NONLINEAR MULTILAYERED SEQUENCE MODELS

I[lya Sutskever

A thesis submitted in conformity with the requirements
for the degree of Master of Science
Graduate Department of Computer Science
University of Toronto

Copyright (©) 2007 by Ilya Sutskever

Abstract

Nonlinear Multilayered Sequence Models

Ilya Sutskever
Master of Science
Graduate Department of Computer Science

University of Toronto

2007

Feature discovery is a fundamental problem, for the performance of any learning
algorithm depends on the features it is given. In this thesis we focus on the problem
of feature discovery for sequential data, such as video or speech, which is important for
many practical problems, including that of constructing an intelligent agent. The hidden
variables of probabilistic models that are fitted to the data often act as useful features
for discrimination tasks that are not known during learning.

We introduce several powerful probabilistic sequence models with efficient learn-
ing and inference algorithms that can learn accurate models of highly complex, high-

dimensional sequence data and produce hierarchical features.

ii

Acknowledgements

I would like to thank my supervisor Geoffrey Hinton, who taught me a considerable
amount on neural networks and research, devoted me much time, and shared with me his
knowledge, experience and wisdom. Working with him was very enjoyable and he made
my learning process a pleasant one.

I wish to thank Radford Neal for promptly reading my thesis and providing me with
valuable comments and remarks.

I would like to thank my fellow grad students and my friends, (pseudorandomly per-
muted): Hadassa Brunschwig, Tijmen Tieleman, Keir Mierle, Roland Memisevic, Vinod
Nair, Josh Susskind, Alex Levinshtein, Ruslan Salakhutdinov, Andriy Mnih, Arnold Bi-
nas, Graham Taylor, Paul Cook, Christopher Parisien, Mike Jamieson, Peter Liu, and
anyone else I forgot to mention; they made my experience of grad school (and lunches)
very much fun.

And finally, T wish to thank my grandparents, parents and my brother Noam for all

their support and encouragement.

iii

Contents

Introduction

Background Material and Review of Related Work

2.1 Probabilistic models, inference and learning
2.2 Markov Chain Monte Carlo
2.3 Probabilistic Sequence Models with Hidden State
2.4 Non-probabilistic Sequence Models

2.5 Discriminative Sequence Models

Boltzmann Machines

3.1 The General Boltzmann Machine
3.2 Restricted Boltzmann Machines
3.2.1 Using Probabilities for Real Values

3.3 A Multilayered Extension of the RBM

The Temporal Restricted Boltzmann Machine

4.1 Model definition Lo
4.2 Approximate filtering o000

43 Learning Lo oo

4.4 Multilayered TRBM oo o000

v

11

12

16

17

18

18

20

22

23

26

5 The Windowed Restricted Boltzmann Machine
5.1 Model definition Lo Lo
5.2 Learning and The Boltzmann Machine View
5.3 Multilayered WRBM oo o
5.4 Multigrid Multilayered WRBMo oo
5.5 Recursive Multigrid Multilayered WRBM

6 Fine-tuning deep models
6.1 The Wake-Sleep Algorithm
6.2 The Disadvantages of the Wake-Sleep Algorithm
6.3 The Contrastive Wake-Sleep Algorithm
6.4 Contrastive Wake-Sleep applied to Deep Sequence Models

6.5 Mixed multilayered modelso oL

7 Experiments
7.1 TheDataset
7.2 Themodels we test Lo
7.3 Learningdetails Lo
74 Results.

8 Conclusions and Discussions

Bibliography

34
34
36
37
38
40

42
42
44
46
47
a0

52
92
93
o4
o6

61

63

Chapter 1

Introduction

Consider the following tasks:

1. Given a scanned image of a handwritten note with diagrams, convert it into a

typeset file (e.g., Tex) with beautiful diagrams.

2. Given a photograph, determine the identities and positions of all the people it

contains.
3. Given an audio recording, determine the words spoken in it.
4. Given an email, determine whether it is spam.

These problems are important from the practical point of view, require almost no effort
for humans to solve and currently cannot be solved using conventional programming
techniques.

Machine learning algorithms for pattern recognition, or classification, can learn rea-
sonably good solutions to such problems using a collection of training examples (also
called a training set, or training data). For instance, a learning algorithm applied to
the optical character recognition problem may be given 10,000 images of handwritten

characters and their identities, labeled manually. After the algorithm finishes learning it

CHAPTER 1. INTRODUCTION 2

outputs an extremely complicated computer program that solves the task exemplified by

the training set.

Most learning algorithms are much simpler than the programs they output. They
work by assuming that the desired program can be implemented by a member of a family
of smoothly parameterized functions. The learning algorithm finds, using numerical
optimization, a setting of the parameters so that the function, represented by the found
parameters, minimizes (a smooth variant of) the number of incorrectly classified examples
in the training set. It is plausible that if the function found by the algorithm performs
well on the training set then it performs well for unseen examples as well, provided that

the function is not too irregular.

The complexity of the resulting function lies in its parameter settings, for there are
often tens of thousands (sometimes, millions [21]) of parameters. The parameters of
the found function may contain little regularity, and an implementation of the learned
function in C would take thousands of lines of incomprehensible code, consisting mainly

of numerical values.

It is unreasonable to expect perfect performance from the learned program because
the learning algorithm extrapolates the answers to the datapoints not in the training
set. The extrapolation is never perfect, yet since the vast majority of functions cannot
be implemented by the learning algorithm, it is unlikely that the function found by the
learning algorithm performs well on the training set, yet performs much worse on unseen
data, provided that the training set is large enough to account for the “overfitting ability”
of the algorithm. A considerable amount of research is directed at deriving quantitative
variants of the above statement, based on bounding precise complexity measures of the

family of functions (see, e.g., [2], and references therein).

There are many learning algorithms for pattern recognition, all of which differ in
their performance characteristics. For example, Bayesian algorithms are usually the most

accurate [37], but are impractical for very large sized problems due to their long running

CHAPTER 1. INTRODUCTION 3

time. For moderately large training sets, the Support Vector Machine [9] is currently

among the most practical general-purpose classification learning algorithm.

The performance of every learning algorithm depends on the way the data is rep-
resented. The kind representation we consider in this thesis is one where every repre-
sentation is a function that assigns a feature vector (€ RY) to every datapoint. The
representation of a datapoint is the vector assigned to the datapoint in question by the
representation. If the representation extracts and emphasizes information that is useful
for determining the label, then learning algorithms that use this representation will be
more accurate. For example, images are usually represented with a vector of their pixel
values. When an object in an image is moved or distorted, or the illumination changes,
the difference (e.g., Ly distance) between the pixel representations of the images can be
substantial, even when the images look very similar to us. A better representation is one
that produces nearby feature vectors (e.g., the feature vectors have small Lo distance)
for perceptually similar images, and distant feature vectors for dissimilar images'. Find-
ing such a representation is difficult, however. Similarly, to use a learning algorithm to
separate the spam from the non-spam we typically must convert the raw text, which is
not a vector, to into a vector representation, which is the data-type virtually all learning
algorithms work with. A representation that has turned out to be successful for spam
classification is the bag-of-words [16], in which a document is represented with a (sparse)
vector whose coordinates correspond to words, each coordinate containing the number
of times its word appeared in the email. The success of this representation shows that
the order of the words (and hence the meaning of the email) is not essential for spam
recognition; for example, the presence of the word “mortgage” in any context provides a

strong indication that the email is spam.

Tt follows that the desired representation defines an extremely complex distance metric on images,
and it is successful only if this distance metric matches our subjective notion of similarity between
images.

CHAPTER 1. INTRODUCTION 4

All of the above problems, as described, are static and do not have a temporal com-
ponent, which is important for many problems?. For example, tracking, surveillance,
speech recognition, and monitoring a power plant have a temporal component. More
importantly, if we wish to build an intelligent agent we must be able to deal with the
sequential structure in at least video and speech. For such problems, it is advantageous
to have an online sequential representation, one that assigns a feature vector to every ar-
riving datapoint, based not only on the current datapoint, but on the previous datapoints

and their representations as well.

A sequential representation is also useful for Reinforcement Learning. The goal of
Reinforcement Learning [46] is to learn to choose actions that lead to as large a future
reward (or reinforcement) as possible; the learning is done by interacting with an envi-
ronment that occasionally yields reward to the agent. This problem is very interesting
from the Al point of view, being about learning intelligent behavior from experience.
A common reinforcement learning algorithm estimates the future reward of every ac-
tion taken from every state by interacting with the environment. For small problems
these estimates are stored in memory but larger problems require the use of function
approximations, not only due to memory requirements, but also because the estimation
of the values of a huge table requires tremendous amounts of data, which makes learning
slow. For the reinforcement learning algorithm to learn useful behavior, the function
approximation must be of high quality, which critically depends on the features it uses.
It is known [28] that when the features are learned directly from the reinforcement learn-
ing signal, i.e., when a straightforward multilayered preceptron function approximation
is used, then severe local minima problems occur during its optimization. Therefore,
finding useful general-purpose sequential features is important for reinforcement learn-
ing. General-purpose sequential features are necessary, in general, for most problems for

which data arrives in a sequence and has sequential structure.

28pam detection has a sequential component which is ignored by the bag-of-words representation.

CHAPTER 1. INTRODUCTION 5

How can we find general-purpose representations that are suitable for many tasks
without knowing® what these tasks are? When probabilistic models that have a simple
relationship between their visible and hidden variables are fitted to the data, their hidden

variables act as useful features. Let us provide some examples supporting this claim:

1. Mixture of Gaussians (see, for instance, [15]) has the “mixture-component-indicator”
as a hidden variable, which provides a useful rough description (quantization) of

every datapoint.

2. Principal Component Analysis (PCA) (e.g., [43]) has hidden variables which are
linear functions of the data, and, as features, are useful in practice for recognition

of faces and hands [48, 5].

3. Independent Component Analysis has hidden variables that are marginally inde-

pendent, and resemble low level vision and acoustic filters found in animals [33, 3].

4. Restricted Boltzmann Machines and their multilayered extensions [24] learn hidden
variables that when used as features, result in excellent discrimination [21] on the

MNIST dataset (a dataset of handwritten digits).

These examples provide evidence for the claim that the hidden states of probabilistic
models (that are fitted to the training data) act as reasonably good general-purpose
features. To our knowledge, there is no theory as to why this is so.

Not every probabilistic model provides a good representation with its hidden variables,
however, and in fact, most do not: a model whose hidden variables do not depend on
the visible variables cannot, by definition, have a useful representation at all; and if
the relationship between the visible and the hidden variables is highly obfuscated and

contrived (e.g., when the visible variables depend on the 50-th bit in the binary expansion

3This is not accurate, for we know that the tasks to be solved are “natural” in a difficult to explain
manner. Indeed, we feel certain that any vision-related problem is unlikely to depend on whether the
number of red pixels in a certain region is prime.

CHAPTER 1. INTRODUCTION 6

of the real value taken by the hidden variables), then the hidden variables will be, as
features, useless at best. Nevertheless, it plausible that “reasonable models” provide
good features with their hidden variables when fitted to the training data.

In this thesis we address the problem of finding general-purpose sequential represen-
tations by introducing new powerful probabilistic sequence models with efficient learning
algorithms that are capable of learning accurate models of the data and extracting se-

quential hierarchical features.

Chapter 2

Background Material and Review of

Related Work

In this chapter we describe all the necessary background material that is needed to make

this thesis mostly self-contained and review the related work.

2.1 Probabilistic models, inference and learning

A probabilistic model is a parametrized family of probability distributions P = P(V, H) =
Py(V, H) over visible variables V' and hidden variables H, parametrized by 6, with V' and
H taking values in a finite domain (it can be infinite, but we do not consider this case
at all). A probability distribution assigns a probability P(V, H) in [0, 1] to every con-
figuration of V' and H that sums to 1: >\, , P(V,H) = 1. P(V) =}, P(V,H) is
the marginal distribution of V', which is the essence of the model. A key reason for
introduction of the hidden variables H is so that the marginal distribution P(V') can be
expressive enough to approximate the data we wish to model even when P(V, H) has
simple structure. In general, the marginal distribution P(H) (=)_,, P(V, H)) is called
the prior distribution of the hidden variable and P(H|V) = P(H,V)/P(V) is called the

posterior distribution. The random variables V' and H are usually high dimensional, and

CHAPTER 2. BACKGROUND MATERIAL AND REVIEW OF RELATED WORK 8

the marginal distribution with respect to any set of coordinates is obtained by summing
over the remaining ones. The expectation of f with respect to P is denoted by and equal
to (f(V,H))pw,uy = 2ov.u f(V,H)P(V,H). The notation arose from the observation
that this sum is actually an inner product (f, P) when f and P are viewed as vectors

indexed by (V, H).

Every random variable is distributed according to a distribution P(X), which is
denoted by X ~ P(X). Whenever there are many random variables, for instance
Xi,...,Xp, then there is an underlying joint distribution P(Xy,...,X,) such that the
marginal distributions P(X;) are the distributions that govern each X; separately. For
brevity, we notationally identify the random variables with their values, thus when writ-
ing P(V|H) we could mean either a probability (a number) or a probability distribution

over V: V ~ P(V|H). We also omit of the dependence of P on the parameter 6.

The purpose of the probabilistic model, as its name suggests, is to model the data
distribution over the visible variables. The hidden variables H make the task easier,
as usually P(H,V) is simple, but due to marginalization, P(V) can be very complex.
The reason we wish to learn the data is in order to gain a better understanding of
it and to extract features. Indeed, if the probabilistic model is such that the hidden
variables can represent very specific structure, then the learned model will extract that
structure from the data distribution (e.g., the Mixture of Gaussians model and the ICA
models). It is harder to a-priori justify modeling the data distribution using models
whose hidden variables do not have an obvious semantic meaning, which is the case, for
instance, for the Boltzmann Machine which is described soon. Nevertheless, we believe
that any model that is natural in a hard to define way learns useful features with its
hidden variables, which is a reason for fitting such a model to data. Another reason for
learning probabilistic models is their possible usefulness for tasks such as monitoring the
functioning of a power plant. For this problem, the only available data is that of normal

operation of the power plant. By using a probabilistic model to learn this normal data

CHAPTER 2. BACKGROUND MATERIAL AND REVIEW OF RELATED WORK 9

it is possible to detect when the state of the power plant becomes too improbable, which
indicates a possible malfunctioning.
A sample from the data distribution is a training set; it is obtained from the real

world and denoted by

where dy; is a distribution that assigns probability 1 to V; and zero to any other point,
and {V4,...,V,} is the data in the training set. Throughout, P(V) always stands either
for the training set or the data distribution.

When fitting the parameters, a possible goal of learning is to minimize the differ-
ence between the model’s distribution and the data distribution. One way of learning is
maximizing the likelihood. Given a training set Vi,...,V,, the goal of maximum like-
lihood learning is to maximize [, Py(V;) with respect to 6, which is the probability
of the training set under the model; it is equivalent to maximizing + SN log By(V;) =
(log Py(V')) p(3), the average log likelihood of the parameters.

For most models, finding the global maximum with respect to € is computationally
infeasible, so we resort to finding as good parameters as we can.

To maximize the average log likelihood, we use gradient ascent. According to this

method, we repeatedly calculate the derivative

1 0
Ay = v %;long(%)

and update the weights in the direction of maximum local increase: 6 < 0 + €Ay; this

way a local maximum is found. The derivative is

O0log Py(V;) Olog)_, Pp(Vi, H)
00 N 00

- ZL RO

_ ZPO Vi H) 810gP9 Vi, H) /Pa ()

CHAPTER 2. BACKGROUND MATERIAL AND REVIEW OF RELATED WORK 10

Olog Py(V;, H
= 3 pyvy ZE)
H

B <6long(V;,H)>
90 Po(HV)

where in (%) we used the identity % =f %. This derivative, cannot, in general, be

feasibly computed, due to the need to find an expectation with respect to the posterior
P(H|V;).

A conceptual breakthrough occurred when it was noticed that the posterior P(H|V)
can be approximated with some distribution Q(H|V') and that the use of the approximate
posterior provides a lower bound to the average log likelihood which can be used for

learning [38, 50, 27]:

(log P(V)) p(v)

QUEIV)/ pvy

0
(s gz Q(HV)>P(V) .

= ({log PV, H))guury, + BQUHV))

vy’
where Q(H|V) is an arbitrary distribution that approximates the posterior P(H|V'), the
inequality follows from the concavity of log by Jensen’s inequality, and H(Q(H|V)) =
—> 4 Q(H|V)log Q(H|V) is the entropy of Q(-|V') (this is not the conditional entropy).
Maximizing this lower-bound with respect to both P and () is useful due to its relation
to maximum likelihood. By maximizing the bound with respect to @) we tighten it, as
equality is attained when Q(H|V) = P(H|V) for all V in the training set. In fact, the
tighter the bound, the closer Q(H|V) is to the posterior P(H|V'), so maximization of this

bound is equivalent to approximating the posterior by the @) distribution which is the

CHAPTER 2. BACKGROUND MATERIAL AND REVIEW OF RELATED WORK 11

closest (with respect to a specific distance measure). In general, Q(H|V) is restricted to
be a member of a simple parametric family such as the factorial distributions, which are
the distributions Q(H|V) that have the coordinates H® independent for each choice of
V (e, QHWY,...,HM|V) =, QHDV)).

By maximizing the bound with respect to P, on the other hand, we find better model
parameters.

The original EM algorithm [13] iteratively maximizes this bound with respect to P
and with respect to () as well; however, instead of merely increasing it with respect to P
and @), at each iteration the EM algorithm finds the global maximum of () given P and

the global maximum of P given Q).

2.2 Markov Chain Monte Carlo

The Monte Carlo method is a stochastic method for evaluating expectations of functions
with respect to complex distributions over very high-dimensional spaces. It is based on a
very simple observation: if X; ~ @ for 1 < i < n are independent random variables, then
(i [(X)/N)x.no = (F(X))gex)» yet X2, f(Xi)/N has less variance (i.e., it is closer
to its mean with higher probability). The simplest Monte Carlo method is to simply
randomly sample independent variables X; ~ @) and to use). f(X;)/N as an estimate
of the expectation (f(X))gx)- If f is of small range (for instance, 0 < f(z) < 1),
then this average is a good estimate of the expectation for most random draws of the
X;’s from (). Sampling from a distribution is done by producing pseudorandom bits and
algorithmically manipulating them to produce a random variable whose distribution is
Q.

For many realistic distributions, such as the posterior distribution of some com-
plex probabilistic model, sampling is computationally difficult and there is no obvious

procedure for obtaining a sample from the random bits. Nevertheless, by perform-

CHAPTER 2. BACKGROUND MATERIAL AND REVIEW OF RELATED WORK 12

ing Gibbs sampling [39] we can obtain a sample from a distribution as close to @ as
desired using a simple procedure. Gibbs sampling applies when the random variable
X = (X®,...,X®) is high-dimensional and each coordinate X has a small finite
range. At each step of Gibbs sampling, we pick an index ¢ and sample the ith coordinate
of X from its conditional distribution X® ~ Q(X®|XW . X1 X6+ X0
which is usually relatively easy. By doing so for a sufficiently large number of steps, the
resulting state of X will be a sample from (), which is what is needed to approximate the
expectation. It is not, unfortunately, feasible to know how large “sufficiently large” is.
Moreover, there are many distributions that require a truly infeasible amount of Gibbs
sampling in order to yield a sample. The Gibbs sampling method is simulating a Markov
chain that has @) as its stationary distribution, which explains the correctness of the
method.

A very important property of the Monte Carlo method is its unbiasedness. A Monte
Carlo estimate may not be very accurate, yet the mean of the estimate is the exact value
(the expectation is taken with respect to the randomness in the sample X). Therefore,
the sum or average of Monte Carlo estimates of different quantities results in an unbi-
ased Monte Carlo estimate of their sum or average, which is extremely useful for our

algorithms, for we often need to add and take averages of Monte Carlo estimates.

2.3 Probabilistic Sequence Models with Hidden State

The Kalman filter [29] and the Hidden Markov Model (HMM) [42] are the oldest and the
most popular probabilistic sequence models, having the largest number of applications
(see references in [41, 42]). These models have a hidden and a visible variable for every

time step, and they define a joint distribution via the equation

P (VI HE) = P(Hy) [[POIH) P H,), (2.2

t=1

CHAPTER 2. BACKGROUND MATERIAL AND REVIEW OF RELATED WORK 13

where V; and H; are the visible and hidden variables at time ¢, T is the total number
of time steps, and Xij stands for Xj;,...,X;. The HMM and the Kalman filter are
equivalent, and differ only in their specification of P(V;|H;) and P(H;|H;_1). The HMM,
having multinomial (1-of-n) variables, allows the distributions P(V;|H;) and P(H;|H; ;)
to be arbitrary, and the Kalman filter requires P(V;|H;) and P(H;|H;_1) to be Gaussian
distributions with fixed covariance and with the mean being a linear function of H; and
H,;_1, respectively. As a result, the marginal posterior distribution P(H;, H;_1|V/') is

Gaussian as well, with covariance depending on {.

Inference, the problem of calculating expectations with respect to the posterior dis-
tribution P (H;f |V1T), can be efficiently done for both models!. Inference is necessary
for using the models when a hidden variable contains desirable (yet hidden) information,
such as the location of a tracked object, and for maximum likelihood learning with the
EM algorithm. The EM algorithm [13, 50] maximizes the likelihood of a model with hid-
den variables by reducing this hard maximization problem to a simpler one: iteratively,
the values of the hidden variables are inferred using the posterior distribution (which is
done algorithmically by inference), and then the expected log probability of the training
data and the inferred hidden variables is increased. EM suits the HMM and the Kalman
Filter particularly well because the optimal parameters can be computed very efficiently

when there are no hidden variables in these models.

Despite the attractive properties of these models, they typically suffer from insuffi-
cient modeling power. The Kalman filter has linear dynamics in its hidden state and a
Gaussian noise model, assumptions which are very often severely violated in practice.
At the other extreme, the HMM, while being highly non-linear, has a very small hidden
state space due to its explicit representation of the probability distributions. Even if the

state space were made large enough (for instance, by using a computer with unlimited

!There is also the MAP-inference, in which the setting of the hidden variables that has maximal
probability is found; despite its usefulness, we ignore this type of inference here.

CHAPTER 2. BACKGROUND MATERIAL AND REVIEW OF RELATED WORK 14

memory), the HMM could not be learned from a feasible amount of data, simply due to
the sheer number of parameters it would have. But if the state space is sufficiently small
(e.g., of size n ~ 1000) then the past can constrain the future only with only log, n ~ 10
bits of information, and even in this case, an HMM with a full transition matrix has 10°
parameters. As an example, the HMM is unable to efficiently model several interacting,

yet only loosely coupled objects, because the space of their joint configurations is large.

To overcome the disadvantages of the HMM and the Kalman filter, more powerful
probabilistic models must be used. These models need to have high-dimensional hidden
variables that can carry much information; they may also need to have complex dynamics.
Defining such models is easy, but doing inference for these models efficiently is hard.
Models that have many richly interacting variables may have posteriors so complex that
some expectations cannot even be tractably approximated [12], which seems to render

the models unusable.

Nevertheless, it is possible to approximate the posterior, and when learning or using

the model, assume that the approximate posterior is the actual true posterior.

There are many methods that find approximate posteriors. The Sum-Product algo-
rithm [52, 30] is a general-purpose method for finding approximate marginals of complex
distributions. It is an unprincipled adaptation of the sum-product algorithm for tree-
structured distributions which is exact (see [50]) to general distributions, which is inexact,
but often works well in practice, with little theoretical insight into why. It functions by
iteratively updating certain equations that have multiple fixed points, and may not even
converge. The paper [52] was one of the first to notice that the sum-product algorithm
finds fixed points of some objective function (called the Bethe free energy), allowing some
theoretical properties of it to be studied. A convex variant of the sum-product algorithm

[49] appears to perform even better and to have a unique solution.

Using the Markov Chain Monte Carlo method [39] (see also section 2.2) it is possible

to perform exact inference in virtually any model (necessarily making the method com-

CHAPTER 2. BACKGROUND MATERIAL AND REVIEW OF RELATED WORK 15

putationally intensive). The method obtains a sample from the desired distribution by
simulating a Markov chain that has the posterior as its stationary distribution. Using
several independent samples, it is possible to estimate the required expectations reason-
ably accurately. The problem with the Markov chain method is its inefficiency; it is also
very hard to estimate, a-priori, the amount of simulation necessary for the Markov chain

to yield a sample.

The classical variational approximation to the posterior distribution [38, 27] uses the
approximate posterior and model to create a lower bound to its log likelihood. This
lower bound has the property that the better the approximate posterior approximates
the true posterior, the larger the value of the lower bound, so its maximization with
respect to the posterior yields a method of approximate inference. It differs from exact
inference because we do not maximize the lower bound over all possible distributions
but only over distributions from a parametric family that probably does not contain the
true posterior. When we maximize it with respect to the model parameters, we perform

a step of learning.

The classical variational method was derived for a very large collection of models in a
unified way [51] that results in a message-passing algorithm similar to the sum-product

that maximizes a lower bound to the log likelihood.

This kind of variational inference is used by the Factorial HMM sequence model [14].
This model has several hidden Markov chains which are combined to produce a visible
sequence. The approximate posterior is restricted to have the form of a product of

independent Markov chains.

An unusual sequence model is the Product of HMMs [7]. This model, as its name
suggests, is a product of the distributions defined by several HMMs. Unlike the other
models, inference is easy for this model, and it is more powerful than a standard HMM.
It is not trivial to learn due to the presence of a global normalizing constant, making

learning difficult even when the values of the latent variables are given. It is learned by

CHAPTER 2. BACKGROUND MATERIAL AND REVIEW OF RELATED WORK 16

the Contrastive Divergence algorithm [23], which will be described soon.

There are many more sequence models. For many non-trivial sequence problems hand-
crafted models have been created, thus enriching the large family of sequence models
and approximate inference algorithms. We refer the reader to [35] for a more complete
discussion of such sequence models.

Sometimes, instead of performing complete inference we merely wish to find P (H|VY)
(recall that VI = V4,...,V;), which is the filtering problem. It is common in online
tracking where it is known that several hidden variables represent the position of the
tracked object. The filtering problem is often easier than the full inference problem. The
Particle Filter [1] is a Monte Carlo method that approximates the filtering distribution
with a mixture of “spikes”, or dirac-delta distributions. Whenever a new timestep is
incorporated to the posterior, the spikes are drifted by some proposal distribution and
are reweighted by the new likelihood that arises from the new datapoint. It often works
well in practice, but can fail for very high dimensional hidden variables.

A different approximate filtering scheme is Assumed Density Filtering (ADF) [6]. In
this method, the filtering distribution is “assumed” to be from a parametric family of
distributions. Whenever a likelihood term that arises from a new datapoint is incorpo-
rated, the resulting “true filtering distribution” is approximated with a member from
this parametric family. The inference method of one of our models resembles the ADF

method.

2.4 Non-probabilistic Sequence Models

There are several sequence models that do not have probabilistic semantics. The Re-
current Neural Network (RNN) [44] is a neural network model with a continuous non-
probabilistic hidden state that is a deterministic function of the previous hidden state

and the inputs. It learns using Backpropagation though time [44]. Tt works well for some

CHAPTER 2. BACKGROUND MATERIAL AND REVIEW OF RELATED WORK 17

problems, although there are theoretical and practical difficulties in training RNNs [4].
A modification of the RNN is the Echo State Network [26]. It has many hidden units
with fized random connections that are not too strong and never change. Learning is done
only for the connections from the hidden variables to the output variables. Using the
fact that the output variables act as inputs to the hidden variables at the next time step,
this model can learn to predict very complex sequences for large numbers of timesteps.
Another variation of the RNN is the Long-Short term memory [25] model. It is an
RNN that has memory cells that can store and change values. This model works well
in practice, detecting regularities over very large temporal ranges. It learns, similarly to

the RNN, with the Backpropagation through time algorithm.

2.5 Discriminative Sequence Models

If we wish to classify every element of a sequence, when the labeling depends on the
context, we could use a discriminative model. Such a model does not attempt to model
the underlying distribution over sequences and focuses all its modeling power on pre-
dicting the labels. The Conditional Random Field [31] is a probabilistic model that
learns by maximizing the conditional likelihood, and the Max Margin Markov Network
[47] attempts to maximize the weighted margin of the correct labeling from the wrong
labellings using the marginals of the dual parameters (which happen to have a form of a
probability distribution); otherwise there are exponentially many dual parameters. See
the respective papers for details. These methods can be kernelized (see, e.g., [11]), and
thus have better features. However, the learning time of kernel methods scales quadrati-
cally with the size of the training set, a fact that limits their usability for problems with

very large training sets.

Chapter 3

Boltzmann Machines

The Boltzmann Machine is a building block of the models we will introduce, so we discuss

it in detail in this chapter.

3.1 The General Boltzmann Machine

The Boltzmann Machine [22] is a probabilistic model that has several attractive proper-
ties. It defines a probability distribution over X € {0,1}" via the equation

_exp (%X’WX + b’X)

P(X) ; ,

(3.1)

where W and b are the parameters of the BM, and X' is X transpose. W is the weights
of the connections between the coordinates of X satisfying W;; = 0 and Wj; = Wy;, b
the bias vector and Z = Z(W,b) is the partition function that is necessary for P(X) to
be well-defined. We partition X into a set of visible and hidden variables X = (V, H),
Ve {0,1} H € {0,1} V.

The BM has several attractive properties:

1. If we repeatedly pick a variable X and set X <— 1 with probability o ((WX)® +
b®), where o(z) = (1 +exp(—z))~" is the logistic function, then we are performing

Gibbs sampling from the distribution P(X).

18

CHAPTER 3. BOLTZMANN MACHINES 19

In addition, if we fix the value of V' and pick the indices ¢ only from variables that

are in H, then we are performing Gibbs sampling from P(H|V).

2. Finding a factorial distribution that approximates P(H|V) is straightforward as
well. If we represent Q(H|V) by x € [0,1]" via the relation Q(X; = 1|V) = x;
and set x; = X, for indecies 7 in V, then by selecting a variable x® for i in H and
setting x¥ « o((Wx)® + b@) we are increasing the lower bound in equation 2.1

with respect to Q.

3. The derivative of the average log likelihood has a very simple form:

9 {log P(V)) sy, - -

oW, - <X()X(])>P(H|V)I5(V) - <X()X(])>P(V,H)
0 (log P(V)>13(v) i i

b, = <X()>P(H|V)13(V) - <X()>P(V,H)

where P(V) is the distribution of the training data.

This learning rule (gradient ascent on the average log likelihood) has a biologically
plausible, yet a speculative, interpretation: what our senses observe is V' and our
hidden (i.e., mental) state is H. During the day, V is fixed by the inputs from
our senses. The regular neural activity resembles Gibbs sampling, so it is plausible
that it results in a sample from P(H|V), allowing each synapse to approximately

evaluate the “positive correlations”, the expectation (X X)) PEWVIEW) *

During the night there are no inputs to the senses, so V' can change as well, which
provides a justification for dreams. As before, we assume that the standard neural
behavior performs Gibbs sampling and results with a sample from P(V, H). Once
the sample is obtained, the correlations <X @) x (j)> PHY) is evaluated for each con-
nection locally, and is subtracted from its positive correlation in order to update
the weights; this partially explains that it is hard to remember dreams because

they are meant to be forgotten (see also [10]).

CHAPTER 3. BOLTZMANN MACHINES 20

Figure 3.1: A Restricted Boltzmann Machine

Despite the simplicity and the appeal of the derivative of the log likelihood, learning
general Boltzmann Machines is not feasible because obtaining the desired samples from
the posterior and from the model (for the “sleep” phase) takes a prohibitively large

amount of time.

3.2 Restricted Boltzmann Machines

The Restricted Boltzmann Machine (RBM) is a special case of the Boltzmann Machine
which can be learned efficiently. The Restricted Boltzmann Machine has all the weights
among the visible and hidden variables set to zero. Thus, the RBM is defined by the

equation
exp(V'WH + b,V + bV, H)

P(V,H): 7 ’

(3.2)

for Ve {0,1} ,H € {0,1}™, where now W is the matrix of connection weights
between the visible and the hidden variables and by and by are the visible and hidden
biases respectively and as before, Z = Z(W, by, by) is the partition function.

As a result of the lack of connections among V' and among H, the distributions

P(V|H) and P(H|V) are factorial, satisfying

PV =1H) = o((WH)<i>+bV(i>) (3.3)

PHY=1V) = o ((W’V)(j) + bH(j)) , (3.4)

CHAPTER 3. BOLTZMANN MACHINES 21

where o(z) = (1 +exp(—z))~!. Thus, unlike most complex models, inference is trivial in
an RBM.
The derivative of the average log likelihood given a training set distribution P(V) is

essentially identical to that of the general Boltzmann Machine:

9 (log P(V)) p |
(@) ()
oW v HY >P(H|V JB(V) <V ! >p(V,H) (3.5)
0 (log P(V))ﬁ(v) z_
Oby - <V()> P(H|V)P(V) <V >P V,H) (3.6)
9 {log P(V) v, z. |
by = (H) by = H by - (3.7)

Evaluating these derivatives is easier for the RBM, for it is easy to compute the
expectations with respect to P(H|V) (i.e., the positive correlations), because P(H|V)
is factorial and can easily be sampled from to obtain a Monte Carlo estimate of the
expectation. The negative expectations, however, are hard to estimate for the RBM.

The Contrastive Divergence [23] (CD) parameter estimation method can find good
parameters efficiently. It approximately minimizes the difference between divergences of
two distributions, hence its name. According to CD, instead of evaluating the negative
expectation with respect to P(V, H), we perform very brief Gibbs sampling that has V
inttialized from the data distribution. Specifically, having estimated the expectation with
respect to P(H|V)P(V) using a sample (V, H), we modify the sample by updating the
visible variables, which amounts to sampling from V ~ P(V|H), and then updating
the hidden variables, which amounts to sampling H ~ P(H|V). The resulting (V, H)
is a sample from the reconstruction distribution Precon. CD uses the following weight

updates:

AWy o« (VOHD), s,y — (VI HY (3.8)

>Precon(V,H)

Aby; o (VU >P (H|V)B(V) -V (i)>Precon<v,H> (3.9)

Abu; <H >PH|VP(V) < (i)>Precon(V,H)' (3.10)

Notice that Pre(j()n satisfies Pre(jon(v, H) ZVO Hp () (H0|%) (V|H0)P(H|V)

CHAPTER 3. BOLTZMANN MACHINES 22

For CD to work, it is crucial to initialize V; with the training data distribution P(V;) in
the reconstruction distribution.

The fixed points of CD learning do not coincide with the local maxima of the like-
lihood, since performing CD learning from a local maximum in the likelihood results
in change in the parameters [8]. However, if the amount of training data is sufficiently
large and there are reasons to suppose that there is an RBM P(V, H) that almost exactly
matches the training data distribution P(V) (i.e., P(V)) ~ P(V)) then the solution found
by CD will almost certainly be close to the parameters found by maximum likelihood. To
see why, assume that the parameters found by maximum likelihood satisfy P(V) = P(V/).
In this case, the reconstruction distribution of CD equals to the model distribution, from
which it follows that the parameters need not be updated. Unfortunately, it might be
that CD has additional suboptimal solutions even in this case.

We hope to prove a qualitative version of this statement in the near future: if P(V)
is close, according to some distance measure, to some RBM distribution P(V), then CD

will not change the maximum likelihood solution too much.

3.2.1 Using Probabilities for Real Values

In practice, not all data is binary; much of the data we consider is real valued, i.e., V €
[0,1]". The Restricted Boltzmann Machine, as described, is not suitable for modeling
such data. However, there is an unprincipled adaptation of the Restricted Boltzmann
Machine that works reasonably well in practice, though only for some datasets.

The modification is as follows: we let V' take real values in a simple-minded fashion.
When we sample H ~ P(H|V), equation 3.4 is used with the real values of V. On the
other hand, when we sample V' ~ P(V|H), we use equation 3.3 in the following way:
we set VO = ¢ <(WH)@+ bv(i)) for all i, deterministically. This is the only way in
which the modified Boltzmann Machine differs from the standard Boltzmann Machine.

By doing the “Gibbs-sampling” outlined above we obtain a sample from the modified

CHAPTER 3. BOLTZMANN MACHINES 23

RBM, a sample from its posterior and a sample from the reconstruction distribution that
is required for the CD weight update.

As a result, these updates lose their clean probabilistic semantics, but this modifica-
tion can work well in practice. This is precisely the way in which we use our sequence

models on real-valued data.

3.3 A Multilayered Extension of the RBM

The RBM achieves its many excellent properties by having only one layer of hidden
variables with no connections among them. The hidden variables, as features, are linear
functions squashed by the sigmoid nonlinearity (see equation 3.4), so the representational
power of the hidden variables of the RBM is limited. A much more desirable represen-
tation is one in which there are several layers of hidden variables that are arranged in a
hierarchical fashion. This is what this section is about.

Let P(V) denote the data distribution and P(V, H) denote the joint distribution
defined by the RBM that is already fitted to the data. The idea is to get another RBM,
Q(H,U), which has H as its visible and U as its hidden variables, to learn to model the

aggregated posterior distribution, Q(H), of the first RBM:
Q(H) =Y _ P(H|V)P(V). (3.11)
%
Provided Q(H) models Q(H) better than P(H) does, the augmented model
Mpo(V,H,U) =Q(U,H)P(V|H) (3.12)

is a better model of the original data than the P(V, H) defined by the first RBM alone
[24]. It thus inherits P(V|H) from the first RBM but instead of its prior P(H) it uses
Q(H). To sample from the augmented model, we sample from Q(H,U), discard the
value of U, and then sample from P(V|H) to obtain V. Provided Ny > Ny (U has more

dimensions that V'), @ can be initialized by using the parameters from P to ensure that

CHAPTER 3. BOLTZMANN MACHINES 24

| i | X
\4 WZ
| U
Wll A Wl
| ___H
W0 v WO
| v

Figure 3.2: A multilayered extension of the RBM. The weights W are used for sampling

and W' are used for approximate inference.

the two RBMs define the same distribution over H. This is done by using the weight
of the connection between V; and H; for the weight of the connection between H; and
U;. If i > N, then the connection between H; and Uj is set to zero. Starting from this
initialization, proper optimization ensures that Q(H) models Q(H) better than P(H)
does.

The second RBM, Q(H,U), learns by fitting the distribution Q(H), which is not
equivalent to maximizing (log Mpg(V)) pv)- Following [24], we will show that this
learning procedure maximizes a variational lower bound to (log Mpq(V))p(y. We can
view this way of learning @ as using P(H|V') to approximate the posterior distribution

Mpg(H|V). The standard variational bound yields

(108 Mrg(V)) v, > ({08 QUH)PVIH gy + BP(HIVY)) - (313)

where H(P(H|V)) is the entropy of P(H|V) for each value of V. Maximizing this lower
bound with respect to the parameters of () whilst holding the parameters of P and the
approximating posterior P(H|V) fixed is precisely equivalent to fitting @ to Q(H). Note
that the details of () are unimportant; () could be any kind of a model, and not just an
RBM. The main advantage of using another RBM is that it makes it possible to initialize

Q(H) to be equal to P(H), so the bound starts as an equality and any improvement in

CHAPTER 3. BOLTZMANN MACHINES 25

the bound guarantees that Mpg(V') is a better model of the data than P(V).
This procedure can be repeated recursively as many times as desired, creating very
deep hierarchical representations. For example, a third RBM, R(U, X), can be used to

model the aggregated approximate posterior over U obtained by

RU) = 33 QUIH)P(HV)B(V) (3.14)

Provided R(U) is initialized to be the same as Q(U), Mgr(H) will be a better model of

Q(H) than Q(H), but this does not mean that Mpgr(V) is necessarily a better model of
P(V) than Mpg(V). It does mean, however, that learning R will improve the variational
bound obtained by using the distribution P(H|V)Q(U|H) to approximate the posterior
distribution Mpgr(U, H|V'), and this lower bound will be higher than the lower bound
to the log likelihood of Mpg in equation 3.13.

The idea outlined in this section will be used in the following chapters to make the

models we introduce multilayered.

Chapter 4

The Temporal Restricted Boltzmann
Machine

In this chapter we describe the first of our models, the Temporal Restricted Boltzmann
Machine (the TRBM). The TRBM is a sequence model that has a componential state
space with highly non-linear dynamics, simple approximate inference and learning algo-
rithms, and a hierarchical multilayered extension similar to that of the RBM. The TRBM

has an RBM for each timestep, and inherits some of the RBM’s desirable properties.

4.1 Model definition

The TRBM sequence model is constructed from the conditional distribution

P (Vi Hy| Vo, HiZ) = exp (Vt’CoHt + By (V/51) Vi + By (Vios, HiZ))' Ht) /7,
(4.1)
where V/ =V,..., V;, By (V/5;) and By (Vi H{=,,,) are vector valued bias functions
that produce a dynamic bias for every setting of their arguments, and Z is the partition

function that ensures that the above equation defines a probability distribution for every

value of Cy and the arguments to the bias functions. Conditioned on V;'5}, H{=} | this

26

CHAPTER 4. THE TEMPORAL RESTRICTED BOLTZMANN MACHINE 27

-

Ht- 2 Ht-1 H t

A by

Figure 4.1: The Temporal Boltzmann Machine. In this TRBM, m = 2.

distribution is an RBM (see section 3.2) whose weight matrix is Cy and whose biases are
given by the bias functions. The variables VI and HI are binary, and m is a structural
parameter that determines the number of timesteps this conditional distribution can
directly access. We call the conditional distribution a TRBM as well.

The TRBM model is given by the product

T
PV HY) =[P (Vi BV, HEL) (4.2)

t—m>
t=1

where 7' is the length of the sequence to be modeled.

To obtain a sample from the TRBM distribution, we let £ range from 1 to 7" and sample
(Vi, Hy) (using Gibbs sampling) from the RBM distribution P (V;, H|V;" ., H{~},) which
is conditioned on the values previously generated for V;",} and H} }. The resulting
(H{, V") is a sample from the TRBM.

To complete the specification of the TRBM, we define the bias functions by the

equations

By (V) = AVise+ AT+l 9
By (Vion, HIZL) = BiHya+--+ By Hyp +

t—m>

ClVici+ -+ CL Vi + Uy (4.4)

CHAPTER 4. THE TEMPORAL RESTRICTED BOLTZMANN MACHINE 28

The reason for this definition of the bias functions is its simplicity. Any reasonable
definition of the bias functions would result in a useful model.

According to the definition of the TRBM, in some cases the bias function needs to
access a variable with a nonpositive index, which does not exist (it happens for TRBMs
that are at the beginning of the sequence, modeling the frames 1, ..., m). This is handled
by replacing the product, for instance, of C;V;_; by a special bias ¢; whenever ¢ — 7 is
nonpositive; the matrices A; and B; also have similar special biases and are treated

analogously.

4.2 Approximate filtering

The TRBM is defined so that P (Ht|Vf, Hf_l), the distribution of the hidden state H;
given all past hidden and past and present visible variables, is factorial, and is given by

the equation

p (Ht(z') _ 1‘V1thf_1> — 0 <(C(')V})(i) + By (V5L HEZL)(z)> 7 (4.5)

t—m>

where recall that o(z) = (1 + exp(—z)) . This equation suggests that a factorial ap-
proximation to the filtering distribution, P (H;|V}), can be accurate.

Let Q (H;|V}) denote such a factorial approximation to the filtering distribution which
we soon describe how to compute. It is not a variational approximation in the standard
sense, for it does not have free parameters and it is not being optimized over. The
filtering distribution is used as an approximation to the posterior as well, so it is denoted
by Papprox (HIT \VIT) in other contexts. This is indeed a drastic approximation, and it
is conceivable that in some cases it might be too inaccurate to be useful.

let p; € [0,1]V# be a vector that represents Q via @ (Ht(Z = 1|Vt) = p:). Recall
that we generically denote the ith coordinate of X by X®. To compute p; from p’ !

and V/, we modify equation 4.5 by replacing H} wih p} throughout, namely

Q (1 =1v!) = p = o (V) + Bu (Vi piz) ™). (4.6)

CHAPTER 4. THE TEMPORAL RESTRICTED BOLTZMANN MACHINE 29

where we note that equation 4.4, defining the bias function By, is valid for real values.
Equation 4.6 is analogous to equation 4.5, and implements non-iterative mean-field dy-
namics of the Boltzmann machine, but it does not correspond to maximization of a lower
bound to the log likelihood (see section 3.2). This approximation is accurate whenever
the number of hidden variables is large and the strength of the connections between them
are weak [40]. This kind of approximate filtering is reminiscent of the Assumed Density
Filtering [6] (see also section 2.3), in that we assume that the filtering distribution is
factorial, and approximate the filtering distribution at the next timestep with a factorial

distribution as well.

4.3 Learning

To learn the TRBM model we randomly select a vector V! from the training set, use
approximate filtering to obtain the hidden states H] (i.e., a sample from the approxi-
mate posterior distribution), and once the hidden variables become known, we compute
(approximately, using Contrastive Divergence; section 3.2) the gradients of the log proba-
bilities of each conditional distribution P (V;, H;|V;",, H;,) given the sampled Vi, H .

For learning we approximately maximize the lower bound of the log likelihood

(08P (7)) 2 {006 ()) + B P (VD))
(4.7)
with respect to P. We perform the maximization using gradient ascent, by repeatedly
computing the derivative of the lower bound with respect to the parameters of P, while
assuming that Papprox remains constant. This assumption is false, for Papprox depends
on the parameters of P, hence the value of the lower bound can, in principle, decrease
due to the changes in Papprox. The fact that learning succeeds suggests that this ap-

proximation does not produce a large error.

To find the above derivative, by equation 4.2 we merely need to differentiate with

CHAPTER 4. THE TEMPORAL RESTRICTED BOLTZMANN MACHINE 30

respect to the parameters of P the expression
T

Z <10gP (V;fa Ht|Vtt r}w Ht ;)>PapprOX(\VT)P(VlT))

t=1
Since taking an expectation and a derivative commute, the derivative of the above ex-

pression with respect to every parameter 6 is

<i dlog P (Vi, Hy| V", HiZ,,) >
o0 ;
t=1 Papprox (HT V) (V")

: (4.8)

which can be estimated by a Monte Carlo estimate (see section 2.2) by randomly selecting
Vi from the training set, H{ from Papprox (H{ |V{") (which is easy, for Papprox is
factorial) and evaluating the gradient given V;' and the sampled value of H{ . Given H]
the conditional distributions become RBMs, the derivatives of which are easily computed

using CD. Let Ry(V;, H;) = P (Vt, H,\VY L H 1) be the distribution of the TRBM at

t—m>

time ¢, conditioned on the sampled values of H{ . In this case, the derivatives are

dlog P (VI HY) T< . Lo
’ — v.O g (a)> _ <V(z>H (J)>
9(Co)ij t:zl U v Y R
T T T
OlogP (VI HY) _ 3 <Ht > <Ht(j)> a0
9(Cr)ij el Ry(Hy[Vi) & R(HV)
T
OlogP (V" HY) 3 < > <Ht(j)> g
0(Bk)ij el Rt(Ht|Vt R
dlog P (V' HT) d . :
’ — VA% 1A% V(Z)
9(Ar)ij t;—}—1< t >Rt<HV:) ok <t >Rt(Ht=Vt) bk
T T T
Olog P (Vi', H) _ S 1o - <Vt >
A(bv) Ri(H,Vi)
T T T
dlog P (V" HY) _ Z<Ht(i)> _<Ht(i)>
O(bn)i — Ry(H: Vi) Ry(H;, Vi)

for 1 < k < m. The calculation of the expectations with respect to R; are replaced with
their CD version the way it is done for an RBM, namely, by replacing R;(H;, V;) with a
sample from the reconstruction distribution, R;recon(H:, V), which is obtained exactly
as it is for a standard RBM; see section 3.2. The special biases are learned similarly to

the standard biases.

CHAPTER 4. THE TEMPORAL RESTRICTED BOLTZMANN MACHINE 31

In practice, instead of evaluating the expectations (using a Monte Carlo

'>Papprox
estimate we followed a mean-field approach: instead of using the sampled value of HY
we use pl, the probabilities that the respective coordinates in HY take the value 1 as
the inputs to the bias functions that create the distribution R;. Even though this is not

theoretically justified, it works well in practice and reduces the amount of noise in the

parameter updates.

4.4 Multilayered TRBM

In this section we show how to increase the modeling power of the TRBM by adding
hidden layers the way it was done for the RBM (see section 3.3).

Let P (V/', H]) be the distribution defined by a TRBM fitted to the data distri-
bution P (VlT). The posterior P (Hf WlT), being a very complicated distribution, is
approximated by Papprox(H{ |Vi'). Let Q(HT,UY) be another TRBM that learns the
aggregated approximate posterior Q (HY) = > vr Papprox(H{ VI P(VT), where UT is
the sequence of the hidden variables and HY is the sequence of the wisible variables of
the TRBM . The approximate posterior of U7, Qapprox (UIT\HIT) Papprox (H1T|V1T),
allows U] to represent higher-level features that can be computed on-line, since nei-

ther Papprox nor Qapprox make use of future frames. The resulting augmented model,

Mpgq (V') is one where we first sample from @ (HY), then from P (V{'|HT'), so Mpg (V') =

Sur P (VI'|HT) Q (HT). If we can initialize @ so that @ (H{) = P (HY'), then the aug-
mented model is identical to the P and has the same likelihood. By making Q learn Q,

the aggregated approximate posterior of P, we increase the lower bound

<10g MPQ (VlT)>15(VIT) > <<10gQ (HIT) P (V1T|H1T)>Pappr0X(HT|V1T) +H (Papprox (H1T|V1T))>

(4.9)
with respect to (), the way it is done for the RBM. Unfortunately, we are unable to make

Q learn Q by increasing the likelihood, not even in a CD sense, so this bound does not

CHAPTER 4. THE TEMPORAL RESTRICTED BOLTZMANN MACHINE 32

quite apply for the algorithm we use.

This is very similar to the bound in equation 3.13, except for the use of the approxi-
mate posterior. At the beginning of the optimization this bound is strictly smaller than
(log P (V1) >13(V1T) even when Q (H) = P (HY), because of the approximate posterior:
the lower bound is equal to the average log likelihood only if the () us the posterior. It
could, therefore, remain less than <10gP (VlT)> p(va) indefinitely. This is not the case
for RBMs, since the exact posterior P(H|V) is easily computable, so the lower bound is
equal to (log P(V))) at the beginning of the optimization.

Although our learning procedure maximizes a lower bound that is initially smaller
than <logP (VlT)>I3(V1T), it is plausible that by the end of learning the bound will ex-

ceed <logP (VlT) > pT)" In addition, since we use an approximate posterior during the

‘/1T

learning of P (VIT) (recall that inference is intractable), we are performing approximate

maximization of a lower bound on <logP (VIT)> (V) (this is also equation 4.7 which we
1

reproduce here):

(08 P (V1)) = (o P (D) P OEIHD)) iy + 8 (Pappro (HEVE)))

(4.10)
By introducing @ initialized so that @ (HT) = P (HY), the new lower bound of equation
4.9 is equal to the lower bound of equation 4.10. Therefore, the augmented model will
have a larger lower bound of its average log likelihood than the lower bound to the average
log likelihood of the model P, provided that @ can learn @ by increasing its likelihood.
To summarize, the learning procedure of the augmented model (fitting @ (HIT) to
Q (HlT)) results in approximate maximization of a lower bound that might be larger
than the lower bound approximately maximized when learning P.
For RBMs, learning one hidden layer at a time works well even if Q(H) is not ini-
tialized to be equal to P(H) [24], so in our experiments we did not initialize Q (H{) =
P (HY).

We can also add further hidden layers in the same way as it is done for RBMs and

P(v")

CHAPTER 4. THE TEMPORAL RESTRICTED BOLTZMANN MACHINE 33

each time another layer is added we should get a better model, but without the likelihood
guarantees analogous to those of the RBM.

If the TRBM does not have any connections between the hidden variables (i.e., if
the bias functions By does not depend on H}~,: we call this the TRBM-HH), then
the posterior distribution P (HlT |V1T) is factorial. This is a better situation: not only
does this model have an exact learning procedure (considering CD an exact learning
procedure), but its augmented model always has a greater likelihood since the lower
bound (equation 4.10) is equal to the log likelihood if @ (HlT) =P (HlT), because
Papprox (HY |[VF) = P (H{ |V{'). Modulo the CD approximation, the TRBM-HH learns
by increasing likelihood. The TRBM-HH has the obvious disadvantage of having no
direct dependencies among its hidden variables.

A drawback of all of our TRBM models is that it is difficult to obtain a sample from
P (V1T|H1T) because of the directed connections between V;" and the directed connections
from V" to H{; therefore, sampling from Mpq is difficult as well, and a further approx-
imation must be used. Gibbs sampling can be used in principle, but it is inefficient, for
the variables of V; are dependent given H! and the rest of the visible variables, which
forces the use of a slower, variable-wise Gibbs sampling. In an RBM we also perform
Gibbs sampling, but it is easier, because the conditional distributions over large clusters
of variables are factorial (i.e., P(V|H) and P(H|V)), so Gibbs sampling is performed in
parallel, which cannot be done when sampling P (V{'|H{') from a TRBM.

We use the following approximation when sampling from P (VT |HT): If V" is known
and H , is unknown then sampling is easy, for P (V;|V1t_1, Hf) is factorial. Therefore,
to approximately sample from P (V/T|HT) we let ¢ range over the values 1 to T, sampling

V; from P (V;|V{™', H!) and ignoring the values of H,, as we loop over t.

Chapter 5

The Windowed Restricted

Boltzmann Machine

In this chapter we describe the Windowed Restricted Boltzmann Machine (WRBM).
It is a powerful sequence model that has high-dimensional hidden variables, a simple
exact inference procedure and a reasonably efficient learning algorithm. It is very closely
related to the Restricted Boltzmann Machine, so learning a multilayered extension of the
WRBM is straightforward. The multilayered WRBM can potentially detect and model

extremely long range temporal structure.

5.1 Model definition

The WRBM is a probabilistic model with hidden variables, defining a joint distribution
over visible and hidden sequences of binary vectors.

We define a local probability distribution over short sequences (i.e., windows), and
let the product of the local probabilities of all short contiguous subsequences of the long

sequence be its unnormalized probability®.

! An unnormalized probability is a quantity proportional to the probability in question.

34

CHAPTER 5. THE WINDOWED RESTRICTED BOLTZMANN MACHINE 35

v R
Hl/ & /'H“/Cv i
C A , P g ;
El// . //4 G

V1 V2 ‘Kl > Vel Vo

a1 | M Ay
a/ \\% ~—S{1 \
2 A2 A,
by by by by

Figure 5.1: A generic WRBM. It is an undirected model: all the connections are sym-

metric.

The local probability distribution is a Boltzmann Machine, given by the equation

Plocal (Vi Hi) = exp (Z Vi ;CiH; + Z VAV + Viby + HébH> /Z, (5.1)

=0 i=1
where Z is the normalizing constant needed for P to be a proper probability distribution,
C; is the weight matrix of the connections between the hidden and the visible variables,
and A; is a weight matrix of the connections among the visible variables. n and m are
structural parameters that determine the structure of the connections and the amount
of influence a variable has on its neighbors.

These P, .,) distributions are multiplied and renormalized (the product of distribu-
tions is not a distribution) to yield the sequence model:

T

P (VI HY) =[] Piocar (Vim: He) /2, (5.2)

t=1
where Z is another partition function. The parameters A; and C; are shared among
Piycal> allowing the model to capture sequential regularities. This model is reminiscent
of a Convolutional Network [32] through time. Being a product of Boltzmann Machines,

the resulting model is also a large Boltzmann Machine with certain parameter constraints,

CHAPTER 5. THE WINDOWED RESTRICTED BOLTZMANN MACHINE 36

which is seen by rewriting equation 5.2:
T [m n

P (V' HI) = exp (Z (Z VILCiHy +) VLAV + Viby + Hé%)) /7. (5.3)

t=1 \i=0 i=1
Whenever a product V; ,C; or V/ ; A; is used with ¢t —4 < 0 it is replaced by a bias vector
c; or a;, respectively. See also figure 5.1.

This model is an extension of the Spiking Boltzmann Machine [18] that has connec-
tions between its visible variables. Not having any connections among its hidden vari-
ables, it can be learned efficiently using a variant of the Contrastive Divergence learning
procedure. In order to obtain a sample from this model, standard Boltzmann Machine
Gibbs sampling is used. The model becomes more interesting once its multilayered ver-
sions are introduced.

A disadvantage of this model is the fact that the marginal distribution P (V) changes
with the total number of modelled timesteps. More precisely, if there are T frames in
one product (i.e., equation 5.2), which we denote by Py, and there are T;(# Tj) frames
in another product, which we denote by Pj, then the marginal distributions over the first
t frames are unequal, i.e. Py(V{) # Pi(VY), even if the parameters of Py and P, are the

same, which is counterintuitive for those used to directed models.

5.2 Learning and The Boltzmann Machine View

Due to the equivalence of our model with a Boltzmann machine that has shared weights,
it is easier to work with the Boltzmann machine directly; the gradient with respect to
a shared weight is the sum of the standard gradients of the weights computed as if the
weights are not shared?. To describe learning an WRBM, we simply need to describe the
variant of Contrastive Divergence that is used for RBMs with connections between the

visible variables, which we do now.

2Let g(z,y) be a function. Then the chain rule yields % = % s g—f/ y

what weight sharing is: the weights = and y are shared, and are equal to z.

_,» which is precisely

CHAPTER 5. THE WINDOWED RESTRICTED BOLTZMANN MACHINE 37

The derivatives of the Boltzmann Machine are given in section 3.1, and are the

. . . . d(log P(V)) 5
difference between the posterior expectations and model expectations: Qo8 PVDpev) _

oWy
<X(i)X(j)>P(H|V)I5(V) o <X(i)X(j)>P(V,H)'

The lack of connections among the hidden variables in the WRBM makes the poste-
rior P (HY |V{") factorial, so finding the posterior expectation in the expression for the
derivative is easy using a Monte Carlo estimate.

Let us suppose that we have an RBM P(V, H). In an RBM, we replace the expectation
with respect to P(V, H) by an expectation with respect to the reconstruction distribution
Precon(V, H). To sample from Precon(V, H) we take the sample (V, H) from the distri-
bution P(V)P(H|V) used to evaluate the posterior expectation, sample V ~ P(V|H)
and then H ~ P(H|V), outputting (V, H) as the resulting sample.

We follow a similar path to obtain a sample from Precon (VIT, HT) of the WRBM.
Having obtained a sample (ViI, H]) from P (HT|V{') P (Vi) we ought to sample Vi
from P (V{'|HT), according to CD. The connections between the visible variables make
sampling from P (V{'|HT) difficult, so instead we perform brief Gibbs sampling from
P (V{'|HT), having initialized V;" = 0. From the new value of V" we sample H{ from
P (H{|V") which is easy, and use the pair (V;, HT') as a sample from the reconstruction
distribution used in CD.

This variant of CD for learning typically works effectively.

5.3 Multilayered WRBM

Introducing additional hidden layers to the WRBM model is straightforward and is iden-
tical to the way it is done for the RBM. The resulting augmented model together with
the variational inequality it defines are identical to those of the RBM, so we do not re-
produce them here. The only difference from the RBM case is that when sampling from

the augmented model we must update V;' by Gibbs sampling since we cannot sample

CHAPTER 5. THE WINDOWED RESTRICTED BOLTZMANN MACHINE 38

Figure 5.2: The Multigrid-WRBM, a single layer

directly from P (V{"|HT). For the TRBM, we approximate P (V| H{) rather than per-
form Gibbs sampling because it is much more complicated, whereas in the case of the
WRBM we approximate P (V'|H{') by initializing V" = 0 and performing a few steps

of Gibbs sampling.

5.4 Multigrid Multilayered WRBM

A drawback of both the WRBM and the TRBM is that they cannot capture very long
range temporal regularities. For instance, these models are unable to learn the probability
distribution concentrated on the single sequence (1,0,0,0,0,0,0,0,0,0,0,0,0,0,1), even
though the HMM learning algorithm can learn it easily if the HMM has 30 hidden states,
and there does exist a setting of the parameters for the TRBM (but not the WRBM)
that assigns very high probability to the above sequence by implementing counters in the
hidden state.

If the hidden variables of our models were made to observe more timesteps, the
models could find more structure in the data. It is possible to do this elegantly by
slightly modifying the WRBM.

Recall equation 5.2:

VIT’HT leocal t— m’Ht) /Z,

CHAPTER 5. THE WINDOWED RESTRICTED BOLTZMANN MACHINE 39

Figure 5.3: The Multilayered Multigrid-WRBM.

We can modify this equation to remove every second hidden state, which results in

the Multigrid-WRBM:

T

PVILE) =TI Plocal (Vo Harny2) /2. (5.4)
t=1,t is odd

So for the standard WRBM, given a visible VI sequence there is a hidden sequence HT
of the same length. In the Multigrid-WRBM there is a hidden sequence HlT /2 of half the
length. This does not produce a better “stand-alone” WRBM. However, the difference
between the WRBM and the Multigrid-WRBM becomes much more apparent when such
Multigrid-WRBMs are stacked one upon another to create a deep hierarchical model.
In this setting, the first hidden layer has a total of 7/2 frames, the second has T'/4,
and in general, the n-th has 7'/2" frames, while the number of visible frames remains
T. This means that the hidden variables of the higher-level Multigrid-WRBMs observe
more timesteps, and can detect and model more sequential structure. As with other
multilayered models, to obtain a sample from the deep Multigrid-WRBM we need to
obtain a sample from the topmost Multigrid-WRBM. So a depth d Multigrid-WRBM
produces a 2% reduction in the length of the whole sequence for the WRBM in the
highest layer, and each timestep of the WRBM in the highest layer gets to view 2¢

visible frames, though not directly. As a result, the Multigrid-WRBM model can model

CHAPTER 5. THE WINDOWED RESTRICTED BOLTZMANN MACHINE 40

T/2"
\ 4 W2
T/2"t
v W
v W
T/2
\ 4 Wl

Figure 5.4: The Recursive Multilayered Multigrid-WRBM. All but a constant number

layers use the same parameters.

long range structure more easily.

We chose to reduce the density of the hidden layer by a factor of 2 for simplicity. We
could have reduced the number of hidden variables by a larger factor than 2 (e.g., the
product is taken over t divisible by 3) or by a factor between 1 and 2 (e.g., for every

three time steps in V' there would be 2 time steps in H).

5.5 Recursive Multigrid Multilayered WRBM

The Multigrid-WRBM is an improvement over the standard WRBM. However, the
Multigrid-WRBM cannot model temporal regularities of arbitrary length. Moreover,
when we wish to sample a very long sequence from the Multigrid-WRBM, the Multigrid-
WRBM in the topmost hidden layer must sample a 2¢ times shorter sequence which can,
in principle, also be long, and sampling long sequences from the single layered WRBM
may be difficult.

If we allowed the number of hidden layers to vary with the length of the sequence, then

the Multigrid-WRBM in the top layer would always have to generate short sequences,

CHAPTER 5. THE WINDOWED RESTRICTED BOLTZMANN MACHINE 41

making sampling easier, and its variables would be able to gain information about the
entire sequence, which enables them to capture sequential regularities of arbitrary length.
This idea can be implemented by letting the deep Multigrid-WRBM have logT' layers,
with all but the first few of it having the same parameters. As a result, the WRBMs
with the same parameters act as “sequence expanders”: they expand the sequence in their
hidden layer without altering the nature of the representation encoded in the sequence.
See figure 5.4 for an illustration. To obtain a sample from this model, we first decide on
the length of the sequence to be to be sampled, and then sample from a model with the
appropriate number of layers. It is not possible to learn such a model with the layer-by-
layer learning algorithm that is used so far; instead, the wake sleep algorithm, described

in the next chapter, could be used. We did not conduct experiments on this model.

Chapter 6

Fine-tuning deep models

In the previous chapters we outlined a general method for learning hierarchical, mul-
tilayered models in a greedy, layer by layer fashion. This method does not provide us
with a way of fine-tuning the lower layers once the new hidden layers are added. This is
undesirable, for the lower layers can be adapted to the presence of the new higher layers
to create a better model.

In this chapter we address the problem of fine-tuning the lower layers.

6.1 The Wake-Sleep Algorithm

The Wake-Sleep algorithm [19] is used for fine-tuning multilayered models similar to those
we have. In the Wake-Sleep algorithm, a complex, multilayered model (which we call the
main model) is supplemented by an auxiliary inference, or a recognition model, that is
used to efficiently obtain an approximate sample from the posterior given a datapoint.
The inference model is, by design, relatively easy to sample from, yet is sufficiently flexible
that it can produce a good approximation to the true posterior. Given an inference model,
learning the main model is easy, as the inference model provides values to all the hidden
variables.

The harder part is the learning of the inference model, for as the main model changes,

42

CHAPTER 6. FINE-TUNING DEEP MODELS 43

Figure 6.1: A generic model with a recognition network. The weights W, are those of

the main model and the weights Ry, R, are used for fast approximate inference.

the inference model needs to track these changes in order to remain a good approximation

to the posterior of the main model.

We would like the recognition model to output a sample from the posterior of the main
model; a straightforward way of learning to do so is by providing the inference model
with training examples that consist of datapoints with samples from their posteriors,
so the recognition model learns the mapping from a datapoint to (a sample from) its
posterior. Such examples can be obtained by sampling from the main model. Indeed,
since P(H|V)P(V) = P(H,V), we can view the sampling process from P as first sampling
V from P(V) and then sampling H from P(H|V), so H is a sample from V’s posterior,
even though in reality the sample (V, H) is obtained by first sampling H ~ P(H) and
then V ~ P(V|H). This works well whenever obtaining a sample from P is easy, which
is the case for the models considered in [19]. Obtaining a sample for each iteration of
learning is infeasible for the models we consider, rendering this method unusable for our
models. We will describe how to overcome this and other, less severe disadvantages of

this method by using the Contrastive Wake-Sleep algorithm [24, 17].

Let us denote the inference model by Q(H|V).

CHAPTER 6. FINE-TUNING DEEP MODELS 44

The learning of) described above minimizes the cost function

(KLPHWVQHV) oy (6.1)
where
KL(P(HV)|QHV) = 3" P(H|V) 1og%. (6.2)

This is the KL-divergence which is a distance measure between two distributions; mini-
mizing equation 6.1 with respect to () is equivalent to maximizing the average log likeli-
hood

(log Q(H|V)>P(H,V) (6.3)
so maximum likelihood estimation of () is equivalent to minimizing a KL-divergence.
The reason for writing it in the KL-divergence notation will become clear momentarily.
We emphasize that by fitting @ to P(V, H) this way, the recognition model will learn to

approximate the posterior distribution of P.

6.2 The Disadvantages of the Wake-Sleep Algorithm

When using an approximation to the posterior, it is more principled to maximize a lower
bound to the average log likelihood with respect to) in order to find the approximate
posterior. Indeed, recall that an approximate posterior and a model can cooperate to
create a lower bound to the log likelihood, and the maximization of the lower bound is
useful for finding an approximate posterior and for parameter estimation. This lower

bound maximization with respect to @) is equivalent to minimizing the cost function
(KLQHV)||P(H[V))) pvry (6.4)

with respect to () while holding the parameters of P fixed. Notice the similarity and the
difference between this cost function and the cost function in equation 6.1.
The first difference is that in equation 6.1 the data distribution is P(V') instead of

P(V). This implies that whenever P(V) is far from P(V'), the datapoints that Q(H|V')

CHAPTER 6. FINE-TUNING DEEP MODELS 45

will learn will not be the ones it needs to find posteriors of for learning P. As a result,
it could be that learning may never get beyond its initial stage. This problem becomes

less severe, however, as P(V') gets closer to the data distribution.

More severely, when we apply the Wake-Sleep algorithm to our sequence models,
obtaining a sample from P(V, H) for each iteration of learning becomes prohibitively

expensive.

The second difference is that in equation 6.1 the objective function is an aver-
age of KL(P(H|V)||Q(H|V)), whereas in equation 6.4 the objective is the average of
KL(Q(H|V)||P(H|V)). Minimizing KL(P(H|V)||Q(H|V)) leads to the mode averag-
ing problem (see figure 6.2 for an informative illustration). For the discussion, assume
that the true posterior P(H|V') is multimodal while the approximate posterior Q(H|V)
is unimodal. KL(P(H|V)||Q(H|V)) is large whenever Q(H|V) is small at locations H
at which P(H|V) is large, which follows from the definition of the KL divergence (eq
6.2). As an extreme example, if Q(H = h|V) = 0 while P(H = h|V) > 0, then
KL(P(H|V)||Q(H|V)) = oo. Since Q(H|V) cannot have extremely low probability at
any region at which P(H|V) is sufficiently large, Q must distribute its single mode
around all the modes of P, or else there will be regions at which P(H|V) is large but
Q(H|V) is extremely small. As a result, if the posterior represents two alternatives, this

approximation will not choose any one of them. This is illustrated in figure 6.2.

Equation 6.4, the one which we wish to, but cannot, minimize, has ezxactly the opposite
behavior, for the function KL(Q(H|V)||P(H|V)) is minimized. By switching the KL-
divergence () is forced to select a single mode and to put most of its mass on it, for
KL(Q(H|V)||P(H|V)) is high whenever Q(H = h|V) is large but P(H = h|V) is very

small, which is desirable.

CHAPTER 6. FINE-TUNING DEEP MODELS 46

Figure 6.2: The mode averaging problem: The blue distribution represents the true
posterior, the green distribution is argming K L(Q(H|V)||P(H|V)) and the red distribu-
tion is argming KL(P(H|V)||Q(H|V)). This is especially undesirable when each mode
represents a choice, such as left or right. The red distribution will necessarily choose

center.

6.3 The Contrastive Wake-Sleep Algorithm

There is an elegant way to alleviate the need to be sample from P(V, H), the mode
averaging problem, and the fact that the distribution used is P(V') and not P(V), in a
single modification to the algorithm.

Recall that P(H, V) is a multilayered model, where there are several layers of hidden
variables (for instance, the deep models we obtain by augmenting the TRBM or the
WRBM). The idea of Contrastive Wake-Sleep is the following: given a training point V
randomly selected from the training set, we first obtain a sample from the approximate
posterior Q(H|V) and update the parameters of P which is also done in the standard
Wake-Sleep algorithm. Then, we randomly (and slightly) perturb the variables of H
which are at the highest layer (which we will denote by H},, a mnemonics for highest)
and sample from P(V, H|H},) which is easy for the deep models we consider (it is sampling
P(H},) that is hard for our models). This is similar to reconstructing all the variables

(V, H) from Hj,. The reconstructed (V, H) does not satisfy that H is a sample from V’s

CHAPTER 6. FINE-TUNING DEEP MODELS 47

posterior, yet it is plausible that H is close to being one.

However, as the reconstruction is from Hp, there is no need to sample from P(Hy),
which is the main advantage gained from using the Contrastive Wake-Sleep algorithm.
Moreover, as the inference model becomes accurate, the reconstructions will always be
more similar to the respective datapoint, and thus closer to the data distribution than a

sample from the model.

Secondly,) no longer gets penalized when it distributes its probability on only one
mode of the marginal posterior P(Hy|V). Indeed, if all the samples from Q(H,|V) are
near only one mode of P(Hp|V), then the reconstructions from Hj will be near the
respective datapoint and () will not be influenced by the presence of the other modes in
H;. Had we sampled (V, H) from P, Q would have to learn to output samples from the
other modes of P(H|V) as well, which is avoided. We do not make a claim regarding

the variables not in the highest layer Hj.

6.4 Contrastive Wake-Sleep applied to Deep Sequence

Models

Let us see how these ideas apply to our models. Recall that our learning of the deep
models uses a certain approximation to the posterior, which we now consider as our
recognition model. The inference and main models have the same parameters, but once
we split the main model into the inference model and a main model explicitly, the above
ideas apply directly.

Let us describe the multilayered models differently from before. There are m layers
of variables, V. = HO H®M . . H®™ where for uniformity, we denote V by H®. In
general, H® is the ith hidden layer, with P® being the TRBM or the WRBM that

models the distribution of H and H{+Y. The joint distribution of the deep model M

CHAPTER 6. FINE-TUNING DEEP MODELS 48

is
m—2
M(V,HY, ..., = [[P (@9 HE) plm=b) (Fm0, 7™ (6.5)
1=0

and inference is performed via

m—1
Mapprox (H<1)7 . m)‘v = H P ppI‘OX <Z+1)|H<Z)) (66)
1=0

We replace Mapprox with its copy whose parameters do not depend on the parameters

of M, yet happen to be equal to them. Let us denote by
m—1
QHW,. . H™V)=]] " (H | HD) (6.7)
i=0

the recognition model that replaces Mapprox, whose parameters are initialized to those of
Mapprox and will change during learning. Learning M and) proceeds exactly according
to the Contrastive Wake-Sleep algorithm. In particular, if M has already been trained in
a greedy way, then the wake-sleep algorithm starts with reasonably accurate main and
recognition models.

We reiterate that to learn M we first randomly select V' from the training set, and use
Q@ to perform approximate inference so that all the variables receive values; M increases
the log probability it assigns to these values of H". Then H™ is randomly perturbed
and from the value new of H™ the values of H® are reconstructed using M (i.e., we
sample P({H®}o<icm—1|H™)), and @ learns by increasing the log probability it gives
to the values of H obtained by the reconstruction.

To conclude this section, we provide the equations for the gradients needed for learn-
ing:

First, note that
m—2
log M (V,HY, ... H™) = "1log P (HW|HV) +1og PV (H™ 1 HI™) (6.8)

so we merely need to find the gradients of log P (H®|H+1) and log P~V (H{m=1) H(m)

with respect to M’s parameters. We have already shown how to approximately compute

CHAPTER 6. FINE-TUNING DEEP MODELS 49

the derivatives of log P{™~1) (H m=1) ' (m)) in the sections of the multilayered models of
the TRBM and the WRBM, for P{m 1 (H{m=1) H(™) is either a TRBM or an WRBM.

The derivatives of log P% (H®|H®) can be easily approximated for both the
WRBM and the TRBM.

For the WRBM, log P (H®"|H) is the distribution of a Boltzmann Machine
without hidden variables. Conceptually, the derivative is that of the Boltzmann Ma-
chine, except that in practice the negative expectations are replaced by a reconstruction
distribution, obtained from brief Gibbs sampling of the visible variables. In this equa-
tion, the fact that we condition on H¢*1 implies that the biases to the variables H® are
parameterized similarly to the bias functions of the TRBM. As a result, the equations

are the following:
T

oL (i) (u) (i) (w) (i+1)(v)
oCr),, Z <Ht_k _<Ht_’C >P(i)(H<i)|H<i+1)) H (6.9)
k) uw t=k+1
oL T
_ @)w) g Y(0) [pptid) 1))
o(Ar),, > HLUH, <Ht*’c H >P<i)(H(i)H<i+1)) (6.10)
k) uw t=k+1

The WRBM is parameterized with the matrices Ay and Cj for some values of k. In this
equation, £ stands for log P (H®|H+1).

The TRBM is slightly different. When sampling from a deep TRBM, the conditional
distribution P® (H®|H 1) is difficult to sample from, so it is approximated similarly to
the filtering distribution of the TRBM: we loop over the timestep ¢ from 1 to 7', sampling
Ht(i> from P (H<i)t|H<i+1>t1, H<i>t1_1> while ignoring H<i>£_1. This approximate sampling
process is that of a Sigmoid Belief Network [36]. The derivatives of log P® (H®|H D)

when P® is the approximate conditional TRBM are the following:

oL (o (i) (w) (1))
= E H - <H > H 6.11
9(Ch) p— (! t PO (B |HEHD) ¢ (6.11)
oL ZT (i)(o) (3)(0) i)
O(Ak)y (Ht B <Ht >P<i)(H<i)|H<i+1)) Hioes (6.12)
uv t=k+1

During the approximate sampling the connections C} for £ > 0 are not used. £ =

log P (H®|H 1) | as before.

CHAPTER 6. FINE-TUNING DEEP MODELS 50

For the inference model @, the distributions Q = Pé%prox (HHD|H®) are exactly'
the same (but reflected symmetrically) as the conditional of the main models, so the
derivatives are very similar, conceptually. For the WRBM Pé%prox (HHDIH®) s a
Boltzmann Machine without any connections which is a factorial distribution, and its

derivatives are:

(6.13)

oL) (u] v] v
=S (e (e)
Q) (H G+ | H(D)

where £ = log QW (H**|H®) and the A; matrices are not used in the approximate
inference.

For the TRBM we get the derivatives

0L i@ (1)) (1))
_ gOw (g ”—<H’ > 6.14
8(Ck)uv t:zk;1 =k t ¢ Q(i)(H(i+1)|H<i)) ()
oL r
_ 1)) (D) i)
O(By) - Z H,"} (Ht <Ht >Q(¢) (H(i+1)H(i))) (6.15)
k)uv t=k+1

Note that here the weights C} are used because they are used in the process of the

approximate filtering, and the parameters A; are not used in the approximate inference.

6.5 Mixed multilayered models

In the description of the multilayered models, we have a model P(V, H) and we use a
model Q(H) to fit the aggregated posterior of P (see section 3.3; the notation differs from
the previous section and is the one used in the descriptions of the multilayered models
used throughout the text). In particular, @) would be from the same model family as
P in our descriptions. However, Q(H) can be an arbitrary model. The only reason for
@ to be similar to P is so that QQ(H) could be initialized to be equal to P(H). This

initialization is desirable only because this way the lower bound to the log likelihood

! This is not quite true for the approximate filtering of the TRBM, but we nonetheless use the same
derivatives for their simplicity.

CHAPTER 6. FINE-TUNING DEEP MODELS 51

TRBM

Multigrid-WRBM

T/2

Multigrid-WRBM

T

| v,

Figure 6.3: A Mixed Multilayered model, where every layer consists of either an
(Multigrid-) WRBM or a TRBM

of the augmented model (log Mpg(V)) is equal to the log likelihood of P; this way

B(V)
know that the augmented model fits the data better than the initial model. However,
we do not initialize) this way, so it is possible for) to be any model, as long as it is
sufficiently flexible.

All of this implies that when constructing multilayered models, we need not select all
the models from one family. For example, we could fit an WRBM and then fit a TRBM
for the second hidden layer, and then fit a Multigrid-WRBM for the third hidden layer.
A particularly appealing model consists of several Multigrid-WRBMs for the first few
hidden layers with a TRBM in the top layer.

This provides many more possible models, and we believe that any such combination

produces good results. Moreover, the resulting deep model can be straightforwardly

fine-tuned exactly the way it is described in the previous section.

Chapter 7

Experiments

In this chapter we demonstrate that the large number of models we introduced can learn
accurate probability models of highly complex sequences efficiently. The implementation

is available at the website www.cs.utoronto.ca/~ilya/MS_thesis/.

7.1 The Dataset

We used a synthetic dataset of videos of 2 balls bouncing in a bounded box. A typical
sequence can be seen in the website. We can generate as many such sequences as neces-
sary, so there is no danger of overfitting the data. For our experiments we used videos
of resolution 20 by 20, thus each frame is very high-dimensional. The data is highly
non-linear in the positions of the balls due to them bouncing off the walls and off each
other, and indeed, the problem is difficult to model even when the balls are represented
with the real-valued coordinates of their centers [34]. We apply our methods to the much
harder problem of modeling the pizels of these videos.

We generate a video sequence by simulating the trajectories of the bouncing balls
in the box whose dimensions are 10 x 10 units (not pixels), initializing their positions
randomly and velocities to random vectors. For each frame, we let the vectors =, xo

denote the positions of the centers of the balls and let » = 2 be their radius relative to

52

CHAPTER 7. EXPERIMENTS 53

the coordinates of the 10 x 10 box. We set the intensity of each pixel of the frame whose

position in the 10 x 10 box is p to the value min (1, S22 exp (— (Ilp — x,-||2/r2)4)).

7.2 The models we test

We have introduced a large number of models, and with the ways of creating multilayered
models there is a very large space of possible models. Therefore, we experiment with the

small number of representative models, enumerated below:

1. The first model has three layers of TRBMs. The TRBM in the first layer has 400
visible variables (this is the dimensionality of the input) and 200 hidden variables
per timestep. The second TRBM has 200 visible variables and 400 hidden vari-
ables per timestep, and the third TRBM has 400 visible variables and 200 hidden
variables. The number of variables per layer was chosen by trial and error. In
particular, we chose the number of variables in the different layers to alternate
(400,200,400,200) [24]. It is likely that other numbers of variables per layer would

yield very similar results.

Each variable of each TRBM can directly observe 4 previous timesteps, which

amounts to m = 4 in the definition of the bias functions (equation 4.3).

2. The second model is identical to the model (1) above, except that each TRBM has
no connections between the hidden variables; we denote this TRBM by TRBM-
HH. This is a an interesting model, for it has an exact inference procedure and its

multilayered theory is more sound.

3. The third model is identical to the model in (1), except that each TRBM has no
connections among the visible variables, and the hidden variables cannot observe

the previous visible time steps (i.e., A, = 0 and Cy = 0 for £ > 0). This model

CHAPTER 7. EXPERIMENTS 54

is important, showing that the TRBM can learn to use the hidden state alone to

propagate information through time.

4. The fourth model has three layers of WRBMs. The WRBMs used in this model have
the same numbers of hidden and visible variables per timestep as the TRBMs in (1).
The hidden variables of each WRBM can influence five nearby visible variables, and
the visible variables can directly influence only their immediate neighbors. This is

equivalent to having set m = 4 and n = 1 in equation 5.1 that defines the WRBM.

5. The fifth model is similar to (4), except that every WRBM used is a Multigrid-
WRBM with the same dimensions, where each Multigrid-WRBM has a factor of 2

reduction in the length of the sequence.

6. The final model we test is a mixed model. This mixed model has three layers; the
first two layers are the Multigrid-WRBMs that are in the first two layers of model

(5), and the final layer is the full TRBM that is in model (1).

We fitted each model by learning the layers sequentially, then fine-tuning all the layers

simultaneously using the Contrastive Wake-Sleep algorithm.

7.3 Learning details

The general method used for finding the parameters is gradient descent with a slightly
nonstandard momentum. Let 6, be the state of the parameters on the n-th iteration, and
let the value of the momentum be p = 0.9. We maintain the velocities of the parameters
f,, at timestep n which are called v,. Let d, be the stochastic approximation to the
gradient of the objective function we wish to optimize at time n, which is computed the

way described in the previous chapters. For each timestep, we update the velocities

Unt1 = Un + Edy,

CHAPTER 7. EXPERIMENTS 55

and then update the parameters 6,1 = 6, + Sv,, where ¢ is the learning rate and S is
the speedup factor that increases during learning, and is initially initialized to 1. The
difficulty in using this optimization is that we need to initialize the parameters 6y, to
choose ¢, to decide when to increase S, and to choose the total number of iterations
appropriately. These difficult problems are not addressed in this thesis; instead, these

choices are made by trial and error, and are suboptimal.

We noticed that S can be increased as learning progresses without undesirable side-
effects. S = 1 at the beginning of learning when the parameters “break symmetry”.
After this, we can safely increase S up to 10 to 100. We currently do not know how
to detect automatically when this symmetry breaking occurs; we can observe it when
the images of the incoming connections to the hidden variables start looking like filters
for the model of the first hidden layer. Using this visual information, we can determine
when to increase the speedup factor, and use the resulting schedule for the models at the
higher layers as well. This has been applied very successfully to the sequential learning
of the layers. The Contrastive Wake-Sleep algorithm is much less tolerant to changes in
the speedup factor and often finds extremely bad solutions when the speedup factor is

increased by such a factor, so we did not increase it during learning.

When training each layer separately, we ran the algorithm for 5000 iterations. At
each iteration we compute the approximate gradients given a video of 100 frames, and
normalize the learning rate by dividing it by the length of the video. For training the
TRBMs, we initialized the learning rate with 0.005, and doubled the speedup factor at
iterations 100,200,500, and 1000. For the WRBMSs and the mixed model we initialized
the learning rate to 0.001 and doubled the speedup factor at the same iterations as the
TRBMs. As a result of using this schedule, learning requires approximately 10 times less
iterations. The WRBMs turned out to be more sensitive to large learning rates than the
TRBMs. Additionally, models that have connections among the visible variables fail to

learn if these connections are updated with the same learning rate, so we reduced the

CHAPTER 7. EXPERIMENTS 56

learning rate of these connections by a factor of 10 for all models. The parameters of the
models were initialized using very small random numbers.

When fine-tuning the models, we ran the Contrastive Wake-Sleep algorithm for 10000
iterations using learning rate of 0.0005 for the parameters of the main, generative model,
except for the parameters of the TRBM/WRBM in top of the hierarchy, which had a
learning rate of 0.0025. The learning rate 0.001 was used for the parameters of the
recognition model. As before, the learning rate of the connections among the visible
variables (i.e., the Ay connections) of each model was a factor of 10 smaller than the
corresponding learning rate of the other connections (i.e., the By and the C}, connections),
and each learning rate was divided by the length of the training sequence, as before. The
speedup factor of the Contrastive Wake-Sleep algorithm was fixed throughout learning,
and the learning rates were of the TRBM and the WRBM were equal.

As a result, the Contrastive Wake-Sleep algorithm usually improved the quality of
the model. However, we were unable to fit the models using the Contrastive Wake-Sleep
algorithm starting with a random initialization.

We use different learning rates in order to speed up learning as much as possible,
since different components of the model can learn in different speeds. Indeed, had we
restricted all the learning rates to be 0.0005, we would have to increase the number of
iterations to obtain analogous results.

Finally, even a single TRBM can learn an extremely accurate model of a similar
dataset when trained for a very large (> 10°) number of iterations; samples from this

TRBM are shown on the website www.cs.utoronto.ca/~ilya/MS_thesis/.

7.4 Results

Samples from all the models are available at the website. The results show that the

models are capable of learning reasonably accurate models of the training set, and that

CHAPTER 7. EXPERIMENTS 57

adding hidden layers and fine-tuning typically improves the quality of the samples from
the models. We did not quantitatively evaluate the quality of the samples because the
models can generate trajectories that are approximately correct but can considerably
deviate from any real trajectory of true bouncing balls, particularly when the balls bounce
off each other. Therefore, visual inspection is preferable in this situation.

Our models are to some degree undertrained, in part because we wished to keep
learning time sufficiently low (less than a day). Indeed, by training for a considerably
longer period of time (of the order of two weeks) we can get substantially more accurate
models.

Figures 7.2 and 7.3 display the connections learned by the TRBM.

An additional task that can be done with our models is denoising. We provide the
model with a video, and use the model to denoise it by performing infernece and recon-
structing some chosen hidden layer. See figure 7.1.

The noise is constructed the following way: at each frame, each pixel is independently
selected with probability 0.004. For each selected pixel, a ball of smaller radius (which
fits in a 5x5 box) is shown for 6 frames in that location. The noise can overlap, and it
is possible, for instance, for the same pixel to be selected in two consecutive frames (and
thus to have the same smaller ball appear for 7 frames). The noise starts in steady state,
which is why the noise appearing in the first frame may remain visible for less than 6

frames.

CHAPTER 7. EXPERIMENTS 58

Figure 7.1: Denoising using a TRBM-HH. The first row shows the data to be denoised,

the second row shows the noisy data, the third row shows the reconstruction using a
single layer of the TRBM-HH, the fourth row shows the reconstruction from the second
layer of the TRBM-HH, and the fifth row shows the reconstruction from the third hidden
layer of the TRBM-HH. The sixth row shows the result of denoising the third row with
the first layer of the TRBM-HH (i.e., the already denoised sequence using a single layer
of the TRBM-HH) and the final row shows denoising using the first layer of the TRBM-
HH of the sixth row. This demonstrates that “iterative denoising” with a single layered

model has a similar effect to that of using additional hidden layers.

CHAPTER 7. EXPERIMENTS 59

Figure 7.2: The connections between the frame and its corresponding hidden variables

(i.e., the connections between V; and Hy, or Cy) in a fully connected TRBM. Each square
corresponds to a hidden variable, and its incoming connections are aligned in the shape
of the image; thus we can see what kind of inputs activate the hidden variables. The

connections learned by the WRBM do not look as appealing.

CHAPTER 7. EXPERIMENTS 60

Figure 7.3: The connections between two adjacent visible frames (the connections be-

tween V; and V;_1, or A;) in a fully connected TRBM. Each square corresponds to a pixel
in the image, and the image within shows the connections from this pixel to the pixel in

the next frame.

Chapter 8

Conclusions and Discussions

In this thesis we introduced several probabilistic sequence models and demonstrated their
power by fitting them to high-dimensional synthetic video sequences. As a result, the

models learned accurate probabilistic models of the data.

A model similar to the multilayered TRBM could be useful for the construction of an
intelligent agent, such as a mouse or a dog, for the agent needs to be able to model and
predict the environment it is in and to choose actions that lead to the outcome it desires.
The TRBM can learn online, so it is appropriate in this setting, and the features it learns
may be useful for achieving the tasks of the agents. The TRBM, however, cannot learn to
retain information over many timesteps, a fact that makes the TRBM less useful for this
task. The Multigrid WRBM is more capable of learning long range temporal regularities,

but it is not suitable for online learning and filtering the way a TRBM is.

Therefore, we wish to modify the TRBM model to have some kind of longer-term
memory, similar to that of the Long-Short Term Memory model [25], or to have con-
nections that change during the operation of the network and learn to store important
contextual information for a large number of timesteps. A similar idea was introduced
in [20].

The most important drawback of our models is that they are difficult to use in prac-

61

CHAPTER 8. (CONCLUSIONS AND DISCUSSIONS 62

tice. While the algorithms are not (too) difficult to implement correctly, finding the
appropriate learning rate and the correct number of iterations is a much more challeng-
ing task. In the reported experiments we used a fixed number of iterations and a learning
rate found by trial and error. This is impractical since every task requires a large amount
of manual labor for finding the the learning rate schedule. In our initial experiments we
used a constant learning rate, and learning a single layer to reach performance similar
to the one we have obtained took sewveral days, for a large learning rate was unusable.
We later realized that we could use a small learning rate for the beginning of learning
and a much larger learning rate for the rest of learning. Since we cannot compute a
cost function, it is difficult to implement adaptive learning rate, where the learning rate
increases until the cost function being minimized starts exhibiting oscillatory behavior.
One possible way of implementing an adaptive learning rate is by increasing the learning
rate and checking whether the weights start oscillating, although checking this is non-
trival; if they do, the learning rate is too large, but if they do not, the learning rate can
be increased. Stochastic Meta Descent [45] tries to solve the same problem, but it is
inapplicable to our models due to our inability to evaluate the objective function, the log
likelihood.

In conclusion, a powerful time-series model needs to have

a high-dimensional, distributed, hidden state

complex non-linear dynamics in the hidden variables

a hierarchical hidden representation, possibly with feedback connections

e an efficient learning algorithm

In this thesis we introduced models that, to some extent, satisfy these requirements.

Bibliography

1]

2]

3]

[4]

[5]

[6]

M. Arulampalam, S. Maskell, N. Gordon, T. Clapp, D. Sci, T. Organ, and S. Ade-
laide. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian track-

ing. IEEE Transactions on Signal Processing, 50(2):174-188, 2002.

P. Bartlett and M. Anthony. Neural Network Learning: Theoretical Foundations.

Cambridge University Press, 1999.

A. Bell and T. Sejnowski. The ‘independent components’ of natural scenes are edge

filters. Vision Research, 37(23):3327-3338, 1997.

Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gra-
dient descent is difficult. IEEE Transactions on Neural Networks, 5(2):157-166,
1994.

M. Black and A. Jepson. EigenTracking: Robust Matching and Tracking of Ar-
ticulated Objects Using a View-Based Representation. International Journal of

Computer Vision, 26(1):63-84, 1998.

X. Boyen and D. Koller. Tractable inference for complex stochastic processes. In
G. F. Cooper and S. Moral, editors, Proceedings of the 14th Conference on Uncer-
tainty in Artificial Intelligence (UAI-98), pages 33—42, San Francisco, July 24-26

1998. Morgan Kaufmann.

63

BIBLIOGRAPHY 64

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

A. Brown and G. Hinton. Products of hidden markov models. Proceedings of Arti-

ficial Intelligence and Statistics, pages 3—11, 2001.

M. Carreira-Perpinan and G. Hinton. On contrastive divergence learning. Artificial

Intelligence and Statistics, 2005.

C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273-
297, 1995.

F. Crick and G. Mitchison. The function of dream sleep. Nature, 304(5922):111-114,
1983.

N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines

and Other Kernel-based Learning Methods. Cambridge University Press, 2000.

P. Dagum and M. Luby. Approximating probabilistic inference in Bayesian belief
networks is NP-hard. Artificial Intelligence, 60(1):141-153, 1993.

A. Dempster, N. Laird, and D. Rubin. Maximum Likelihood from Incomplete Data
via the EM Algorithm. Journal of the Royal Statistical Society. Series B (Method-
ological), 39(1):1-38, 1977.

7. Ghahramani and M. I. Jordan. Factorial hidden Markov models. In D. S. Touret-
zky, M. C. Mozer, and M. E. Hasselmo, editors, Advances in Neural Information

Processing Systems, NIPS, volume 8, pages 472-478. MIT Press, 1995.

Z. Ghahramani and S. Roweis. A unifying review of linear Gaussian models. Neural

Computation, 11(2):305-345, 1999.

P. Graham. A plan for spam. http://www.paulgraham.com/spam.html, October
2002.

G. Hinton. What kind of a graphical model is the brain? IJCAI2005, Award lecture,
2005.

BIBLIOGRAPHY 65

18]

[19]

[20]

[21]

22]

23]

[24]

[25]

[26]

[27]

[28]

G. Hinton and A. Brown. Spiking Boltzmann Machines. Advances in Neural Infor-

mation Processing Systems, 12, 2000.

G. Hinton, P. Dayan, B. Frey, and R. Neal. The wake-sleep algorithm for unsuper-
vised neural networks. Science, 268(5214):1158-1161, 1995.

G. Hinton and D. Plaut. Using fast weights to deblur old memories. Proceedings of

the 9th Annual Conference of the Cognitive Science Society, pages 177-186, 1987.

G. Hinton and R. Salakhutdinov. Reducing the Dimensionality of Data with Neural

Networks. Science, 313(5786):504, 2006.

G. Hinton and T. Sejnowski. Learning and relearning in Boltzmann machines. Mit
Press Computational Models Of Cognition And Perception Series, pages 282-317,
1986.

G. E. Hinton. Training products of experts by minimizing contrastive divergence.

Neural Computation, 14(8):1771-1800, 2002.

G. E. Hinton, S. Osindero, and Y. W. Teh. A fast learning algorithm for deep belief

nets. Neural Computation, 18, 2006.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation,

9(8):1735-1780, 1997.

H. Jaeger and H. Haas. Harnessing Nonlinearity: Predicting Chaotic Systems and
Saving Energy in Wireless Communication. Science, 304(5667):78-80, 2004.

M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul. An Introduction to Variational

Methods for Graphical Models. Machine Learning, 37(2):183-233, 1999.

L. Kaelbling, M. Littman, and A. Moore. Reinforcement Learning: A Survey. Jour-
nal of Artificial Intelligence Research, 4:237-285, 1996.

BIBLIOGRAPHY 66

[29] R. Kalman. A new approach to linear filtering and prediction problems. Journal of

Basic Engineering, 82(1):35-45, 1960.

[30] F. Kschischang, B. Frey, and H. Loeliger. Factor graphs and the sum-product algo-
rithm. IEEE Transactions on Information Theory, 47(2):498-519, 2001.

[31] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In Proc. 18th International Conf.

on Machine Learning, pages 282—-289, 2001.

[32] Y. LeCun and Y. Bengio. Convolutional networks for images, speech, and time

series. The handbook of brain theory and neural networks, pages 255-258, 1998.

[33] M. Lewicki. Efficient coding of natural sounds. Nature Neuroscience, 5(4):356-363,

2002.

[34] A. Mnih. Learning nonlinear constraints with contrastive backpropagation. Master’s

thesis, University of Toronto, Oct. 2004.

[35] K. Murphy. Dynamic Bayesian Network : Representation, Inference and Learning.
PhD thesis, UC Berkeley, 2002.

[36] R. Neal. Learning stochastic feedforward networks. Technical Report CRG-TR-90-7,

University of Toronto, 1990. In CRG library.
[37] R. Neal. Bayesian Learning for Neural Networks. Springer, 1996.

[38] R. Neal and G. Hinton. A view of the EM algorithm that justifies incremental,

sparse, and other variants. Learning in Graphical Models, 89:355-368, 1998.

[39] R. M. Neal. Probabilistic inference using Markov chain Monte Carlo methods. Tech-

nical report, University of Toronto, 1993.

BIBLIOGRAPHY 67

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

48]

[49]

[50]

C. Peterson and J. Anderson. A mean field theory learning algorithm for neural

networks. Complex Systems, 1(5):995-1019, 1987.

A. Poritz. Hidden Markov models: a guided tour. International Conference on

Acoustics, Speech, and Signal Processing, pages 7-13, 1988.

L. Rabiner. A tutorial on hidden Markov models and selected applications in speech

recognition. In Proceedings of IEEE, 77(2):257-286, February 1989.

S. Roweis. EM algorithms for PCA and SPCA. Advances in Neural Information
Processing Systems, 10:626—-632, 1998.

D. Rumelhart, G. Hinton, and R. Williams. Learning internal representations by

error propagation. MIT Press Cambridge, MA, USA, 1986.

N. Schraudolph. Local gain adaptation in stochastic gradient descent. Ninth Inter-
national Conference on Artificial Neural Networks, 2:569-574, 1999.

R. Sutton and A. Barto. Reinforcement Learning: An Introduction. Bradford Book,
1998.

B. Taskar, C. Guestrin, and D. Koller. Max-margin Markov networks. Advances in

Neural Information Processing Systems, 16:25-32, 2004.

M. Turk and A. Pentland. Face recognition using eigenfaces. Computer Vision and

Pattern Recognition, pages 586591, 1991.

M. Wainwright, T. Jaakkola, and A. Willsky. A new class of upper bounds on the
log partition function. IEEE Transactions on Information Theory, 51(7):2313-2335,
2005.

M. Wainwright and M. Jordan. Graphical models, exponential families, and varia-

tional inference. UC Berkeley Dept. of Statistics, Tech. Rep, 629, 2003.

BIBLIOGRAPHY 68

[51] J. Winn. Variational Message Passing and its Applications. PhD thesis, University
of Cambridge, october 2003.

[52] J. Yedidia, W. Freeman, and Y. Weiss. Constructing free-energy approximations
and generalized belief propagation algorithms. IEEE Transactions on Information

Theory, 51(7):2282-2312, 2005.

