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Discovering causal structure as a goal for 
unsupervised learning

• It is better to associate responses with the 
hidden causes than with the raw data.

• The hidden causes are useful for understanding 
the data.

• It would be interesting if real neurons really did 
represent independent hidden causes.
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A different kind of hidden structure

Instead of trying to find a set of independent hidden 
causes, try to find factors of a different kind.

Capture structure by finding constraints that are 
Frequently Approximately Satisfied.

Violations of FAS constraints reduce the probability 
of a data vector. If a constraint already has a big 
violation, violating it more does not make the data 
vector much worse (i.e. assume the distribution of 
violations is heavy-tailed.)

Two types of density model

Stochastic generative model 
using directed acyclic graph 
(e.g. Bayes Net)

Synthesis is easy

Analysis can be hard

Learning is easy after analysis

Energy-based models that 
associate an energy with 
each data vector

Synthesis is hard

Analysis is easy 

Is learning hard?
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Bayes Nets
• It is easy to generate an 

unbiased example at the 
leaf nodes.

• It is typically hard to 
compute the posterior 
distribution over all 
possible configurations of 
hidden causes.

• Given samples from the 
posterior, it is easy to 
learn the local 
interactions

Hidden cause

Visible 
effect

Approximate inference 

• What if we use an approximation to the posterior 
distribution over hidden configurations?
– e.g. assume the posterior factorizes into a product of 

distributions for each separate hidden cause.

• If we use the approximation for learning, there is no 
guarantee that learning will increase the probability that 
the model would generate the observed data.

• But maybe we can find a different and sensible objective 
function that is guaranteed to improve at each update.
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A trade-off between how well the model fits 
the data and the tractability of inference

This makes it feasible to fit very complicated models, but 
the approximations that are tractable may be very poor.
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How well the model 
fits the data

The inaccuracy 
of inference

parameters data

approximating 
posterior 
distribution

true  
posterior 
distribution

new  
objective     
function

Energy-Based Models with deterministic 
hidden units

• Use multiple layers of 
deterministic hidden units 
with non-linear activation 
functions.

• Hidden activities 
contribute additively to 
the global energy, E.
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Maximum likelihood learning is hard

• To get high log probability for d we need low 
energy for d and high energy for its main rivals, c
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To sample from the model use 
Markov Chain Monte Carlo

Hybrid Monte Carlo

• The obvious Markov chain makes a random 
perturbation to the data and accepts it with a 
probability that depends on the energy change.
– Diffuses very slowly over flat regions
– Cannot cross energy barriers easily

• In high-dimensional spaces, it is much better to 
use the gradient to choose good directions and to 
use momentum.
– Beats diffusion. Scales well.
– Can cross energy barriers.
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Trajectories with different initial momenta

Backpropagation can compute the gradient 
that Hybrid Monte Carlo needs

1. Do a forward pass 
computing hidden 
activities.

2. Do a backward pass all 
the way to the data to 
compute the derivative 
of the global energy w.r.t
each component of the 
data vector.
works with any smooth
non-linearity data

j

k

Ek

Ej



7

The online HMC learning procedure

1. Start at a datavector, d, and use backprop to 
compute                   for every parameter.

2. Run HMC for many steps with frequent renewal 
of the momentum to get equilbrium sample, c.

3. Use backprop to compute

4. Update the parameters by :
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A surprising shortcut

• Instead of taking the negative samples from the 
equilibrium distribution, use slight corruptions of 
the datavectors. Only add random momentum 
once, and only follow the dynamics for a few steps.
– Much less variance because a datavector and 

its confabulation form a matched pair.
– Seems to be very biased, but maybe it is 

optimizing a different objective function.
• If the model is perfect and there is an infinite 

amount of data, the confabulations will be 
equilibrium samples. So the shortcut will not cause 
learning to mess up a perfect model.
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Intuitive motivation

• It is silly to run the Markov chain all the way to 
equilibrium if we can get the information required 
for learning in just a few steps.
– The way in which the model systematically 

distorts the data distribution in the first few 
steps tells us a lot about how the model is 
wrong.

– But the model could have strong modes far 
from any data. These modes will not be 
sampled by confabulations. Is this a problem 
in practice?

Contrastive divergence

Aim is to minimize the amount by which a step 
toward equilibrium improves the data distribution.
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Minimize 
Contrastive 
Divergence

Minimize divergence 
between data 
distribution and 
model’s distribution

Maximize the 
divergence between 
confabulations and 
model’s distribution

data 
distribution

model’s 
distribution

distribution after 
one step of 
Markov chain
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Contrastive divergence
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changing the 
parameters 
changes the 
distribution of 
confabulations

Contrastive  
divergence 
makes the 
awkward 
terms cancel

Frequently Approximately Satisfied 
constraints

• The intensities in a typical 
image satisfy many 
different linear constraints 
very accurately,  and violate 
a few constraints by a lot.

• The constraint violations fit 
a heavy-tailed distribution.

• The negative log 
probabilities of constraint 
violations can be used as 
energies.

Violation 
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Learning constraints from natural images
(Yee-Whye Teh)

• We used 16x16 image patches and a single 
layer of 768 hidden units (3 x overcomplete).

• Confabulations are produced from data by 
adding random momentum once and simulating 
dynamics for 30 steps.

• Weights are updated every 100 examples.

• A small amount of weight decay helps.

A random subset of 768 basis functions
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The distribution of all 768 learned basis functions

How to learn a topographic map

image

Linear filters

Global    connectivity

Local    connectivity

The outputs of the linear 
filters are squared and 
locally pooled. This makes 
it cheaper to put filters that 
are violated at the same 
time next to each other.

Cost of first
violation

Cost of second 
violation

Pooled  
squared 
filters 
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Faster mixing chains

• Hybrid Monte Carlo can only take small steps 
because the energy surface is curved.

• With a single layer of hidden units, it is possible 
to use alternating parallel Gibbs sampling.
– Much less computation
– Much faster mixing
– Can be extended to use pooled second layer 

(Max Welling)
– Can only be used in deep networks by 

learning one hidden layer at a time.
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Stochastic Causal
Generative models

The posterior 
distribution is 
intractable.

Deterministic
Energy-Based 
Models

Partition function               
I       is intractable

ICA

Two views of Independent Components Analysis

Z becomes
determinant

Posterior 
collapses

When the number of linear hidden units equals the 
dimensionality of the data, the model has both 
marginal and conditional independence.

Density models

Causal models Energy-Based Models

Tractable 
posterior

mixture models,        
sparse bayes nets 

factor analysis

Compute exact 
posterior

Intractable 
posterior

Densely 
connected  
DAG’s

Markov Chain 
Monte Carlo

or

Minimize 
variational
free energy

Stochastic 
hidden units

Full Boltzmann
Machine

Full MCMC

Restricted 
Boltzmann
Machine

Minimize 
contrastive 
divergence

Deterministic 
hidden units

Markov Chain 
Monte Carlo

Fix the features 
(“maxent”)

Minimize 
contrastive 
divergence

or
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Where to find out more

• www.cs.toronto.edu/~hinton has papers on:
– Energy-Based ICA
– Products of Experts

• This talk is at www.cs.toronto.edu/~hinton


