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Abstract

We describe a way of learning matrix representations of objects and relationships.
The goal of learning is to allow multiplication of matrices to represent symbolic
relationships between objects and symbolic relationshipsbetween relationships,
which is the main novelty of the method. We demonstrate that this leads to ex-
cellent generalization in two different domains: modular arithmetic and family
relationships. We show that the same system can learn first-order propositions
such as(2, 5) ∈ +3 or (Christopher, Penelope) ∈ has wife, and higher-order
propositions such as(3,+3) ∈ plus and (+3,−3) ∈ inverse or (has husband,
has wife) ∈ higher oppsex. We further demonstrate that the system understands
how higher-order propositions are related to first-order ones by showing that it can
correctly answer questions about first-order propositionsinvolving the relations
+3 or has wife even though it has not been trained on any first-order examples
involving these relations.

1 Introduction

It is sometimes possible to find a way of mapping objects in a “data” domain into objects in a “target”
domain so that operations in the data domain can be modelled by operations in the target domain.
If, for example, we map each positive number to its logarithm, multiplication in the data domain can
be modelled by addition in the target domain. When the objectsin the data and target domains are
more complicated than single numbers, it may be difficult to find good mappings using inspiration
alone. If we consider a continuous space of possible mappings and if we define a smooth measure of
how well any particular mapping works, it is possible to use gradient search to find good mappings
between the data and target domains.

Paccanaro and Hinton [10] introduced a method called “Linear Relational Embedding” (LRE) that
uses multiplication of vectors by matrices in the target domain to model pairwise relations between
objects in the data domain. LRE applies to a finite set of objects Ω and a finite set of relations
R where every relationR ∈ R is a set of pairs of objects, soR ⊆ Ω × Ω. Given the objects
and relations, LRE finds a column-vector representationA of each objectA ∈ Ω, and a matrix
representationR of each relationR ∈ R, such that the productRA is close toB for all pairs
(A,B) that are members of the relationR, and far fromC for all pairs(A,C) that are not members
of R. LRE learns the vectors and matrices by performing gradientdescent in a cost functionC that
measures the similarities betweenRA and allB such that(A,B) ∈ R relative to the similarities
betweenRA and the vector representations of all the objects in the set of known objectsΩ:

C = −
∑

R

∑

(A,B)∈R

log
exp(−‖RA − B‖2)∑

C∈Ω exp(−‖RA − C‖2)
(1)

The cost function in Eq. 1 is “discriminative” because it compares the distance fromRA to each
correct answer with the distances fromRA to all possible answers. This prevents trivial solutions



in which RA andB are always zero, but it also causes the cost function to be nonconvex, making
it hard to optimize. We can viewexp(−‖RA − B‖2) as the unnormalized probability density of
B under a spherical Gaussian centered atRA. The cost function then represents the sum of the
negative log probabilities of picking the correct answers to questions of the form(A,?) ∈ R if we
pick answers stochastically in proportion to their probability densities under the spherical Gaussian
centered atRA.

We say that LRE accurately models a set of objects and relations if its answers to queries of the
form (A, ?) ∈ R are correct, which means that for each objectA and relationR such that there are
k objectsX satisfying(A,X) ∈ R, each vector representationX of each such objectX must be
among thek closest vector representations toRA. The definition of correctness implies that LRE’s
answer to a query(A, ?) ∈ R that has no solutions is always trivially correct. More refined versions
of LRE handle such unsatisfiable queries more explicitly [9].

It may not be obvious how to determine if the representation found by LRE is good. One way is
to check if LRE’s representation generalizes to test data. More specifically, if LRE has not been
informed thatB is an answer to the query(A, ?) ∈ R that hask correct answers (that is,(A,B) was
removed fromR during LRE’s learning), yet LRE answers the query(A, ?) ∈ R correctly by placing
B among thek closest object representations toRA, then we can claim that LRE’s representation
generalizes. Such generalization can occur only if LRE learned the “right” representationsA,B,
andR from the other propositions, which can happen only if the true relation is plausible according
to LRE’s inductive bias that determines the subjective plausibility of every possible set of objects
and relations (see, e.g., [6]). If the representation is high-dimensional, then LRE can easily represent
any set of relations that is not too large, so its inductive bias finds all sets of relations plausible, which
prevents generalization from being good. However, if the representation is low-dimensional, then
LRE must make use of regularities in the training set in orderto accurately model the data, but if
it succeeds in doing so, generalization will be good. Paccanaro and Hinton [10] show that low-
dimensional LRE exhibits excellent generalization on datasets such as the family relations task. In
general, the dimensionality of the representation should grow with the total numbers of objects and
relations, because when there are few objects and relations, a high-dimensional representation easily
overfits, but if the number of objects and relations is large then the dimensionality can be higher,
without overfitting. The best dimensionality depends on the“fit” between LRE and the data, and is
mainly an empirical question.

A drawback of LRE is that the square matrices it uses to represent relations are quadratically more
cumbersome than the vectors it uses to represent objects. This causes the number of free parameters
to grow rapidly when the dimensionality of the representations is increased. More importantly, it
also means that relations cannot themselves be treated as objects. Paccanaro and Hinton [10], for
example, describe a system that learns propositions of the form: (2, 5) ∈ +3 where+3 is a relation
that is represented by a learned matrix, but their system does not understand that the learned matrix
for +3 has anything in common with the learned vector that is used tomodel the number3 in
propositions like(5, 3) ∈ −2.

In this paper we describe “Matrix Relational Embedding” (MRE), which is a version of LRE that
uses matrices as the representation for objects as well as for relations.1 MRE optimizes the same
cost function as LRE (equation 1), with the difference thatRA − C is now a matrix rather than a
vector and‖RA − C‖2 denotes the sum of the squares of the entries of the matrix. This choice
of matrix norm makes MRE a direct generalization of LRE. All distances between matrices will be
computed using this norm.

Although MRE is a simple variation of LRE, it has two important advantages.

The first advantage of MRE is that when using anN × N matrix to represent each object it is
possible to makeN much smaller than when using anN -dimensional vector, so MRE can use about
the same number of parameters as LRE for each object but many fewer parameters than LRE for
each relation, which is useful for “simple” relations.

1We have also experimented with a version of LRE that learns togenerate a learned matrix representation of
a relation from a learned vector representation of the relation. This too makes it possible to treat relations as ob-
jects because they both have vector representations. However, it is lessstraightforward than simply representing
objects by matrices and it does not generalize quite as well.



The second advantage of MRE, which is also the main novelty ofthis paper, is that MRE is
capable of representing higher-order relations, instances of which are(+3,−3) ∈ inverse or
(has husband, has wife) ∈ higher oppsex. It can also represent relations involving an object
and a relation, for instance(3,+3) ∈ plus. Formally, we are given a finite set of higher-order rela-
tionsR̃, where a higher-order relatioñR ∈ R̃ is a relation whose arguments can be relations as well
as objects, which we formalize as̃R ⊆ R×R or R̃ ⊆ Ω ×R (R is the set of the basic relations).
The matrix representation of MRE allows it to treat relations in (almost) the same way it treats basic
objects, so there is no difficulty representing relations whose arguments are also relations.

We show that MRE can answer questions of the form(4,?) ∈ +3 even though the training set
contains no examples of the basic relation+3. It can do this because it is told what+3 means by
being given higher-order information about+3. It is told that(3,+3) ∈ plus and it figures out what
plus means from higher-order examples of the form(2,+2) ∈ plus and basic examples of the form
(3, 5) ∈ +2. This enables MRE to understand a relation from an “analogical definition”: if it is
told thathas father to has mother is like has brother to has sister, etc., then MRE can answer
queries involvinghas father based on this analogical information alone. Finally, we show that
MRE can learn new relations after an initial set of objects and relations has already been learned and
the learned matrices have been fixed. This shows that MRE can add new knowledge to previously
acquired propositions without the need to relearn the original propositions. We believe that MRE
is the first gradient-descent learning system that can learnnew relations from definitions, including
learning the meanings of the terms used in the definitions. This significantly extends the symbolic
learning abilities of connectionist-type learning algorithms.

Some of the existing connectionist models for representingand learning relations and analogies
[2, 4] are able to detect new relations and to represent hierarchical relations of high complexity.
They differ by using temporal synchrony for explicitly representing the binding of the relations to
object, and, more importantly, do not use distributed representations for representing the relations
themselves.

2 The modular arithmetic task

Paccanaro and Hinton [10] describe a very simple modular arithmetic task in which the10 objects
are the numbers from0 to 9 and the9 relations are+0 to +4 and−1 to −4. Linear Relational
Embedding easily learns this task using two-dimensional vectors for the numbers and2×2 matrices
for the relations. It arranges the numbers in a circle centered at the origin and uses rotation matrices
to implement the relations. We used base12 modular arithmetic, thus there are 12 objects, and made
the task much more difficult by using both the twelve relations+0 to +11 and the twelve relations×0
to×11. We did not include subtraction and division because in modular arithmetic every proposition
involving subtraction or division is equivalent to one involving addition or multiplication.

There are288 propositions in the modular arithmetic ntask. We tried matrices of various sizes and
discovered that4× 4 matrices gave the best generalization when some of the casesare held-out. We
held-out30, 60, or 90 test cases chosen at random and used the remaining cases to learn the real-
valued entries of the12 matrices that represent numbers and the24 matrices that represent relations.
The learning was performed by gradient descent in the cost function in Eq. 1. We repeated this five
times with a different random selection of held-out cases each time. Table 1 shows the number of
errors on the held-out test cases.

3 Details of the learning procedure

To learn the parameters, we used the conjugate gradient optimization algorithm available in the
“scipy” library of the Python programming language with thedefault optimization parameters. We
computed the gradient of the cost function on all of the training cases before updating the parameters,
and initialized the parameters by a random sample from a spherical Gaussian with unit variance
on each dimension. We also included “weight-decay” by adding 0.01

∑
i w2

i to the cost function,
wherei indexes all of the entries in the matrices for objects and relations. The variance of the
results is due to the nonconvexity of the objective function. The implementation is available in
[www.cs.utoronto.ca/∼ilya/code/2008/mre.tar.gz].



Test results for the basic modular arithmetic.
errors on 5 test sets mean test error

(30) 0 0 0 0 0 0.0
(60) 29 4 0 1 0 6.8
(90) 27 23 16 31 23 24.0

Table 1: Test results on the basic modular arithmetic task. Each entry shows the number of errors
on the randomly held-out cases. There were no errors on the training set. Each test query has 12
possible answers of which 1 is correct, so random guessing should be incorrect on at least 90% of
the test cases. The number of held-out cases of each run is written in brackets.
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Figure 1: (a) Two isomorphic family trees (b) An example of a situation in which the discriminative
cost function in Eq. 1 causes the matrixRA produced by MRE to be far from the correct answer,
B (see section 5).

In an attempt to improve generalization, we tried constraining all of the4 × 4 matrices by setting
half of the elements of each matrix to zero so that they were each equivalent to two independent
2 × 2 matrices. Separate experiments showed that2 × 2 matrices were sufficient for learning either
the mod 3 or the mod 4 version of our modular arithmetic task, so the mod 12 version can clearly be
done using a pair of2× 2 matrices for each number or relation. However, the gradientoptimization
gets stuck in poor local minima.

4 The standard family trees task

The “standard” family trees task defined in [3] consists of the two family trees shown in figure
1(a) where the relations are{has husband, has wife, has son, has daughter, has father, has mother,
has brother, has sister, has nephew, has niece, has uncle, has aunt}. Notice that for the last four
relations there are people in the families in figure 1(a) for whom there are two different correct
answers to the question(A,?) ∈ R. When there areN correct answers, the best way to maximize
the sum of the log probabilities of picking the correct answer on each of theN cases is to produce
an output matrix that is equidistant from theN correct answers and far from all other answers. If
the designated correct answer on such a case is not among theN closest, we treat that case as an
error. If we count cases with two correct answers as two different cases the family trees task has 112
cases.

We used precisely the same learning procedure and weight-decay as for the modular arithmetic
task. We held-out 10, 20, or 30 randomly selected cases as test cases, and we repeated the random
selection of the test cases five times. Table 2 shows the number of errors on the test cases when4×4
matrices are learned for each person and for each relation. MRE generalizes much better than the



Test results for the basic family trees task.
errors on 5 test sets mean test error

(10) 0 0 0 0 2 0.4
(20) 6 0 0 0 0 1.2
(30) 0 2 4 0 4 2.0

Table 2: Test results on the basic family trees task. Each entry shows the number of errors on the
randomly held-out cases. There were no errors on the training set. The same randomly selected test
sets were used for the4 × 4 matrices. Each test query has 24 possible answers, of which at most 2
objects are considered correct. As there are 24 objects, random guessing is incorrect on at least 90%
of the cases.

feedforward neural network used by [3] which typically getsone or two test cases wrong even when
only four test cases are held-out. It also generalizes much better than all of the many variations
of the learning algorithms used by [8] for the family trees task. These variations cannot achieve
zero test errors even when only four test cases are held-out and the cases are chosen to facilitate
generalization.

5 The higher-order modular arithmetic task

We used a version of the modular arithmetic task in which the only basic relations were
{+0,+2, . . . ,+11}, but we also included the higher-order relationsplus, minus, inverse consist-
ing of 36 propositions, examples of which are(3,+3) ∈ plus; (3,+9) ∈ minus; (+3,+9) ∈ inverse.
We then held-out all of the examples of one of the basic relations and trained4 × 4 matrices on all
of the other basic relations plus all of the higher-order relations.

Our first attempt to demonstrate that MRE could generalize from higher-order relations to basic
relations failed: the generalization was only slightly better than chance. The failure was caused by
a counter-intuitive property of the discriminative objective function in Eq. 1 [9]. When learning the
higher-order training case(3,+3) ∈ plus it is not necessary for the product of the matrix representing
3 and the matrix representingplus to be exactly equal to the matrix representing+3. The product
only needs to be closer to+3 than to any of the other matrices. In cases like the one shown in figure
1(b), therelative probability of the pointB under a Gaussian centered atRA is increased by moving
RA up, because this lowers the unnormalized probabilities ofC andD by a greater proportion than
it lowers the unnormalized probability ofB. The discriminative objective function prevents all of the
representations collapsing to the same point, but it does not force the matrix products to be exactly
equal to the correct answer. As a result, the representationof +3 produced by the product of3 and
plus does not work properly when it is applied to a number.

To overcome this problem, we modified the cost function for training the higher-order relations so
that it is minimized wheñRA is exactly equal toB

C =
∑

R̃∈R̃

∑

(A,B)∈R̃

‖R̃A − B‖2, (2)

whereR̃ ranges over̃R, the set of all higher-order relations, andA andB can be either relations or
basic objects, depending oñR’s domain.

Even when using this non-discriminative cost function for training the higher-order relations, the
matrices could not all collapse to zero because the discriminative cost function was still being used
for training the basic relations. With this modification, the training caused the product of3 andplus
to be very close to+3 and, as a result, there was often good generalization to basic relations even
when all of the basic relations involving+3 were removed from MRE’s training data and all it was
told about+3 was that(3,+3) ∈ plus, (9,+3) ∈ minus, and(+9,+3) ∈ inverse (see table 3).



Test results for higher-order arithmetic task.
errors on 5 test sets mean test error

+1 (12) 5 0 0 0 0 1.0
+4 (12) 0 0 6 6 1 2.6
+6 (12) 0 6 4 4 0 2.8
+10 (12) 3 8 0 0 7 3.6

Table 3: Test results on the higher-order arithmetic task. Each row shows the number of incorrectly
answered queries involving a relation (i.e.,+1,+4,+6, or +10) all of whose basic examples were
removed from MRE’s training data, so MRE’s knowledge of thisrelation was entirely from the
other higher-order relations. Learning was performed 5 times starting from different initial random
parameters. There were no errors on the training set for any of the runs. The number of test cases is
written in brackets.

Test results for the higher-order family trees task.
errors on 5 test sets mean test error

has father (12) 0 12 0 0 0 2.4
has aunt (8) 4 8 4 0 4 4.0
has sister (6) 2 0 0 0 0 0.4
has nephew (8) 0 0 8 0 0 1.6

Table 4: Test results for the higher-order family trees task. In each row, all basic propositions
involving a relation are held-out (i.e.,has father, has aunt, has sister, or has nephew). Each row
shows the number of errors MRE makes on these held-out propositions on 5 different learning runs
from different initial random parameters. The only information MRE has on these relations is in the
form of a single higher-order relation,higher oppsex. There were no errors on the training sets for
any of the runs. The number of held-out cases is written in brackets.

6 The higher-order family trees task
To demonstrate that similar performance is obtained on family trees task when higher-order relations
are used, we included in addition to the 112 basic relations the higher-order relationhigher oppsex.
To definehigher oppsex we observe that many relations have natural male and naturalfemale
versions, as in: mother-father, nephew-niece, uncle-aunt, brother-sister, husband-wife, and son-
daughter. We say that(A,B) ∈ higher oppsex for relationsA andB if A andB can be seen as
natural counterparts in this sense. Four of the twelve examples ofhigher oppsex are given below:

1. (has father, has mother) ∈ higher oppsex

2. (has mother, has father) ∈ higher oppsex

3. (has brother, has sister) ∈ higher oppsex

4. (has sister, has brother) ∈ higher oppsex

We performed an analogous test to that in the previous section on the higher order modular arithmetic
task, using exactly the same learning procedure and learning parameters. For the results, see table
4.

The family trees task and its higher-order variant may appear difficult for systems such as MRE or
LRE because of the logical nature of the task, which is made apparent by hard rules such as(A,B) ∈
has father, (A,C) ∈ has brother ⇒ (C,B) ∈ has father. However, MRE does not perform any ex-
plicit logical deduction based on explicitly inferred rules, as would be done in an Inductive Logic
Programming system (e.g., [7]). Instead, it “precomputes the answers” to all queries during training,
by finding the matrix representation that models its training set. Once the representation is found,
many correct facts become “self-evident” and do not requireexplicit derivation. Humans may be
using a somewhat analogous mechanism (thought not necessarily one with matrix multiplications),
since when mastering a new and complicated set of concepts, some humans start by relying heavily
on relatively explicit reasoning using the definitions. With experience, however, many nontrivial
correct facts may become intuitive to such an extent that experts can make true conjectures whose
explicit derivation would be long and difficult. New theorems are easily discovered when the repre-
sentations of all the concepts make the new theorem intuitive and self-evident.



The sequential higher-order arithmetic task.
errors on 5 test sets mean test error

+1 (12) 0 0 0 2 4 1.2
+4 (12) 10 8 8 0 3 5.8
+6 (12) 0 0 4 9 0 2.6
+10 (12) 0 4 8 0 10 4.4

The sequential higher-order family trees task.
errors on 5 test sets mean test error

has father (12) 0 0 0 10 0 2.0
has aunt (8) 0 0 0 8 0 1.6
has sister (6) 0 0 0 0 0 0.0
has nephew (8) 0 0 0 0 0 0.0

Table 5: Test results for the higher-order arithmetic task (top) and the higher-order family trees task
(bottom) when a held-out basic relation is learned from higher-order propositions after the rest of the
objects and relations have been learned and fixed. There wereno errors on the training propositions.
Each entry shows the number of test errors, and the number of test cases is written in brackets.

Figure 2: A neural network that is equivalent to Matrix Relational Embedding (see text for details).

This is analogous to the idea that humans can avoid a lot of explicit search when playing chess
by “compiling” the results of previous searches into a more complex evaluation function that uses
features which make the value of a position immediately obvious.

This does not mean that MRE can deal with general logical dataof this kind, because MRE will fail
when there are many relations that have many special cases. The special cases will prevent MRE
from finding low dimensional matrices that fit the data well and cause it to generalize much more
poorly.

7 Adding knowledge incrementally

The previous section shows that MRE can learn to apply a basicrelation correctly even though the
training set only contains higher-order propositions about the relation. We now show that this can be
achieved incrementally. After learning some objects, basic relations, and higher-order relations, we
freeze the weights in all of the matrices and learn the matrixfor a new relation from a few higher-
order propositions. Table 5 shows that this works about as well as learning all of the propositions at
the same time.

8 An equivalent neural network
Consider the neural network shown in Figure 2. The input vectorsR andA represent a relation and
an object using a one-of-N encoding. If the outgoing weightsfrom the two active input units are
set toR andA, these localist representations are converted into activity patterns in the first hidden
layer that represent the matricesR andA. The central part of the network consists of “sigma-pi”
units [12], all of whose incoming and outgoing connections have fixed weights of1. The sigma-pi
units perform a matrix multiplication by first taking the products of pairs of activities in the first
hidden layer and then summing the appropriate subsets of these products. As a result, the activities
in the next layer represent the matrixRA. The output layer uses a “softmax” function to compute
the probability of each possible answer and we now show that if the weights and biases of the output



units are set correctly, this is equivalent to picking answers with a probability that is proportional to
their probability density under a spherical Gaussian centered atRA. Consider a particular output
unit that represents the answerB. If the weights into this unit are set to2B and its bias is set to
−‖B‖2, the total input to this unit will be:

Total input = −‖B‖2 + 2
∑

ij

(RA)ijBij (3)

The probability that the softmax assigns toB will therefore be:

p(B|A,R) =
e
−‖B‖2+2

∑
ij

(RA)ijBij

∑
C e

−‖C‖2+2
∑

ij
(RA)ijCij

=
e
−‖B‖2+2

∑
ij

(RA)ijBij−‖RA‖2

∑
C e

−‖C‖2+2
∑

ij
(RA)ijCij−‖RA‖2

=
e−‖RA−B‖2

∑
C e−‖RA−C‖2

(4)
Maximizing the log probability ofp(B|R,A) is therefore equivalent to minimizing the cost function
given in Eq. 1.

The fact that MRE generalizes much better than a standard feedforward neural network on the family
trees task is due to two features. First, it uses the same representational scheme (i.e., the same
matrices) for the inputs and the outputs, which the standardnet does not; a similar representational
scheme was used in [1] to accurately model natural language.Second, it uses “sigma-pi” units that
facilitate multiplicative interactions between representations. It is always possible to approximate
such interactions in a standard feedforward network, but itis often much better to build them into
the model [13, 5, 11].
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