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Deep Boltzmann Machines 



The goal of learning 

•  We want to maximize the 
product of the probabilities that 
the Boltzmann machine 
assigns to the binary vectors in 
the training set. 
–  This is equivalent to 

maximizing the sum of the 
log probabilities that the 
Boltzmann machine 
assigns to the training 
vectors. 

•  It is also equivalent to 
maximizing the probability that 
we would obtain exactly the N 
training cases if we did the 
following 
–  Let the network settle to its 

stationary distribution N 
different times with no 
external input. 

–  Sample the visible vector 
once each time. 
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Why the learning could be difficult 

  Consider a chain of units with visible units at the ends 
 
 
 
 
 
 
    If the training set consists of  (1,0) and (0,1) we want the product of 

all the weights to be negative.  
    So to know how to change w1 or w5 we must know w3.  
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A very surprising fact 
•  Everything that one weight needs to know about the other weights 

and the data is contained in the difference of two correlations. 

∂ log p(v)
∂wij

= sis j v − sis j model

Derivative of  log 
probability of one 
training vector, v 
under the model. 

Expected value of 
product of states at 
thermal equilibrium 
when v is clamped 
on the visible units 

Expected value of 
product of states at 
thermal equilibrium 
with no clamping 

Δwij ∝ sis j data
− sis j model



Why is the derivative so simple? 

−
∂E
∂wij

= si s j

•  The energy is a linear function 
of the weights and states, so: 

•  The process of settling to 
thermal equilibrium propagates 
information about the weights. 
–  We don’t need backprop. 
 

•  The probability of a global 
configuration at thermal 
equilibrium is an exponential 
function of its energy. 
–  So settling to equilibrium 

makes the log probability 
a linear function of the 
energy. 

 



An inefficient way to collect the statistics required for learning 
Hinton and Sejnowski (1983) 

•  Positive phase: Clamp a data 
vector on the visible units and set 
the hidden units to random 
binary states. 
–  Update the hidden units one 

at a time until the network 
reaches thermal equilibrium 
at a temperature of 1.   

–  Sample                 for every  
connected pair of units. 

–  Repeat for all data vectors in 
the training set and average. 

•  Negative phase: Set all the 
units to random binary states. 
–  Update all the units one at 

a time until the network 
reaches thermal 
equilibrium at a 
temperature of 1.   

–  Sample                 for every  
connected pair of units. 

–  Repeat many times (how 
many?) and average to get 
good estimates. 
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A better way of collecting the statistics 

•  If we start from a random state, 
it may take a long time to 
reach thermal equilibrium. 
–  Also, its very hard to tell 

when we get there. 
•  Why not start from whatever 

state you ended up in last time 
you saw that datavector? 
–  This stored state is called a 

“particle”. 

Using  particles that persist to 
get a “warm start” has a big 
advantage: 
–  If we were at equilibrium 

last time and we only 
changed the weights a little, 
we should only need a few 
updates to get back to 
equilibrium. 

 



Neal’s method for collecting the statistics (Neal 1992) 

•  Positive phase: Keep a set of 
“data-specific particles”, one per 
training case. Each particle has a 
current value that is a 
configuration of the hidden units. 
–  Sequentially update all the 

hidden units a few times in 
each particle with the 
relevant datavector clamped.   

–  For every connected pair of 
units, average         over all 
the data-specific particles. 

•  Negative phase: Keep a set of 
“fantasy particles”. Each particle 
has a value that is a global 
configuration.  
–  Sequentially update all the 

units in each fantasy particle 
a few times. 

–  For every connected pair of 
units, average         over all 
the fantasy particles. 

sis j
sis j Δwij ∝ sis j data

− sis j model



Adapting Neal’s approach to handle mini-batches 

•  Neal’s approach does not work 
well with mini-batches. 
–  By the time we get back to 

the same datavector again, 
the weights will have been 
updated many times. 

–  But the data-specific 
particle will not have been 
updated so it may be far 
from equilibrium. 

•  A strong assumption about how we 
understand the world:  
–  When a datavector is clamped, 

we will assume that the set of 
good explanations (i.e. hidden 
unit states) is uni-modal. 

–  i.e. we restrict ourselves to 
learning models in which one 
sensory input vector does not 
have multiple very different 
explanations. 



The simple mean field approximation  
•  If we want to get the statistics 

right, we need to update the 
units stochastically and 
sequentially. 

•  But if we are in a hurry we can 
use probabilities instead of 
binary states and update the 
units in parallel. 

•  To avoid biphasic      
oscillations we can                
use damped mean field. 
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An efficient mini-batch learning procedure for 
Boltzmann Machines (Salakhutdinov & Hinton 2012) 

•  Positive phase: Initialize all the 
hidden probabilities at 0.5. 
–  Clamp a datavector on the 

visible units. 
–  Update all the hidden units in 

parallel until convergence using 
mean field updates. 

–  After the net has converged, 
record          for every connected 
pair of units and average this              
over all data in the mini-batch. 

•  Negative phase: Keep a set 
of “fantasy particles”. Each 
particle has a value that is a 
global configuration.  
–  Sequentially update all 

the units in each fantasy 
particle a few times. 

–  For every connected pair 
of units, average         
over all the fantasy 
particles. 

sis jpi pj



Making the updates more parallel 

•  In a general Boltzmann machine, the stochastic 
updates of units need to be sequential. 

•  There is a special architecture that allows 
alternating parallel updates which are much more 
efficient: 
–  No connections within a layer. 
–  No skip-layer connections. 

•  This is called a Deep Boltzmann Machine (DBM) 
–  It’s a general Boltzmann machine with a lot of 

missing connections. visible 
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Can a DBM learn a good model of the MNIST digits? 

Do	  samples	  from	  the	  model	  look	  like	  real	  data?	  



A puzzle 

•  Why can we estimate the “negative phase statistics”  well with only 
100 negative examples to characterize the whole space of possible 
configurations? 

–  For all interesting problems the GLOBAL configuration space is 
highly multi-modal. 

–  How does it manage to find and represent all the modes with 
only 100 particles?  



The learning raises the effective mixing rate. 
  

•  The learning interacts with the 
Markov chain that is being used 
to gather the “negative 
statistics” (i.e. the data-
independent statistics). 
–  We cannot analyse the 

learning by viewing  it as an 
outer loop and the gathering 
of statistics as an inner loop.  

•  Wherever the fantasy particles 
outnumber the positive data, the 
energy surface is raised. 
–  This makes the fantasies 

rush around hyperactively.  
–  They move around MUCH 

faster than the mixing rate of 
the Markov chain defined by 
the static current weights. 



How fantasy particles move between the model’s modes 
•  If a mode has more fantasy particles than 

data, the energy surface is raised until 
the fantasy particles escape. 
–  This can overcome  energy barriers 

that would be too high for the Markov 
chain to jump in a reasonable time. 

•  The energy surface is being changed to 
help mixing in addition to defining the 
model. 

•  Once the fantasy particles have filled in a 
hole, they rush off somewhere else to 
deal with the next problem.  
–  They are like investigative journalists. 

This minimum will 
get filled in by the 
learning until the 
fantasy particles 
escape. 



Pre-training a DBM: Combining three RBMs to make a DBM 

•  The top and bottom 
RBMs must be pre-
trained with the weights 
in one direction twice 
as big as in the other 
direction. 
–  This can be 

justified! 
•  The middle layers do 

geometric model 
averaging. 1W
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Modeling the joint density of images and captions 
(Srivastava and Salakhutdinov, NIPS 2012) 

•  Goal: To build a joint density 
model of captions and 
standard computer vision 
feature vectors extracted 
from real photographs. 
–  This needs a lot more 

computation than 
building a joint density 
model of labels and digit 
images! 

1.  Train a multilayer model of images. 
2.  Train a separate multilayer model of  
word-count vectors.  
3.  Then add a new top layer that is 
connected to the top layers of both 
individual models. 

–  Use further joint training of the 
whole system to allow each 
modality to improve the earlier 
layers of the other modality. 



Modeling the joint density of images and captions 
(Srivastava and Salakhutdinov, NIPS 2012) 

•  Instead of using a deep belief net, use a deep Boltzmann machine that 
has symmetric connections between all pairs of layers. 
–  Further joint training of the whole DBM allows each modality to 

improve the earlier layers of the other modality. 
–  That’s why they used a DBM. 
–  They could also have used a DBN and done generative fine-tuning 

with contrastive wake-sleep. 
 


