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Abstract

Lovász and Schrijver [13] defined three progressively
stronger procedures LS0, LS and LS+, for systematically
tightening linear relaxations over many rounds. All three
procedures yield the integral hull after at most n rounds.
On the other hand, constant rounds of LS+ can derive the
relaxations behind many famous approximation algorithms
such as those for MAX-CUT, SPARSEST-CUT. So proving
round lower bounds for these procedures on specific prob-
lems may give evidence about inapproximability.

We prove new round lower bounds for VERTEX COVER

in the LS hierarchy. Arora et al. [3] showed that the inte-
grality gap for VERTEX COVER relaxations remains 2−o(1)
even after Ω(log n) rounds LS. However, their method can
only prove round lower bounds as large as the girth of the
input graph, which is O(log n) for interesting graphs.

We break through this “girth barrier” and show that the
integrality gap for VERTEX COVER remains 1.5 − ε even
after Ω(log2 n) rounds of LS. In contrast, the best PCP-
based results only rule out 1.36-approximations. Moreover,
we conjecture that the new technique we introduce to prove
our lower bound, the “fence” method, may lead to linear or
nearly linear LS round lower bounds for VERTEX COVER.

1. Introduction

Lovász and Schrijver [13] introduced three progressively
stronger lift-and-project procedures LS0, LS, LS+ for
tightening linear relaxations over many rounds (also see
Sherali and Adams [14] for a related procedure). These
procedures tighten relaxations by progressively adding, in
a controlled manner, all inequalities satisfied by integral so-
lutions. They do this by first “lifting” the polytope for the

∗Supported through Sanjeev Arora’s NSF grants MSPA-MCS 0528414,
CCF 0514993, ITR 0205594.

linear relaxation to a higher dimensional space, adding in-
equalities to the high-dimensional polytope, and then pro-
jecting the resulting polytope back to the original space.
Interest in these procedures comes from the following al-
gorithmic property they enjoy: optimizing a linear function
over the rth round relaxation produced by these procedures
can be done in O(nr) time provided that the original re-
laxation has a weak separation oracle (for more on these
methods see Lovász and Schrijver’s original paper [13]
introducing their methods or the exposition in Feige and
Krauthgamer [8]).

Each of these procedures can be thought of as defining a
natural restricted computation model. For example, in the
computation model corresponding to the LS procedure, a
problem is computed in nr “time” if the problem can be
computed by optimizing a linear function over a relaxation
resulting from r rounds of LS tightening. These computa-
tion models seem quite powerful: It is known that all three
procedures yield the integral hull after n rounds. Hence, all
of NP is computable in “exponential time” even in the LS0
model. On the other hand, many recent celebrated approx-
imation algorithms such as the Goemans-Williamson [10]
algorithm for MAX-CUT and the Arora-Rao-Vazirani [4] al-
gorithm for SPARSEST-CUT can be derived within a con-
stant number of LS+ rounds and hence, are computable in
“polynomial time” in the LS+ model.

Thus, proving (unconditional) inapproximability results
in these computation models may give evidence about a
problem’s true inapproximability. Indeed, one motivation
for studying lift-and-project procedures comes from the re-
maining gaps for several optimization problems between
the approximation ratios achieved by known algorithms
and the approximation ratios ruled out using probabilisti-
cally checkable proofs (PCPs): strong lower bounds in the
Lovász-Schrijver hierarchies may give evidence about the
true inapproximability ratio for such problems.

One such problem which has attracted the attention of re-
searchers studying lift-and-project methods is the minimum
VERTEX COVER problem for graphs. Whereas the best al-
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gorithms known give 2 − o(1) approximations (even the
trivial linear programming relaxation achieves this ratio),
the best PCP-based hardness results only rule out 1.36 ap-
proximations (Dinur and Safra [7]). However, 2 − o(1) ap-
proximations are ruled out by Khot and Regev [12] assum-
ing Khot’s Unique Games conjecture [11]. Nevertheless, as
long as the validity of Khot’s conjecture remains unknown,
proving strong (unconditional) integrality gaps for VERTEX

COVER in the Lovász-Schrijver hierarchies may provide an
alternative source of evidence about the true hardness of ap-
proximation for VERTEX COVER.

Proving lower bounds even in the weaker LS0 and LS
hierarchies for problems such as VERTEX COVER defined
by 2-variable constraints has proved very difficult. This
contrasts with problems defined by 3 (or more) variable
constraints (e.g., MAX-3SAT, hypergraph VERTEX COVER)
where strong inapproximability results are known even after
Ω(n) rounds of LS+ (see related work below).

The best previous inapproximability result known for
VERTEX COVER in the Lovász-Schrijver hierarchies was
due to Arora et al. [3] where they showed that the integrality
gap remains 2 − ε even after tightening the standard linear
relaxation for VERTEX COVER with Ω(log n) rounds of LS
lift-and-project. Alternatively, their result can be viewed
as saying that in the LS computation model there exists
no non-trivial o(nlog n) “time” approximation algorithm for
VERTEX COVER. Unfortunately, their techniques can only
prove lower bounds when the number of LS rounds is at
most the girth of the input graph, which is O(log n) for
graphs with large integrality gaps.

We break through this “girth barrier” and obtain in-
tegrality gaps for VERTEX COVER after even Ω(g2) LS
rounds when the girth of the input graph is g. Consequently
we show that VERTEX COVER relaxations produced after
Ω(log2 n) rounds of LS have integrality gaps of size 1.5−ε
for any ε > 0. In other words, there exists no 1.5 − ε ap-
proximation algorithm for VERTEX COVER in the LS com-
putation model running in “time” o(n log2 n).

While smaller than the ratio 2 − ε ruled out by [3],
our integrality gap is larger than the inapproximability ra-
tio of 1.36 proved using PCP-based techniques [7]. In ad-
dition, we stress that our results are unconditional and do
not rely on any “computational complexity” assumptions.
As we discuss further in section 5, we conjecture that our
techniques may yet yield integrality gaps after even linear
rounds of LS.

1.1. Related Work

The work of Arora et al. [3] already mentioned extended
earlier work by Arora et al. [2] showing that the integral-
ity gap remained 2 − o(1) after Ω(

√
log n) rounds of LS.

Related to these papers is a result by Tourlakis [16] show-

ing that the integrality gap for hypergraph VERTEX COVER

remains k − o(1) even after Ω(log log n) rounds of LS.
While the above results are those most easily compa-

rable to our main result, the techniques used in Buresh-
Oppenheim et al. [5] and Alekhnovich et al. [1] are some-
what more related to those used here (this will be discussed
further in the next section). Buresh-Oppenheim et al. show
that the integrality gap for MAX-kSAT, k ≥ 5, remains
(2k − 1)/2k − ε even for relaxations produced after Ω(n)
rounds of LS+ tightenings. Alekhnovich et al. extend these
results to MAX-3SAT. In addition, they prove integrality
gaps of (1 − ε) ln n for SET-COVER and k − 1 − ε for VER-
TEX COVER on k-hypergraphs even after Ω(n) rounds of
LS+.

Other recent papers studying Lovász-Schrijver liftings
are [15, 6, 9, 8]. In the first three papers the empha-
sis is on proving lower bounds on the number of rounds
needed to derive specific inequalities true for the integral
hull; integrality gaps are not explored. While Feige and
Krauthgamer [8] also do not explicitly consider integrality
gaps, an easy corollary of their results shows that a large
integrality gap remains for INDEPENDENT SET even after
Ω(log n) rounds of LS+.

2. Lovász-Schrijver liftings and proving round
lower bounds

We use VERTEX COVER to explain relaxations and how
they are tightened using LS-liftings. Recall that the integer
programming (IP) characterization of VERTEX COVER for a
graph G = (V, E) is:

min
∑

i∈V

vi

s.t. vi + vj ≥ 1 ∀ {i, j} ∈ E

vi ∈ {0, 1} ∀i ∈ [n].

The integer hull I is the convex hull of all the IP solutions.
The standard LP relaxation allows 0 ≤ vi ≤ 1. So the value
of the LP is at most that of the IP. Let P be the convex hull
of solutions to the LP. This LP is tightened by adding con-
straints that also hold for I . This results in a new tighter
polytope P ′ where I ⊆ P ′ ⊆ P . The quality of a relax-
ation P is measured by the ratio optimum value over I

optimum value over P , called
the integrality gap.

Lovász and Schrijver’s [13] lift-and-project procedures
systematically tighten relaxations of 0-1 IPs. They do this
by taking the n-dimensional polytope for a relaxation and
“lifting” it to n2 dimension, adding new constraints to the
high-dimensional polytope, and then projecting the result-
ing polytope back to n-space. We will not give a full
technical exposition of their method here: to understand
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our results the characterization of these lifting is given by
Lemma 2.1 below will suffice.

Before giving this characterization we require definitions
and notation. For technical reasons, the notation for LS
liftings uses homogenized inequalities. In particular, given
a linear relaxation we will introduce a new variable x0 and
replace each constraint aT x ≥ b in the relaxation with the
constraint aT x ≥ bx0. For example, if G is a graph and we
are considering the VERTEX COVER problem, then we will
work with the convex cone VC(G) in Rn+1 consisting of
all vectors (x0, x1, . . . , xn) such that

xi + xj ≥ x0 ∀ {i, j} ∈ E, (2.1)

0 ≤ xi ≤ x0 ∀i ∈ [n]. (2.2)

All cones in what follows will be in Rn+1 where the n + 1
dimensions are indexed 0, 1, 2, . . . , n. We will be interested
in the slice cut by the hyperplane x0 = 1.

While this paper concentrates on LS liftings, we will
also define the related LS0 and LS+ lift-and-project meth-
ods for completeness. Given a convex cone K , denote by
N r

0 (K), N r(K) and N r
+(K) the feasible cones of all (ho-

mogenized) inequalities obtained by applying r rounds of
the LS0, LS and LS+ tightening procedures, respectively.
We define N r

0 (K) = N r(K) = N r
+(K) = K .

The following lemma characterizes the effect of one
round of these procedures:

Lemma 2.1 ([13]) Let K ⊆ Rn+1 be a convex cone. Then
x ∈ N0(K) iff there exists a (n + 1) × (n + 1) matrix Y
such that,

1. Y e0 = diag(Y ) = x,

2. For all 1 ≤ i ≤ n, Y ei, Y (e0 − ei) ∈ P .

The vector x ∈ N(K) iff in addition Y is symmetric. The
vector x ∈ N+(K) iff in addition Y is positive semidefinite.

As suggested in [5] we will call the matrix Y in the above
lemma a protection matrix since it “protects” the vector x
for one round of tightening.

Given a protection matrix Y , the set

V (Y ) = {Y ei, Y (e0 − ei) : 1 ≤ i ≤ n}

is called the set of protection vectors corresponding to Y .
The points x we protect will always have x0 = 1. For such
points, we will often consider the projections of the vectors
in V (Y ) on to the hyperplane x0 = 1. This set is called the
set of projected protection vectors corresponding to Y and
is defined as:

PV (Y ) = {Y ei/xi : i ∈ [n], 0 < xi < 1}∪
{Y (e0 − ei)/(1 − xi) : i ∈ [n], 0 < xi < 1} .

Corollary 2.2 Let K ⊆ Rn+1 be a convex cone and let
y ∈ K , y0 = 1. Suppose that Y is an (n + 1) × (n + 1)
symmetric matrix such that,

1. Y e0 = diag(Y ) = y,

2. PV (Y ) ⊆ K|x0=1.

Then y ∈ N(K).

To show that a large integrality gap remains for VER-
TEX COVER after r rounds of LS tightening it suffices to
proceed as follows. First we begin with a graph G where
the minimum vertex cover has size nearly n. We will then
show that there exists some vector w ∈ VC(G), w0 = 1,
for which

∑
wi is much smaller than n and such that

w ∈ N r(VC(G)).
Corollary 2.2 suggests using inductive arguments to

show that some vector w is in N r(VC(G)). As first sug-
gested in [5], such an argument can be phrased as a Prover-
Adversary game: The game maintains a vector x, initially
w, and proceeds in rounds. Each round the following moves
are made:

1. Given the current value for x, the Prover produces a
candidate protection matrix Yx supposedly showing
that x ∈ N(VC(G)).

2. The Adversary picks one vector y from PV (Yx) and
sets x to y.

The game ends when x is no longer in P , i.e., when the Ad-
versary forces the Prover into constructing an invalid can-
didate protection matrix. The following lemma follows im-
mediately from Lemma 2.1 and the definition of the Prover-
Adversary game, and was noted by Buresh-Oppenheim et
al. [5] (see also [1]):

Lemma 2.3 Suppose w ∈ VC(G). If there exists a strategy
for the Prover such that the game lasts r rounds no matter
what the Adversary does, then x ∈ N r(VC(G)).

PROOF: The proof is by induction on r. The base case
r = 0 is trivially true. So suppose the lemma holds for r
and suppose the Prover has an r+1 round strategy for w. In
the first round of the game the Prover produces a matrix Yx

according to its strategy. Since the Prover’s strategy works
for r + 1 rounds, no matter which vector y ∈ PV (Yx) the
Adversary selects, the game will last r further rounds. By
induction, it follows that PV (Yx) ⊆ N r(VC(G)). Corol-
lary 2.2 then implies x ∈ N r+1(VC(G)). �

Let conv(S) denote the convex hull of a set S. Note that
if x ∈ conv(S) and S ⊆ N r(VC(G)), it follows also that
x ∈ N r(VC(G)). We can use this observation to modify
the game rules as follows:
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1. Given the current point x, the Prover produces a can-
didate protection matrix Yx. The Prover then produces
a set Sx of points such that PV (Yx) ⊆ conv(Sx).

2. The Adversary picks one vector y from Sx and sets x
to y.

Modifying the proof of Lemma 2.3, it follows that if there
exists a strategy for the Prover in this new game such that
the game lasts r rounds no matter what the Adversary does,
then w ∈ N r(VC(G)).

The intuition for introducing the rules of the revised
game is that the vectors in Sx may have nicer struc-
tural properties than the vectors in PV (Yx) facilitating the
Prover’s strategy in future rounds of the game. Indeed, ex-
pressing the vectors in PV (Yx) using convex combination
will be crucial for our “fence” method sketched in Sec-
tion 2.1 below and described formally in Section 4.2.4.

In practice, when trying to show w ∈ N r(VC(G)), we
will pick w so that it enjoys some nice structural properties.
Hence, in our lower bound, the Prover will always construct
Sx so that the difference between any vector in Sx and the
current x is both minimal and predictable.

Remark 2.4 If a coordinate is set to 0 or 1 in the game,
then that coordinate will remain 0 or 1, respectively, for the
remainder of the game: This follows from the definition of
PV (Yx) and from the fact that the PV (Yx) ⊆ conv(Sx).

We now note one way in which our approach will more
resemble that taken in [5] and [1] rather than that in [3].
In [3] LP-duality was used to prove the existence of ap-
propriate protection matrices needed for their lower bound;
no explicit description for their protection matrices was ob-
tained. While our protection matrices will be completely
different than those used in [5, 1], nevertheless, as in those
papers we will always give explicit descriptions for them.
This is crucial since our arguments will require explicit de-
scriptions for the sets PV (Yx).

2.1. The “Fence” trick

Good fences make good neighbours.
–Robert Frost (from “Mending Wall”, 1914)

The key to our new lower bound is what we call the
“Fence” method which we now roughly sketch. A more
technical description will be given in Section 4.2.4.

As in [3] our lower bound will be proved for a graph G
with girth Θ(log n). To prove that a large integrality gap
remains after Ω(log2 n) rounds of LS tightenings we start
the Prover-Adversary game with a “bad” fractional solution
vector w (i.e., the value of the objective function on w is
far from the true integral optimum) and show that there is a

Ω(log2 n) round strategy for the Prover against any Adver-
sary. The vector w will be chosen so that it satisfies some
“nice” structural properties.

In each round of the game, given the current vector x
the Prover’s strategy will be to design Sx (the set of vectors
from which the Adversary chooses x for the next round)
such that the difference between x and any vector in Sx is
minimal. For technical reasons, vectors in Sx will always
differ in at least a few coordinates from x. Hence, as more
and more rounds of the game are played, the current vector
x will differ more and more from the initial vector w.

Let Cx be the induced subgraph of G on those vertices
(i.e., coordinates) that x differs from w. For technical rea-
sons, our Prover strategy will always be successful against
the Adversary provided that Cx has no component with di-
ameter greater than half the girth of G.

Now, it is not too hard to tailor the Prover’s strategy so
that in the ith round of the game the sum of the diameters of
all components in Cx is at most O(i) (for instance, by adapt-
ing the arguments in [3]). So since G has girth Θ(log n),
the Prover can use such a strategy to play Ω(log n) rounds
of the game against any Adversary. However, this strategy
will fail beyond Ω(log n) rounds since Cx may then contain
a component with diameter greater than half the girth.

To continue the game, the Prover then uses the “fence
trick”: If some vector y in Sx (the set from which the Adver-
sary chooses x for the next round of the game) is such that
Cy has a component A with diameter nearly half the girth,
then the Prover will put a “fence” around this component to
stop it from growing any larger and becoming “dangerous”.
The Prover does this by taking advantage of Remark 2.4
which implies that during the game we can ignore all nodes
in G (i.e., remove the respective coordinates from x) that
are set to 1 by x (this is made formal in section 4.1). So
to put a “fence” around A, the Prover expresses y as a con-
vex combination of vectors each of which sets some nodes
surrounding A to 1, disconnecting it from the rest of G.

3. The Main Theorem

We prove our main result in this section: Given a graph
G, let VC(G) ⊆ Rn+1 denote the convex cone of feasible
solutions to constraints (2.1) and (2.2), the homogenized re-
laxed VERTEX COVER constraints for G.

Theorem 3.1 For all ε > 0 there exists a constant δ > 0
and an integer n0 such that for all n ≥ n0 there exists an
n-vertex graph G for which N r(VC(G)) has an integrality
gap of at least 1.5 − ε for all r ≤ δ log2 n.

The graphs used to prove Theorem 3.1 are high-girth
sparse graphs with degree bounded by some constant d ≥ 3.
With non-zero probability, such graphs have a maximum in-
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dependent set of size O( n log d
d ). In particular, we have the

following theorem from standard graph theory:

Theorem 3.2 There exist constants α, β > 0 and integers
n0, d0 such that for all n ≥ n0 and all d ≥ d0, there exists
a graph G(n, d) with n vertices, degree at most d, girth
at least β log n, and maximum independent set size at most
αn log d

d .

The graphs given by the above theorem will be used to
prove the following theorem from which Theorem 3.1 will
follow.

Theorem 3.3 Let w = (1, 2
3 , 2

3 , . . . , 2
3 ) ∈ Rn+1. Let

n0, d0 be the constants given by Theorem 3.2. Then for all
n ≥ n0 and all d ≥ d0, the point w is in N r(V C(G(n, d))
for r = Ω(log2 n).

Section 4 below is devoted to proving Theorem 3.3.

PROOF:[Proof of Theorem 3.1] Theorem 3.3 shows that for
large n and d there exist graphs G for which the integrality
gap of N r(VC(G)) for r = Ω(log2 n) is 3

2 (1− α log d
d ). The

latter quantity can be made arbitrarily close to 1.5 by taking
d sufficiently large. �

4. Proof of Theorem 3.3

Fix d ≥ d0 and n ≥ n0, and let G = G(n, d) be the
graph given by Theorem 3.2 for these values. Let g denote
the girth of G. Note that g ≥ β log n.

To prove Theorem 3.3 we will first require some defini-
tions. Then we will describe the Prover’s strategy for the
vector w and graph G. Concurrently, we will show that the
described strategy works for r rounds against any adversary,
where r = (g/28)2/2.

4.1. Round invariants and Components

We will define three properties/invariants that the Prover
will ensure the current vector x for the game satisfies at the
beginning of each round. The first is the following:

Property 1: x ∈ VC(G) and x ∈ {
0, 1, 1

3 , 2
3

}n+1
(of

course, x0 = 1 always).

This invariant allows us to make several crucial definitions.
First we make some observations.

Note that the constraints for any edge in G incident to
a vertex i where xi = 1 are trivially satisfied. Moreover,
since x ∈ VC(G), if xi = 0 then xj must be 1 for all
vertices j adjacent to i. Hence, since vertices that are 0/1
valued will never change their values in subsequent rounds
(see Remark 2.4), when analyzing the effect of one round

of N it will suffice to only consider the subgraph Gx of G
induced by those vertices with value in

{1
3 , 2

3

}
under x. We

will say that vertex j has value a in Gx if xj = a.
Next we define the concept of a simple component in

Gx. Intuitively, a simple component in Gx is any connected
component in Gx such that all edges with both vertices in
the component have one vertex with value 1

3 and the other
with value 2

3 . We now make this precise.
Given x ∈ VC(G), let G′

x be the subgraph of Gx in-
duced by all edges (i, j) in Gx such that one of xi or xj is
1
3 (note that since x ∈ VC(G), at most one vertex in each
edge has value 1

3 ).

Definition 4.1 A (vertex induced) subgraph C of Gx is
called a simple component if it is a maximal connected
component of G′

x (i.e., adding any vertex of G′
x to C results

in an unconnected (vertex induced) subgraph of G ′
x).

We will ensure (see Property 2 below) throughout the
Prover-Adversary game that all simple components in Gx

have diameter much smaller than half the girth of G. Hence,
adjacent vertices in a given simple component cannot both
have value 2

3 under x. In particular, this ensures that the
following definition is consistent:

Definition 4.2 A node i belongs to the boundary of a simple
component C in Gx if (a) i ∈ C, (b) xi = 2

3 , and (c) there
exists j such that xj = 2

3 and (i, j) ∈ E. (Note that since
C has diameter less than g/2, j cannot be in C.)

The edge distance dE(C, C′) in Gx between two sim-
ple components C and C ′ is the length (i.e., number of
edges) of the shortest path in Gx connecting some bound-
ary node of C with some boundary node of C ′. The distance
d(C, C′) between the two simple components is equal to
dE(C, C′) − 1. If no paths exists between the components,
then dE(C, C′) and d(C, C ′) are defined to be infinite.

Consider the following procedure: Let D be a set whose
items will be simple components of Gx, and suppose D ini-
tially contains only one simple component C. Repeat the
following procedure until D no longer grows in size: For
every simple component C ′ in D, add to D all simple com-
ponents C ′′ that are within distance 2 of C ′ in Gx. The final
set from this procedure is called the closure of C.

Definition 4.3 A vertex induced subgraph C of Gx is a
complete component if there exists a simple component C ′

in Gx such that the vertices of C are precisely the vertices
of all simple components in the closure of C ′.

Intuitively, a complete component is formed by adding to
a simple component all simple components that are “near”
it, and then adding all simple components that are “near”
the resulting component, and so on.
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Definition 4.4 A node in Gx is untouched if it belongs to no
complete component. Otherwise, the node is touched. Note
that untouched nodes always have value 2

3 .

Distance between two complete components is defined
in the same way it was defined for simple components. Note
that by definition the distance between two components is
at least 3. This fact is important, so we make special note of
it:

Observation 1: The distance between two complete
components is at least 3. Hence, along any path con-
necting two complete components in Gx there are at
least 3 consecutive untouched nodes.

The second invariant the Prover will ensure is that at the
beginning of each round all complete (and hence all simple)
components in Gx have diameter substantially smaller than
g. In particular, it will ensure that the following property
holds for x at the beginning of each round:

Property 2: No complete component in Gx has diam-
eter greater than γ, where γ = g/28.

If at some point in the game some complete component’s
diameter gets too large, then the Prover will “remove” the
complete component from Gx. Intuitively, this will be done
by altering x so that the values of nodes immediately around
the too-large component are 0/1. Hence the complete com-
ponent will be “fenced off” from the rest of the graph and
can be ignored for the rest of the game. The details of how
this is done are in Section 4.2.4.

Finally, the following Property will also be ensured:

Property 3: At the beginning of round i the sum of the
diameters of all complete components in Gx is at most
7i.

In the next section we describe the Prover’s strategy in
round i ≤ r = γ2/2 = Ω(log2 n). While describing the
strategy we will prove that if i < r, then the Prover’s strat-
egy will guarantee that Properties 1–3 will hold at the start
of the following round. Hence, Theorem 3.1 will follow.

4.2. The Prover’s strategy for x in round i

4.2.1 “High-level” description

The Prover’s strategy can be described as follows: By in-
duction, the Prover can assume that the Properties 1–3 hold
for x at the start of the round; they of course hold for
the base case vector x = w. The Prover will then con-
struct the “obvious” protection matrix Yx for x where “ob-
vious” will be made precise below; the Round Invariants
will be crucial for this (Section 4.2.2). The set PV (Yx)
may not be contained in x ∈ {

0, 1, 1
3 , 2

3

}n+1
(in particu-

lar, some vectors may have entries that are 1
2 ), i.e., these

vectors may not satisfy Property 1. The Prover will then
construct a new set S ′

x ⊆ {
0, 1, 1

3 , 2
3

}n+1
of vectors such

that PV (Yx) ⊆ conv(S′
x) (Section 4.2.3). The vectors in

S′
x may not satisfy Property 2. The “fence” trick will be

used by the prover to construct a new set Sx satisfying all
the invariants and such that S ′

x ⊆ conv(Sx) (Section 4.2.4).
The details now follow.

4.2.2 The “obvious” protection matrix Yx for x

To simplify notation, we will write Y for Yx. Since Y is
supposed to be symmetric, we will often use the notation
Yij instead of Yi,j or Yj,i.

The protection matrix Y for x will depend on the struc-
ture and properties enjoyed by complete components in G x.
In particular, we will use the fact that Property 2 implies
all complete (and simple) components are trees. Moreover,
we will also use Observation 1 which says that there is
a “buffer” between complete components. This “buffer”
will ensure that entries of Y corresponding to one com-
plete component are independent of those for other com-
plete components. In particular, whenever two vertices i
and j are not in the same complete component this will gen-
erally allow us to set Yij = xixj . Only for i, j in the same
complete component (and some isolated other cases), will
there be a “non-trivial” value for Yij . The formal definition
for Y now follows.

We will define Y by defining Y ei for all i, 1 ≤ i ≤ n,
and then arguing that our definition is symmetrical. Fix a
node i in G. If xi = 0, then Y ei is simply �0. If xi = 1,
then Y ei = x. So assume 0 < xi < 1. As required by
the definition of a protection matrix, we have that Y ii =
xi. There are now two cases depending on whether i is
contained in a complete component or not.

Case 1: i is not in a complete component

Consider i’s neighbours. These may or may not belong to
complete components (in particular, they may or may not
lie on the boundary of some simple component). Note that
it follows from Observation 1 that at most one neighbour of
i belongs to a complete component.

We define Y ei as follows: for each neighbour ij of i
let Yij ,i = 1

3 . For all remaining vertices � ∈ G, we set
Y�,i = x�xi. If there is a neighbour, say i1, that belongs to
a complete component, we must make some adjustments to
Y ei: Let C ′ be the simple component in which ij belongs,
and set Yk,i = 1

3 for all k ∈ C ′.

Case 2: i is in some complete component C

There are two subcases depending on whether vertex i is in
a simple component or not.

First consider the case that i is in some simple compo-
nent C ′. Either xi = 1

3 , or xi = 2
3 . Suppose xi = 1

3 . Then
for all vertices k ∈ C ′, Yk,i = 1

3 if xk = 1
3 (i.e., since C ′
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is a tree, k has even distance from i in C ′), while Yk,i = 0
otherwise (i.e., if the distance is odd). For all simple com-
ponents D in C distance 0 from C ′ in Gx, and for all nodes
k ∈ D, let Yk,i = 1

3 if xk = 2
3 , and let Yk,i = 0 otherwise.

For all nodes k ∈ Gx that do not belong to any complete
component and such that k is adjacent to a boundary node
of C ′, let Yk,i = 1

3 . Finally, for all remaining nodes � ∈ G,
set Y�,i = x�xi.

Now suppose instead that xi = 2
3 . Then for all vertices

k ∈ C′, Yk,i = 2
3 if xk = 2

3 , while Yk,i = 0 otherwise. For
all simple components D in C distance 0 from C ′ in Gx,
Yk,i = 1

3 for all nodes k ∈ D. For all nodes k ∈ G that do
not belong to any component and such that k is adjacent to
a boundary node of C ′, we have that Yk,i = 1

3 . Finally, for
all remaining nodes � ∈ G, we set Y�,i = x�xi.

Now we consider the case that i is not in any simple
component. We must then have xi = 2

3 . Moreover, ev-
ery vertex adjacent to i must also have value 2

3 in Gx. We
define Y ei as follows. For each vertex k adjacent to i we set
Yk,i = frac13. In addition, for each simple component D
in C adjacent to i (note that there must be at least one such
simple component), we set Yk,i = 1

3 for all vertices k ∈ D.
Finally, for all remaining nodes � ∈ G, we set Y�,i = x�xi.

It remains now to argue that (1) the definition of Y is in-
deed symmetric, and that (2) the protection vectors defined
by Y are in VC(G).

Symmetry follows straightforwardly from the definition
and a complete proof will not be given here. We will only
note as an illustrative example how when i, j are both in the
same simple component, then the definition of Y ij always
depends only on whether the distance between i and j is
odd or even. Moreover, this is well-defined since all simple
components are trees.

Now let us argue that the vectors in PV (Y ) are in
VC(G). Fix i such that 0 < i < 1 and consider y =
Y ei/xi. Note that y is identical to x in all coordinates ex-
cept:

1. Coordinate i which has yi = 1,

2. If i was not in a simple component of Gx, then all (non
0/1) neighbours of i in G are now 1

2 , and all nodes in
simple components of Gx that touched i are also 1

2 .

3. If i was in a simple component C ′, then all nodes at
odd distance from i in C ′ are now 0 under y; and all
nodes at even distance from i in C ′ are now 1 under
y. Moreover, if xi = 2

3 , then all nodes in those simple
components (in Gx) that touched C ′ are now 1

2 . Free
nodes touching C ′ are also set to 1

2 under y. Finally, if
instead xi = 1

3 , then all nodes in a simple components
D (in Gx) that touched C ′ are 1 under y if the node’s
distance (through D) to C ′ is even, and 0 under y if

the distance to C ′ is odd. Again, in this case (xi = 1
3 ),

free nodes touching C ′ are now set to 1 under y.

Since x ∈ VC(G) it follows that the VERTEX COVER con-
straints are satisfied by all edges whose nodes have the same
value under y as under x. So let’s concentrate on those
nodes which changed as described above. Clearly all edges
in those simple components whose values are affected as de-
scribed in (2) and (3) above still satisfy the VERTEX COVER

constraints under y. Moreover, using the fact there is a
“buffer” between complete components (Observation 1), it
follows from the definition of Y that the edges between af-
fected components and unaffected nodes also satisfy the
VERTEX COVER constraints. So y satisfies the VERTEX

COVER constraints.
To show that Y (e0 −ei)/(1−xi) ∈ VC(G) uses similar

arguments.

4.2.3 Constructing S ′
x ⊆ {

0, 1, 1
3 , 2

3

}n+1
such that

PV (Yx) ⊆ conv(S′
x)

The vectors in PV (Yx) may not be in
{
0, 1, 1

3 , 2
3

}n+1
. In-

deed they may contain 1
2 ’s. However, since PV (Yx) ⊆

VC(G), it follows that for all vectors y ∈ PV (Yx), the
following is true: In the graph Gy , all nodes j with yj = 1

2
are adjacent to nodes whose values are either 1

2 or 2
3 . Hence

it is easy to see then that for each vector y ∈ PV (Yx) there
exist vectors y1 and y2 such that y is the average of y1 and
y2, and such that y1 and y2 are equal to y everywhere with
the exception that for every node k such that yk = 1

2 , then
k is 1

3 in one of y1 or y2, and 2
3 in the other.

We then define S ′
x to be the set containing precisely

the vectors y1 and y2 corresponding to each vector y ∈
PV (Yx).

4.2.4 The “Fence” trick:
Ensuring components have small diameter

The vectors in S ′
x may not satisfy Property 2. To fix this,

for each vector y ∈ S ′
x that does not satisfy Property 2, the

Prover will construct a set By of vectors that will satisfy
all three properties in the next round and moreover, y ∈
conv(By). Essentially, the vectors in By will isolate all
components that do not satisfy Property 2 by ensuring such
vectors have a “fence” of 1’s around such components. The
set Sx will then be ∪y∈S′

x
By (where By = {y} if y does

satisfy Property 2).
Before we describe how the Prover finds these “fences”,

let us consider how the graph Gy for some y ∈ S ′
x compares

to Gx. Essentially, the only possible differences are:

1. Some free node is set to 0/1 which results in (a) either
a new simple component of diameter 3 being created,
or (b) in some previously existing simple component
having its diameter increased by at most 3.
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2. Some free node is set to 0/1 which results in at most d
complete components being “merged”. The resulting
complete component will have diameter bounded by at
most 3+ γ1 + γ2 where γ1 and γ2 are the diameters of
the two largest component involved in the merge.

3. Some node in a simple component C ′ is set to 0/1
which results in each adjacent simple components hav-
ing its vertices either (a) set to 0/1 or (b) the pattern
of 1

3 - 2
3 for the values of the nodes in the component

is reversed (i.e., nodes that were 1
3 are now 2

3 and
vice versa). In addition, free nodes adjacent to the af-
fected simple components may be altered. Let C be the
complete component containing C ′. In both cases (a)
and (b), C may have some formerly untouched nodes
added to it. In either case, the diameter of C increases
by at most 2. This may result in C being closer than
distance 3 to other complete components in which case
these components merge to form a new complete com-
ponent. Again, it is not hard to see that this new
complete component will have diameter bounded by
at most 6 + γ + γ1 + γ2 where γ is the diameter of
the complete component containing C ′ and γ1 and γ2
are the diameter of the two largest other component
involved in the merge.

Note that in all cases, the sum of the diameters of all com-
plete components in Gy increases by at most 6. More-
over, note that any complete component in Gy with diame-
ter greater than γ will still have diameter bounded by 3γ.

We can now give a high-level description of the algo-
rithm the Prover will use when putting up “fences” for a
vector y ∈ S ′

x that violates Property 2. First the Prover will
“group” all complete components that are “near” to each
other in an effort to divide all complete components into
sets of “super-components” of diameter at least γ/2 and
at most 7γ. Note that any super-components that cannot
be “grown” to a super-component of this diameter must be
“far” from all other super-components; the Prover will ig-
nore them. Super-components of diameter at least γ/2 are
called full-size. The set of full-size components will be de-
noted by C.

The Prover will then “isolate” all super-components
by defining a set A of vectors such that for each super-
component C (a) every path in Gy of length 2 adjacent to a
boundary node of C has at least one vertex with value 1 in
all vectors in S1 and (b) y ∈ conv(A). Hence, for all z ∈ A,
in the graph Gz (a) each super-component is disconnected
from the rest of the graph and (b) no complete component
has diameter greater than γ/2. This isolation step is where
the “fences” are put up.

Finally we will argue that this means that there exists
yet another set By of vectors that are 0/1 on all super-
components, will satisfy Properties 1–3 in the next round,

and such that A ⊆ conv(By). Thus the Prover effec-
tively “removes” all super-components from the graph, and
in particular, removes all complete components of diameter
greater than γ from the graph.

We now describe formally how the Prover does “group-
ing”, “isolating”, and “removing”. The arguments show-
ing that these procedures produce a final set By whose vec-
tors all satisfy Properties 1–3—and hence allow the Prover
to successfully play at least one more round against the
Adversary—will crucially rely on the fact that i < r =
γ2/2.

Grouping: The two rules for grouping complete compo-
nents into super-components are as follows: (1) Two com-
plete components can be put in the same super-component
if the distance between them is at most 8; and (2) The di-
ameter of a super-component cannot exceed 7γ. Note that
all complete components in Gy have diameter at most 3γ.
Moreover, by definition all complete components not in C
have diameter at most γ.

Do an initial grouping of all components as follows: Let
the first group g1 initially contain some complete compo-
nent C of Gy . Now keep adding to g1 any complete compo-
nent that is within distance 8 of some complete component
already in g1. Do this until no more such complete compo-
nents can be found. For the second group g 2, let it initially
contain some complete component C ′ not in g1. Again add
to g2 all components that are within distance 8 of all com-
ponents already in g2. Groups g3, g4, and so on, are then
formed in the same way until all complete components are
in some group.

Note that the distance between two groups is at least 9.
Assume there are � groups, and assume without loss of gen-
erality that the first k groups have diameter less than γ/2.
These super-components will be called small. Focus atten-
tion on groups gk+1, . . . , g�. Note that some of these groups
may have diameter greater than 7γ. However, since no com-
plete component has diameter greater than 3γ, there is a par-
tition of these groups into new groups g ′

1, . . . , g
′
k′ such that

each of these groups has diameter between γ/2 and 6γ.
Groups g1, . . . , gk and g′

1, . . . , g
′
k′ together define the

super-components the Prover will use. Note that the small
super-components given by g1, . . . , gk each have distance
at least 9 from any other super-component. The super-
components g ′

1, . . . , g
′
k′ are the full-size components. Note

that by Property 3, there can be at most r/(γ/2) ≤ γ full-
size components. Note also that this is the only part of the
proof that will use the fact that r ≤ γ2/2.

It is not hard to see that when the partitioning is done to
form the full-size components, it can be done so that the fol-
lowing property holds: For each g ′

i, there exists a spanning
tree for the super-component g ′

i (where a spanning trees for
a super-components is defined in the obvious way) such that
the distance between any two of these spanning trees is at
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least 3 (this can be argued by appealing to Observation 1).
Fix such a spanning tree for each full-size component.

Isolating: We will show how to handle the case where no
two full-size components have distance exactly 4 (i.e., dis-
tance is either 3 or at least 5); we leave out the case where
some full-size components have distance 4 which involves
similar reasoning but requires a somewhat more technical
case-by-case analysis.

Define a node to be on the boundary of a full-size com-
ponent if it is a boundary node of a simple component con-
tained in the full-size component. We will now define two
fractional vertex covers y1 and y2 such that y = 1

3y1 + 2
3y2.

For every point i that is a boundary node of some simple
component C ′ in a full-size component C we do the fol-
lowing: For every path (i, j1, j2) of length 2 (i.e., 2 edges)
starting from i such that neither of j1 or j2 are in the span-
ning tree for C (such a path is called a 2-path coming out of
a boundary node) we will have the following assignments
in y1 and y2: Either (a) the values of j1 and j2 are 1 and 0,
respectively, in y1 and 1

2 and 1, respectively in y2, or (b) the
values of j1 and j2 are 2

3 and 1, respectively, in y1 and 2
3

and 1
2 , respectively in y2. Thus every path of length 2 out of

a boundary node has two possible assignments in y 1 and y2.
For all remaining coordinates, have y 1 and y2 be identical
to y.

Lemma 4.5 There exists a consistent way to decide what
type of assignment to give to all 2-paths coming out of
boundary nodes in full-sized components.

PROOF: We make the following observation that will be
crucial below: Since the diameter of a super-component is
less than 7γ, no two 2-paths from a single component are
adjacent.

Suppose no such consistent assignment existed. In par-
ticular, suppose that for every possible assignment there ex-
ists some boundary node i in a full-size component C and
two 2-paths p1 = (i, j1, j2) and p2 = (i, j1, j3) coming out
of i such that the following holds: If p1 has an assignment
of type (a), then p2 must have an assignment of type (b),
and vice versa.

For this causal relationship to hold, the following must
be the case: If p1 has an assignment of type (a), it forces the
assignment of some adjacent 2-path (i ′, j′

1, j
′
2) where i′ is

a boundary node in some other full-size component (Note:
it cannot be from C by the above observation). In turn this
forces the assignment of some 2-path adjacent to the previ-
ous 2-path coming out of yet another full-size component
(it must be different by girth considerations). In turn this
forces the assignment of some 2-path adjacent to the previ-
ous 2-path coming out of yet another full-size component,
different from all full-size components involved so far. This
chain of dependencies continues in this way. However, this

chain can only continue for k ′ ≤ γ = g/28 more steps
(where k′ is the number of full-size components) since af-
ter that there are no more full-size components to continue
the chain. But then, this causal chain cannot reach p2, con-
tradicting the fact that p1’s assignment type influences p2’s
assignment. �

It follows that y1 and y2 can be consistently defined.
Note that each full-size components has no edge to the

rest of the graph in Gy1 ; hence all full-size components are
isolated in Gy1 . However, this is not necessarily true in
Gy2 . To fix this we will define four vectors y3, y4, y5 and y6

such that y2 is in the convex hull of these vectors and such
that the full-size components are isolated the corresponding
graphs for these vectors. These vectors are defined as fol-
lows: For every 2-path (i, j1, j2) with assignment of type
(a), j1 and j2 are 1

3 and 1, resp., in y3, and are 1 and 1,
resp., in y4; for every 2-path (i, j1, j2) with assignment of
type (a), j1 and j2 are 1

3 and 1, resp., in y5, and are 1 and 0,
resp., in y6. It can be verified that these vectors have the re-
quired properties and moreover, satisfy the VERTEX COVER

constraints. Let A =
{
y1, y3, y4, y5, y6

}
. By construction,

y ∈ conv(A).
It is straightforward to verify that the vectors in A satisfy

Properties 1 and 3 for the next round.

Removing: As noted above, all components with diameter
larger than γ/2 are disconnected in the graphs correspond-
ing to the vectors in A. Fix a vector z ∈ A and consider the
subgraph GC of Gz induced by some isolated component
C. Since this isolated component has diameter less than the
the girth g of G, it follows that C is a tree. In particular,
C has an independent set of size |C|/2. It follows that zC

(i.e., z restricted to those coordinates indexed by nodes in
C) is in the integral hull of the VERTEX COVER polytope for
GC . Indeed, this is true for all vectors in A and all isolated
components.

But then, there exists a set Z of vectors which are (a) 0-1
on the subgraphs of the isolated components, (b) identical
to some vector in A outside those components, and (c) A ⊆
conv(Z). The Prover then lets By = Z .

5. Discussion

We feel that our methods should extend to proving that
the integrality gap for VERTEX COVER relaxations is in fact
2 − o(1) after Ω(log2 n) rounds of LS tightening. Indeed,
the use of the all- 2

3 vector to prove our integrality gap of
1.5 − o(1) was motivated by our desire to keep our pro-
tection matrices and hence our girth correction strategies
as simple as possible. An analogous proof using the all-
(1
2 +γ) vector for some small γ > 0 (and hence yielding an

integrality gap of 2/(1 + 2γ) − o(1)) may also be possible;
however, coming up with a strategy for putting up “fences”
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will become much more complicated and likely be very dif-
ficult to analyze.

We also conjecture that a variation of our “fence” method
might be able to yield integrality gaps for up to Ω(n1−δ)
rounds of LS for some δ > 0. The current proof fails af-
ter O(log2 n) rounds since Lemma 4.5 only works if there
are Ω(log n) super-components; this is not true after log2 n
rounds using the current Prover strategy. A different ar-
gument may be able to get around this deficiency. Note
that under Khot’s Unique Games conjecture [11], VERTEX

COVER has no 2 − o(1) approximations [12]. In particu-
lar, Khot’s conjecture implies that there must remain a large
integrality gap even after nδ rounds of LS tightenings for
some δ > 0.

Our lower bound argument does not yield any inte-
grality gaps for LS+ tightenings for VERTEX COVER (re-
call that unlike LS, the LS+ procedure also includes a
positive semi-definiteness constraint). Proving such lower
bounds for VERTEX COVER remains a difficult open prob-
lem. Moreover, such lower bounds would arguably provide
much stronger evidence about the true inapproximability of
VERTEX COVER.

It would be interesting to see if our techniques can be
used to prove integrality gaps for UNIQUE LABEL COVER

(the problem from Khot’s Unique Games conjecture) in the
LS or LS+ hierarchies. Such results could further sup-
port Khot’s Unique Games conjecture, in turn providing fur-
ther evidence about the true inapproximability of VERTEX

COVER.
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