
Mimicking Go Experts with Convolutional

Neural Networks

Ilya Sutskever and Vinod Nair

Department of Computer Science
University of Toronto, Toronto, Ontario, Canada

{ilya,vnair}@cs.utoronto.ca

Abstract. Building a strong computer Go player is a longstanding open
problem. In this paper we consider the related problem of predicting the
moves made by Go experts in professional games. The ability to predict
experts’ moves is useful, because it can, in principle, be used to narrow
the search done by a computer Go player. We applied an ensemble of
convolutional neural networks to this problem. Our main result is that
the ensemble learns to predict 36.9% of the moves made in test expert
Go games, improving upon the state of the art, and that the best single
convolutional neural network of the ensemble achieves 34% accuracy.
This network has less than 104 parameters.

Key words: Go, Move prediction, Convolutional Neural Networks

1 Introduction

Go is an ancient and popular two-player board game in which players take turns
to place pieces on the board, aiming to capture as many of the opponent’s pieces
and as much board territory as possible. The pieces are unmovable, but can be
captured and removed from the board if surrounded by the opponent’s pieces.
Go is played on a 19 × 19 board; its rules are described by van der Werf [1, ch.
2]

Existing Go-playing computer programs are still not competitive with Go
professionals on 19×19 boards (e.g., [2], [1], [3]). In contrast, some Chess-playing
programs can play on par with world champions, even though Chess is not
obviously easier than Go, except with respect to board size. Some checkers-
playing programs are even more extreme and can play the optimal checkers
strategy [4].

The techniques used for successful Chess play do not work for Go for sev-
eral reasons. First, the nature of the rules of Chess makes it easy to estimate
the player with the advantage, simply by counting the pieces. This and similar
heuristics allow minimax search to compute a good move reasonably rapidly. In
contrast, there is no easy way to determine the player with the advantage in Go.
In particular, counting captured pieces (which works for Chess) does not work
for Go because the value of a piece depends more heavily on its surroundings.
The inability to rapidly evaluate Go positions prevents minimax searches from



finding good moves. Second, typical Chess positions have 40 legal moves, while
typical Go positions have 200 legal moves, so the search space is substantially
larger. This partly explains why there are still no strong computer Go players.

The difficulty of Go suggests that it may be useful to start by solving a
different problem whose solution would help create a strong Go player. In this
paper we consider such a problem, which is to predict the moves made in Go
experts’ games. Predicting moves of Go experts is related to creating a good
Go player, because an extremely accurate move predictor (e.g., a Go expert)
ought to play Go well. However, constructing a fairly accurate move predictor is
potentially easier than playing Go well, because an accurate move predictor can
occasionally make devastating mistakes which would make it a poor Go player.
For an illustration of the importance of the problem, consider an observer of a
professional Go tournament. If the observer is able to predict, on average, every
third move the players make, then it is plausible that the observer is a Go expert.
Our convolutional neural networks can do precisely this. In addition, the move
predictor can be used for educational purposes, since by outputting a probability
distribution over all possible moves, it allows the student of expert Go games
to see alternative good moves that could have been made (but obviously, were
not). Finally, the move predictor can be used to narrow the search done by a
full Go player.

We report the prediction accuracy of several convolutional neural networks
[5], [6] on the problem of predicting Go experts’ moves and also the accuracy
when the networks are combined. Our main result shows that an ensemble of
convolutional neural networks is able to predict 36.9% of the moves in the test Go
games, while the most accurate previous method by Stern et al. [7] predicts 34%
of the moves correctly. The best convolutional neural network of our ensemble
has less than 104 parameters and achieves over 34% accuracy on the test set,
while a very small convolutional neural network, with less than 2,000 parameters,
achieves 30% prediction accuracy. Furthermore, the convolutional networks learn
rapidly and reach 30% accuracy after learning on a small fraction of the training
set.

We now outline the difference between Stern et al.’s approach [7] and ours.
While our move predictor uses an ensemble of convolutional neural networks
the best of which have a small number of parameters, Stern et al.’s predictor
uses a 107-dimensional feature vector to represent the board, where each feature
represents an exact pattern match (up to a translation and a symmetry) and is
computed very efficiently. It copes with such high-dimensional feature vectors
by using Bayesian methods, and is trained on 180,000 expert games. The nature
of its exact pattern matching may make it difficult to generalize to non-expert
games.

In addition to using fewer parameters, we used a smaller training set con-
sisting of approximately 45,000 expert games [8]. Since the convolutional neural
networks, especially the small ones, have relatively few parameters, and do not
perform exact pattern matching, they have the potential to generalize to non-
expert games.



The method of Stern et al. has an advantage over ours: it does not use the
previously made moves as additional inputs. This is significant, because our
results show that the moves made in previous timesteps greatly improve the
performance of our convolutional neural networks (see table 1 for the extent to
which it helps).

2 Convolutional Neural Networks

Convolutional neural networks [5] form a subclass of feedforward neural networks
that have special weight constraints. They enable the network to learn much
more efficiently from fewer examples, provided that the learning problem exhibits
two-dimensional translation invariance.

Convolutional neural networks have been successfully applied to various prob-
lems, and have obtained the best classification accuracy on the MNIST digit
dataset [11], [12], the NORB image dataset [13], and on the problem of hand-
written zipcode understanding [14].

Convolutional neural networks are well suited for problems with a natural
translation invariance, such as object recognition ([11], [13], [14]). Go has some
translation invariance, because if all the pieces on a hypothetical Go board are
shifted to the left, then the best move will also shift (with the exception of pieces
that are on the boundary of the board). Consequently, many applications of neu-
ral networks to Go have used convolutional neural networks ([6], [15], [10], among
others). A convolutional neural network is depicted in figure 1. Its construction
is motivated by the observation that images (and Go boards) are expected to be
processed in the same way in every small image patch; therefore, the weights of
the convolutional neural network have a replicated structure which applies the
same weights to every subrectangle of the image (the size of the subrectangles
is always the same; fig. 1), producing the total inputs to the next layer. The
weights of a convolutional neural network are also called the convolutional ker-

nel, K, and its size, n, is the size of the subrectangles it considers. In particular,
a fully connected feedforward neural network has many more parameters than a
convolutional network of the same size. The relatively small number of weights
makes parameter estimation require many fewer examples, so a good solution (if
exists) can be found rapidly.

As in feedforward networks, applying the sigmoid function (1 + e−t)−1 to
the total inputs produces the values of the units in the hidden layer, which
form several 2-dimensional laid out “images” that are processed in the same
convolutional manner.

More concretely, a layer of a convolutional neural network is governed by the
following equation

yx,y =



1 + exp



−

(n−1)/2
∑

u=−(n−1)/2

(n−1)/2
∑

v=−(n−1)/2

xx+u,y+vKu,v









−1

(1)



where y is the activity of a hidden unit at position (x, y), and x are the input
units.

A convolutional neural network can have several convolutional kernels; for
instance, the network of figure 1 has three convolutional kernels in the first
hidden layer. The convolutional kernel works in such a way that the sizes of
the maps in the input, hidden, and output layers are the same. To accomplish
this, some rectangles need to be partially outside of the board; in this case, the
weights of the kernels corresponding to the outside-the-board region are unused.

Fig. 1. A convolutional neural network with one hidden layer, and three convolutional
kernels; the applications of the kernels to two rectangular regions of their inputs are
shown. I , H , and O are the input, hidden, and output layers, respectively.

3 Experiments

In this section we describe the details of the convolutional neural networks that
we used for our experiments and report their performance.

For our experiments, we used the Gogod collection of games [8] which con-
tains about 45,000 expert games. D. Stern [7] generously provided us with a
quarter of their test set for accurate comparisons. We processed the games in
a simple manner so that it is the black’s player move on each board, which in-
volved reversing the colors of every second board (in a way that depends on first
player’s color).

The structure of the convolutional neural network used are as follows: The
size of the convolutional kernels of the first layers are 9 × 9 or 7 × 7, and the
size of the hidden-to-output convolutional kernels are 5 × 5. The hidden layer
consists of 15 convolutional kernels. As usual, the output layer is the softmax of
its input from the hidden layer, and the objective function is the log probability
of the model given the labels.

Another variable in the experiments is the encoding of the input. We tried
a raw input encoding, where each intersection on a board takes three possible



Fig. 2. A convolutional neural network that uses the moves made in previous timesteps.
It receives, as inputs, several of the previous board positions. The marked convolutional
maps are the same; thus every timestep is proceed in the same way, at first. The output
layer consists of 361 softmax units, whose activities are the network’s belief in the
correctness of the given move.

values: empty, white and black, which is given to the convolutional layer in the
form of two 19 × 19 bitmaps corresponding to the black and the white pieces.

We also tried an encoding that represents the number of liberties of each
group (the liberty representation). A group is a connected set of pieces of the
same color, and the number of liberties of a group is equal to the number of pieces
the opponent needs to place in order to capture this group, without intervention.
This feature was used earlier ([7], [15], [10]) and was shown to be useful. The
number of liberties of a non-empty intersection is defined to be the number of
liberties of the intersection’s group, which can take the values 1, 2,≥ 3 (it cannot
be 0 if the intersection is nonempty). Combining the number of liberties with the
color of the piece, each nonempty board intersection can take values in the set
V els = {1, 2,≥ 3} × {black, white} of size 6. Thus, the input representation is
given in the form of 6 bitmaps of size 19×19 (cf. figure 3). An empty intersection
causes every bitmap be 0 in this intersection; if the intersection is nonempty, then
the bitmap corresponding to the feature in V els is set to 1 in the corresponding
input intersection.

The final variable of the experiment is the number of previous boards used
as inputs: instead of using only the current board as an input, it is also possible
to use the board configurations of several previous timesteps. We used 0 and 4
previous timesteps. See figure 2.

We also tried using a much smaller a convolutional neural networks that have
only 3 convolutional kernels of size 7 × 7, which achieved 30% accuracy, as well
as one that has uses only one previous timestep.

The learning details are as follows: A learning rate of size 0.1 is used for the
first 3000 weight updates, which is then reduced to 0.01. The momentum of size
0.9 is used. Learning proceeds for 105 weight updates, where each weight update
corresponds to processing a single game in the Gogod dataset; thus, learning
makes less than three passes over the training set. Finally, the gradient is always



Network Structure Accuracy Mean log loss

7× 7, t = 0, l 22.0% 4.9

7× 7, t = 0, n 17.5% 5.2

7× 7, t = 4, l 34.1% 4.0

7× 7, t = 4, n 31.7% 4.2

9× 9, t = 0, l 21.8% 4.9

9× 9, t = 0, n 18.2% 5.2

9× 9, t = 4, l 34.6% 4.0

9× 9, t = 4, n 32.3% 4.1

7× 7, t = 4, l, h = 3 30.0% 4.4

Table 1. Results of the small convolutional neural networks. Each simulation is de-
scribed by there parameters. The first, k × k, is the size of the input-to-hidden convo-
lutional kernel; t is the number of previous timesteps used; l is written if the liberty
representation is used, and n if the raw representation is used. Every network in this
table has less than 104 parameters and 15 convolutional kernels, except for the last
row, which has only 3 convolutional kernels and less than 2,000 parameters. Notice
that the best network that does not make use of the previous timesteps achieves 22%
accuracy, showing that the previous timesteps are extremely helpful for convolutional
neural networks.

divided by 200 (before being multiplied by the learning rate) since the mean
length of a Go game in our dataset is 206. No weight decay was used.

3.1 Averaging the predictions of different neural networks

In this subsection we describe the results that are obtained when all the networks
are combined to make a large predictor. We train a neural network that takes
the predictions of the individual nets listed in table 1 as inputs, and computes
a single move prediction as output.

In addition to the networks in table 1, we also include a few simple move
predictors in the ensemble that improve the accuracy of the ensemble, despite
having low individual accuracy. The simple move predictor is a neural network
that estimates the probability of an expert making a move at a particular loca-
tion, given a local “patch” of the board centred at that location as input. For
example, the input to the network would be a 9 × 9 patch of the board, and
the output would be the probability of an expert making a move at the center
of the patch. Such a model can be used for full-board move prediction by inde-
pendently applying it to all possible candidate move locations on a board, and
then selecting the one with the highest probability as the predicted expert move
location. Such a purely local predictor will have limited accuracy because many
expert moves in Go are decided based on knowledge about the entire board.
Nevertheless, it will be good at predicting moves that are fully determined by
local configurations of stones. We train networks on patches of size 9 × 9 (100
hidden units), 13× 13 (100 hidden units), and 17× 17 (200 hidden units), with
test set move prediction accuracies of 18.4%, 18.9%, and 19.8%, respectively.



Although these networks perform poorly, they still improve the accuracy of the
ensemble.

We selected a subset of the training set of size 1000 games to learn the weights
of the ensemble network. We tried two averaging methods. The first method
computes the weighted arithmetic means the predictions of all the networks,
with the objective to maximize the log probability. This yields 35.5% accuracy.
The second method computes the weighted geometric means of the predictions
of all the networks and renormalizes the predictions, with the same objective.
This approach, although yielding a lower average log probability, obtains 36.9%
accuracy.

Fig. 3. The weights of a neural network achieving 34.6% accuracy that uses the liberties
as an additional input. Recall that the input vector is represented by 6 bitmaps. Each
column of the top-left image shows the convolutional kernels corresponding to each
such bitmap, for each of the 15 convolutional maps. The image on the right shows the
biases of the hidden units; it is displayed as 15 19×19 images. The image at the bottom
shows the convolutional kernels mapping the 15 from the current and the 4 previous
timesteps. The images are clipped at -1.5, 1.5, to enhance their contrast.

4 Related Work

A popular research direction for Go is to apply the idea that produced the
Backgammon program [16]. The Backgammon playing program uses Reinforce-
ment Learning [17] with self-play to learn a neural network that computes the
Q-values of the different moves. This approach was attempted in [6] (but using
TD(0) [17]). It is not a straightforward application of TD(0)-learning to Go,
because the neural network makes 361 predictions, one per intersection, on the
identity of its owner in the end of the game. Doing this increases the amount



of learning signal obtained from a single game. More elaborate variants of Q-
learning with neural networks are also used [10], where the neural network is
highly specialized and uses Q-learning to learn to predict many aspects of the fi-
nal position (e.g., determine whether a given position will be an eye, or whether
two positions will belong to the same group in the end of the game). This is
motivated by the belief that a good Go player should be able to predict all these
aspects of the final position, so the resulting hidden units will be more helpful
for accurate board evaluation.

The most successful recent approaches at computer Go used Monte Carlo
simulations to estimate the position’s value [18]. While this approach yields
the strongest existing computer Go player [19], we do not directly compare our
move predictor to it, since a strong move predictor is not necessarily a strong
Go player, and vice versa.

5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Expert move rank

C
u

m
u

la
ti

ve
 d

en
si

ty
 f

u
n

ct
io

n

Fig. 4. The curve shows the fraction of the boards (vertical axis) whose correct move
is among the top k predictions of the ensemble, where k ranges the horizontal axis.

There has also been some work on move prediction for computer Go [1], [15]
using a small neural network resembling ours. It used some features, such as
the number of liberties, as well as a feature that determines the distance to the
previously made move, and were trained with a specially-chosen loss function. Its
accuracy was 25%. A different specialized convolutional neural network trained
with moderately strong play on 9 × 9 boards was able to generalize to 19 × 19
boards, obtaining 10% accuracy in expert’s move prediction [20].

There has been more work [21] on move prediction that used high-dimensional
feature vectors similar to those that Stern et al. used. In addition to using high-
dimensional feature representation, Araki et al. [21] also used the previously
made moves as additional features. They were only able to obtain prediction
accuracy of 33%, having trained on half of the Gogod dataset.



5 Conclusions

We reported experimental results using neural networks for move prediction
for Go. Our results show that small convolutional neural networks are a viable
method for predicting Go expert moves. Our main discovery that knowledge of
the previous timesteps combined with the convolutional neural networks produce
a particularly accurate move predictor. Araki et al.’s [21] experience suggests
that using the previous timesteps will be less helpful for feature-vector based
approaches.

In particular, the small convolutional neural networks could be used to direct
the search very efficiently, and their small number of parameters makes them easy
to learn.

6 Acknowledgements

This research was partially supported by the Ontario Graduate Scholarship and
by the Natural Sciences and Engineering Council of Canada.

References

1. van der Werf, E.: AI Techniques for the Game of Go. UPM, Universitaire Pers
Maastricht (2004)

2. Müller, M.: Review: Computer Go 1984-2000. Lecture Notes In Computer Science
(2000) 405–413

3. Bouzy, B., Cazenave, T.: Computer Go: An AI oriented survey. Artificial Intelli-
gence 132(1) (2001) 39–103

4. Schaeffer, J., Burch, N., Bjornsson, Y., Kishimoto, A., Muller, M., Lake, R., Lu,
P., Sutphen, S.: Checkers Is Solved. Science 317(5844) (2007) 1518

5. LeCun, Y., Boser, B., Denker, J., Howard, R., Habbard, W., Jackel, L., Henderson,
D.: Handwritten digit recognition with a back-propagation network. Advances in
neural information processing systems 2 table of contents (1990) 396–404

6. Schraudolph, N., Dayan, P., Sejnowski, T.: Temporal Difference Learning of Po-
sition Evaluation in the Game of Go. Advances in Neural Information Processing
Systems 6 (1994) 817–824

7. Stern, D., Herbrich, R., Graepel, T.: Bayesian pattern ranking for move prediction
in the game of Go. Proc. of the 23rd international conference on Machine learning
(2006) 873–880

8. Hall, M.T., Fairbairn, J.: The Gogod Database and Encyclopaedia.
www.gogod.co.uk (2006)

9. Sutton, R.: Learning to predict by the methods of temporal differences. Machine
Learning 3(1) (1988) 9–44

10. Enzenberger, M.: Evaluation in Go by a Neural Network using Soft Segmentation.
Advances in Computer Games 10 (2003)

11. Simard, P., Steinkraus, D., Platt, J.: Best practices for convolutional neural net-
works applied to visual document analysis. Document Analysis and Recognition
(2003) 958–963



12. Ranzato, M., LeCun, Y.: A sparse and locally shift invariant feature extractor
applied to document images. In: Proc. International Conference on Document
Analysis and Recognition (ICDAR). (2007)

13. LeCun, Y., Huang, F., Bottou, L.: Learning methods for generic object recognition
with invariance to pose and lighting. Computer Vision and Pattern Recognition 2

(2004)
14. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-Based Learning Applied

to Document Recognition. Proceedings of the IEEE 86(11) (1998)
15. van der Werf, E., Uiterwijk, J., Postma, E., van den Herik, J.: Local Move Predic-

tion in Go. Computers and Games (2003)
16. Tesauro, G.: Temporal difference learning and TD-Gammon. Communications of

the ACM 38(3) (1995) 58–68
17. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press (1998)
18. Brugmann, B.: Monte Carlo Go. (1993)
19. Gelly, S., Wang, Y.: Exploration exploitation in Go: UCT for Monte-Carlo Go.

NIPS-2006: On-line trading of Exploration and Exploitation Workshop, Whistler
Canada (2006)

20. Wu, L., Baldi, P.: A Scalable Machine Learning Approach to Go. Neural Informa-
tion Processing Systems (2007) 1521–1528

21. Araki, N., Yoshida, K., Tsuruoka, Y., Tsujii, J.: Move Prediction in Go with
the Maximum Entropy Method. Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (2007)


