hateren 

image patches, each 20x20  
•  The hidden units are all binary. 

–   The lateral connections are 
learned when they are the visible 
units of their RBM. 

•  Reconstruction involves letting the 
visible units of each RBM settle using 
mean-field dynamics. 
–  The already decided states in the 

level above determine the effective 
biases during mean-field settling.  

Directed Connections 

Directed Connections 

Undirected Connections 

400 
Gaussian 
units  

Hidden 
MRF with 
2000 units 

Hidden 
MRF with 
500 units 

1000 top-
level units. 
No MRF. 



Without lateral connections 
real data samples from model 



With lateral connections 
real data samples from model 



A funny way to use an MRF 

•  The lateral connections form an MRF. 
•  The MRF is used during learning and generation. 
•  The MRF is not used for inference. 

–  This is  a novel idea so vision researchers don’t like 
it. 

•  The MRF enforces constraints. During inference, 
constraints do not need to be enforced because the data 
obeys them. 
–  The constraints only need to be enforced during 

generation. 
•  Unobserved hidden units cannot enforce constraints. 

–  To enforce constraints requires lateral connections or 
observed descendants. 



Why do we whiten data? 

•  Images typically have strong pair-wise correlations. 
•  Learning higher order statistics is difficult when there are 

strong pair-wise correlations. 
–  Small changes in parameter values that improve the 

modeling of higher-order statistics may be rejected 
because they form a slightly worse model of the much 
stronger pair-wise statistics. 

•  So we often remove the second-order statistics before 
trying to learn the higher-order statistics. 



Whitening the learning signal instead 
of the data 

•  Contrastive divergence learning can remove the effects 
of the second-order statistics on the learning without 
actually changing the data. 
–  The lateral connections model the second order 

statistics 
–  If a pixel can be reconstructed correctly using second 

order statistics, its will be the same in the 
reconstruction as in the data.  

–  The hidden units can then focus on modeling high-
order structure that cannot be predicted by the lateral 
connections. 

•  For example, a pixel close to an edge, where interpolation 
from nearby pixels causes incorrect smoothing. 



Time series models 

•  Inference is difficult in directed models of time 
series if we use non-linear distributed 
representations in the hidden units. 
–  It is hard to fit Dynamic Bayes Nets to high-

dimensional sequences (e.g motion capture 
data).  

•  So people tend to avoid distributed 
representations and use much weaker methods 
(e.g. HMM’s). 

 



Time series models 

•  If we really need distributed representations (which we 
nearly always do), we can make inference much simpler 
by using three tricks: 
–  Use an RBM for the interactions between hidden and 

visible variables. This ensures that the main source of 
information wants the posterior to be factorial. 

–  Model short-range temporal information by allowing 
several previous frames to provide input to the hidden 
units and to the visible units. 

•  This leads to a temporal module that can be stacked 
–  So we can use greedy learning to learn deep models 

of temporal structure.  



An application to modeling  
motion capture data  

(Taylor, Roweis & Hinton, 2007) 
•  Human motion can be captured by placing 

reflective markers on the joints and then using 
lots of infrared cameras to track the 3-D 
positions of the markers. 

•  Given a skeletal model, the 3-D positions of the 
markers can be converted into the joint angles 
plus 6 parameters that describe the 3-D position  
and the roll, pitch and yaw of the pelvis. 
–  We only represent changes in yaw because physics 

doesn’t care about its value and we want to avoid 
circular variables. 



The conditional RBM model  
(a partially observed CRF) 

•  Start with a generic RBM. 
•  Add two types of conditioning 

connections. 
•  Given the data, the hidden units 

at time t are conditionally 
independent. 

•  The autoregressive weights can 
model most short-term temporal 
structure very well, leaving the 
hidden units to model nonlinear 
irregularities (such as when the 
foot hits the ground).   t-2        t-1        t 
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Causal generation from a learned model 

•  Keep the previous visible states fixed. 
–  They provide a time-dependent 

bias for the hidden units. 
•  Perform alternating Gibbs sampling 

for a few iterations between the 
hidden units and the most recent 
visible units. 
–  This picks new hidden and visible 

states that are compatible with 
each other and with the recent 
history. 
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Higher level models 

•  Once we have trained the model, we can 
add layers like in a Deep Belief Network. 

•  The previous layer CRBM is kept, and its 
output, while driven by the data is treated 
as a new kind of “fully observed” data. 

•  The next level CRBM has the same 
architecture as the first (though we can 
alter the number of units it uses) and is 
trained the same way. 

•  Upper levels of the network model more 
“abstract” concepts. 

•  This greedy learning procedure can be 
justified using a variational bound. 
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Learning with “style” labels 

•  As in the generative model of 
handwritten digits (Hinton et al. 
2006), style labels can be 
provided as part of the input to 
the top layer. 

•  The labels are represented by 
turning on one unit in a group of 
units, but they can also be 
blended. 
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Show demo’s of multiple styles of 
walking 

These can be found at 
www.cs.toronto.edu/~gwtaylor/ 


