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The storage stack in a data center consists of all the hardware and software layers involved in

processing and persisting data to durable storage. The shift of the world’s computation to data centers

is placing significant strain on the storage stack, leading to a stack that is unreliable and non-performant.

This is caused in large part by a lack of understanding of the failure and performance characteristics of

critical hardware components, and a lack of programmability and control over the numerous software

layers in the stack. The broad goal of this thesis is to improve the storage stack by leveraging insights

gained from empirical studies of real-world production systems, and by proposing a new paradigm for

implementing and enhancing distributed storage functionality that enables the vertical specialization of

the storage stack to a wide variety of customer and data center provider needs.

The first part of this thesis studies the reliability of main memory in large-scale production systems.

Our findings show that conventional wisdom about memory reliability is incorrect, and that physical

hardware is in fact the main culprit for most errors in main memory in the field. As a result, existing

memory error protection mechanisms are inadequate. We then use the insights gained from the empirical

study to propose and evaluate a suitable error protection mechanism for future data centers.

The second part of this thesis offers an empirical study of the effects of temperature on the perfor-

mance and power consumption of the storage stack. Since cooling constitutes a large fraction of the

total cost of ownership in a data center, increasing temperatures in a data center without sacrificing

performance can have a huge impact on the power consumption and carbon footprint of data centers.

The final part of this thesis proposes a new paradigm for implementing and enhancing distributed

storage functionality by creating programmable APIs that allow dynamic configuration and control of

the software stages along the storage stack, and designing and implementing an IO routing primitive for

the storage stack.
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Chapter 1

Introduction

Digital storage is a cornerstone of our modern life. We rely on it to store the world’s financial data,

the sales information of every e-commerce website, personal communication (e-mail, text and video

messaging), scientific and medical data, photos, movies, music, as well as all the data backing the

multitude of apps we use on a day-to-day basis.

Over the last few years, this data has increasingly resided in public and private data centers. The

amount of digital data we are storing is currently doubling every two years [60], and the world’s total

amount of data is expected to reach 44 trillion gigabytes by the year 2020 [60]. This has been largely

driven by the explosive growth of online services and appplications, and the rise of cloud-computing

as a cost-effective platform for application development and hosting. Along with the increase in the

sheer volume of data, the diversity of the applications operating on it has also increased dramatically.

Data centers run a wide variety of applications from social networks, “big data” analytics (e.g.: MapRe-

duce, Spark), enterpise applications, to public and private Platform/Software-as-a-Service platforms.

These applications all occupy different points on the spectrum of requirements (durability, consistency,

performance, etc.) and types of transformations they perform on their data.

Storage traffic (IO) from applications to durable storage can traverse a large number of hardware

and software layers. Hardware stages include main memory, networks, and the durable storage media

(e.g.: magnetic hard disk drives, solid state drives). Software stages include caches, file systems, IO

schedulers, hypervisors, virus scanning, deduplication, encryption, etc. Collectively, we refer to all the

hardware and software layers involved in persisting data to durable storage media as the storage stack.

The ever-increasing demands for scale and functionality brought on by our increasing reliance on digital

storage, and the shift of the bulk of our computation to the data center have put significant strain on

the storage stack in recent years.

Given the fundamental limitations on increasing the speed of individual components, the only way

to meet the storage and compute demands of modern appplications is to increase the size of the entire

system. A key challenge associated with doing so, however, is reliability. As the number of components in

systems grows, failures are becoming the norm rather than the exception. Likewise, growing application

demands have also necessitated increasing amounts of software in the storage stack, that offer a wide

variety of functionality. In many systems, the complexity and size of this software has become unwieldy,

leaving these systems hard to program and manage.

The thesis of this work is: The current data center storage stack is inadequate. The

1
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biggest barriers to a reliabile and performant storage stack for the data center are: a) a

lack of understanding of the failure and performance characteristics of critical hardware

components in real-world production systems, and b) a lack of programmability and control

over the numerous software layers in the storage stack.

This thesis examines several crucial problems faced by the storage stack in a modern data center.

The first half of this thesis focuses on the reliability of the physical memory in the storage stack, and

on the inherent costs of maintaining the reliability of data center storage systems. The second half of

this thesis focuses on the lack of programmability and manageability of the numerous software layers in

the storage stack. It presents a new paradigm for vertically specializing the storage stack by configuring

software stages (in particular caches) in the stack via programmable APIs, as well as implementing and

enhancing distributed storage functionality that relies on dynamic changes to the path of IOs in the

system.

Below we provide a brief overview of the rest of the chapters in this thesis.

1.1 Chapter 3: Errors in Main Memory

Main memory is one of the leading hardware causes for machine crashes in today’s data centers [124],

and one of the most frequently replaced components in large-scale systems [125]. Designing, evaluating

and modeling storage systems that are resilient against memory errors requires a good understanding

of the underlying characteristics of main memory errors in the field. While there have been a few first

studies on DRAM errors in production systems, these have been too limited in either the size of the

data set or the granularity of the data to conclusively answer many of the open questions on DRAM

errors. Such questions include, for example, the prevalence of soft errors compared to hard errors, or

the analysis of typical patterns of hard errors.

In this chapter, we study data on DRAM errors collected on a diverse range of production systems,

in total covering nearly 300 Terabyte years of main memory. As a first contribution, we provide a

detailed analytical study of DRAM error characteristics, including both hard and soft errors. We find

that, contrary to common wisdom a large fraction of DRAM errors in the field can be attributed to hard

errors and we provide a detailed analytical study of their characteristics. As a second contribution, the

chapter uses the results from the measurement study to identify a number of promising directions for

designing more resilient systems and evaluates the potential of different protection mechanism in the

light of realistic error patterns. One of our findings is that simple page retirement policies might be

able to mask a large number of DRAM errors in production systems, while sacrificing only a negligible

fraction of the total DRAM in the system.

1.2 Chapter 4: Impact of Temperature on the Storage Stack

Maintaining the reliability of large-scale storage systems is very costly. One of the biggest contributors

to this cost is cooling. Cooling makes up a significant part of the total cost of ownership of a data

center. Interestingly, a key aspect of temperature management in a data center has not been well

understood: controlling the setpoint temperature at which to run a data center’s cooling system. Most

data centers set their thermostat based on (conservative) suggestions by manufacturers, as there is limited

understanding of how higher temperatures will affect the system. Studies suggest that increasing the



Chapter 1. Introduction 3

temperature setpoint by just one degree could save 2–5% of the energy consumption.

This chapter serves as a guide to data center operators in understanding the tradeoffs between

operating at higher temperatures and the inherent performance and power penalties of doing so. Hard

disks, memory, and CPUs all employ a number of hardware reliability mechanisms and features intended

to maintain the integrity of data at higher temperatures, and protect the hardware against damage

or excessive errors. We provide extensive experimental results across a wide array of representative

workloads that quantify the range of performance penalties across the entire spectrum of configuration

options.

1.3 Chapter 5: Software-Defined Caching

In data centers, caches work both to provide low IO latencies and to reduce the load on the back-end

network and storage. But caches today are not designed for multi-tenancy; system level caches today

cannot be configured to match tenant or provider objectives. Exacerbating the problem is the increasing

number of un-coordinated caches on the IO data plane. An IO request from an application or VM

passes through at least three levels of independent caches until it reaches durable storage. The lack of

global visibility on the control plane to coordinate this distributed set of caches leads to inefficiencies,

increasing cloud provider costs.

This chapter presents Moirai, a tenant- and workload-aware system that allows data center providers

to control their distributed caching infrastructure. Moirai can help ease the management of the cache

infrastructure and achieve various objectives, such as improving overall resource utilization or providing

tenant isolation and QoS guarantees, as we show through several use cases. A key benefit of Moirai is

that it is transparent to applications or VMs deployed in data centers. Our prototype runs unmodified

OSes and databases providing immediate benefit to existing applications.

1.4 Chapter 6: Treating the Storage Stack Like a Network

IO from an application to distributed storage traverses not only the network, but also several software

stages with diverse functionality. In a typical data center, the number of these stages is often larger than

the number of network hops to the destination. Yet, while packet routing is fundamental to networks,

no notion of IO routing exists on the storage stack. The path of an IO to an endpoint is predetermined

and hard-coded. This forces IO with different needs (e.g., requiring different caching or replica selection)

to flow through a one-size-fits-all IO stack structure, resulting in an ossified IO stack.

This chapter presents sRoute, an architecture that provides a routing abstraction for the storage

stack. sRoute comprises a centralized control plane and “sSwitches” on the data plane. The control

plane sets the forwarding rules in each sSwitch to route IO requests at runtime based on application-

specific policies. The architecture works with unmodified applications and VMs, and brings significant

benefits to data centers. Customized IO routing leads to a factor of ten improvement for IO tail latency,

more than 60% better throughput for a customized replication protocol, and a factor of two improvement

in throughput for customized caching.
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Chapter 2

Related Works

2.1 Reliability of Main Memory

Several studies [124, 125, 99] have shown that main memory is one of the leading causes of hardware

problems that result in machine crashes, and one of the most frequently replaced components in modern

large-scale computer systems.

Existing work focuses on understanding the characteristics, prevelance, and effects of memory errors

on systems, however it focuses primarily on soft errors [85, 164, 105, 1, 143, 144, 37, 104, 72, 163]. Much

of the work done by IBM relies on controlled lab experiments [105, 163, 162, 165], and focuses primarily

on soft errors. Field studies of real production systems [85, 81] also focus mostly on soft errors, since

they are often assumed to be the leading type of memory errors [36].

More recent exceptions include a field study of Google’s data centers [126] that suggests hard errors

might be the dominant type of memory errors, based on memory error counts. However, without further

data on physical memory error location, it cannot substantiate this claim. Similarly, Li et al. [80]

analyze field data collected from 200 production machines and find evidence for hard memory errors on

12 machines, making it hard to draw any statistically significant conclusions. Our work builds to fill

the gaps left by these studies, generating statistically significant conclusions about the prevalence and

characteristics of memory errors, as well as potential solutions for mechanisms to mitigate the effects of

these errros.

Previous work has studied mechanisms to mitigate the effects of memory errors on systems. Much

of it was predicated on the assumption that soft errors were the dominant type of memory errors in

systems. As a result, one of the cheapeast and most common forms of error correction is SEC-DED

(Single Error Correct, Double Error Detect) [83] for individual DIMMs, which can correct single bit flips,

and detect double bit flips. A more advanced form of ECC patented by IBM is called Chipkill [35], and

can tolerate the failure of an entire DRAM chip inside a DIMM, by distributing consecutive data bits to

different DRAM chips. Naturally, this does not come for free, as constant data reconstruction comes at

the cost of increased power consumption and somewhat degraded performance. Researchers have also

shown how to provide “virtualized” ECC at the software level by storing the checksum information in

main memory itself [161].

At the OS level, previous work has investigated page retirement [142, 21, 118], which was implemented

in Solaris [142, 21], and can optionally be added to Linux [118]. However, despite the presence of these

5
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mechanisms, there are no associated policies for when they should be deployed, whose effectiveness has

been thoroughly validated using error traces from real production systems. Our work fills this gap.

2.2 Impact of Temperature on The Storage Stack

Previous work has focused on different aspects of data center cooling and temperature management. One

approach is through the careful design and modelling of the physical rooms themselves to improve airflow

cooling efficiency [154, 109, 108, 110, 139]. Here, different hot-aisle/cold-aisle designs are proposed and

evaluated through fluid dynamics modeling.

Other work [14, 112, 117, 128, 82] focuses on workload placement, request distribution, and load

balancing among different servers in a cluster. The focus here is on assignment of work to different

physical machines (as well as scaling the size of available machines in the cluster by turning machines

on/off, or putting them in lower power states), with power and temperature management as a first-order

optimization goal. Rather than considering clusters as a whole, some examples [44, 47, 102, 90] of other

work focus on power reduction features and optimizations at the level of an individual server.

The write-verify command is described in the SCSI reference manual [61]. Riska and Riedel [121] pro-

pose an alternative to Read-after-Write called Idle Read After Write (IRAW), which keeps the contents

of the write in the disk buffer cache and performs the write verify when the disk is idle, as opposed to

on the critical Write path, which may impact user performance. While this approach sounds attractive

and superior to Read-after-Write, it introduces possible contention for caches, and potentially for task

scheduling.

Miftakhutdinov et al. [97] model the energy savings gained as a result of dynamic voltage frequency

scaling (DVFS) in conjunction with its impact on memory performance to create a better predictor for

DVFS’s use.

2.3 Software-Defined Caching

There has been much work recently on caches in data centers. Much of it focused on specialized ap-

plication caches, such as Facebook’s photo-serving stack [58], Facebook’s social graph store [16], mem-

cached [43], or explicit cloud caching services [25, 24]. In contrast, our work is on system storage caches

for hosting cloud providers that run arbitrary workloads.

Work on system caches has focused on efficient use of memory for virtual machines through ballooning

and sharing techniques [155, 55, 98], which are implemented in state-of-the-art hypervisors like VMware’s

and Hyper-V. Our work focuses on other caches in the system, beneath the VM abstraction.

Some prior work has focused on isolating the cache effects of streams with different access patterns

(sequential versus looping) within the same workload from each other [89, 71, 26, 49]. However, these

policies are not workload or tenant aware and cannot prevent a more aggressive workload from occupying

more than its fair share of cache. Moreover, each of these policies might actually work better when

applied in the context of Moirai, where a cache policy works on per workload segregated cache, as

patterns of different workloads don’t get interspersed and hence might be easier to detect. Others

propose methods to detect changes in workload patterns and dynamically adjust the caching policy used

by the system [50]. Moirai provides a perfect vehicle for implementing such an approach and it would

be interesting to extend it to support such functionality. Yet another line of work [56] proposes that
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applications explicitly manage their cache space and its contents, while our goal was to provide a solution

that is transparent to the application.

Several other papers have addressed the problem of inefficiencies in cache hierarchies, e.g., some [23,

79] pass hints from the client to better inform caching decisions at the storage server and others [159]

extend the SCSI command set by a demote command to avoid double caching. Our goal was a solution

that does not require application or VM support, or changes to existing protocols.

Similar to recent work on software-defined networking (SDNs) [73, 20, 160, 42, 116, 64, 149] and

storage (SDS) [147], our architecture is controller-based with a separation between the data and the

control plane. Moirai’s implementation uses IOFlow’s [147] mechanisms for traffic classification, how-

ever Moirai’s implementation required extensions to IOFlow, e.g., to support arbitrary inspection and

manipulation of IO request data, as well as the implementation of the three core components Moirai

comprises (as described in Section 5.2 and Section 5.4).

2.4 Treating the Storage Stack Like a Network

Our work is most related to software-defined networks (SDNs) [73, 20, 160, 42, 116, 64, 149, 30] and

software-defined storage (SDS) [4, 147]. Specifically, our work builds directly upon the control-data

decoupling enabled by IOFlow [147], and borrows two specific primitives: classification and rate limiting

based on IO headers for quiescing. IOFlow also made a case for request routing. However, it only

explored the concept for bypassing stages along the path, and did not consider the full IO routing

spectrum where the path and endpoint can also change, leading to consistency concerns. This chapter

provides the full routing abstraction.

There has been much work in providing applications with specialized use of system resources [41, 67,

12, 4, 6]. The Exokernel architecture [41, 67] provides applications direct control over resources with

minimal kernel involvement. SPIN [12] and Vino [127] allow applications to download code into the

kernel, and specialize resource management for their needs. Another orthogonal approach is to extend

existing OS interfaces and pass hints vertically along the IO stack [4, 6, 5, 91]. Hints can be passed in

both directions between the application and the system, exposing application needs and system resource

capabilities to provide a measure of specialization.

In contrast to the above approaches, this chapter makes the observation that modern IO stacks sup-

port mechanisms for injecting stages with specialized functionality (e.g., in Windows [95], FreeBSD [46]

and Linux [84]). sRoute transforms the problem of providing application flexibility into an IO routing

problem. sRoute provides a control plane to customize an IO stack by forwarding IO to the right stages

without changing the application or requiring a different OS structure.

We built three control applications on top of IO routing. The functionality provided from each has

been extensively studied in isolation. For example, application-specific file cache management has shown

significant performance benefits [19, 56, 74, 159, 58, 137]. Snapshots, copy-on-write and file versioning all

have at their core IO routing. Hard-coded implementations can be found in file systems like ZFS [107],

WAFL [57] and btrfs [122]. Similarly, Narayanan et al. describe an implementation of load balancing

through IO offloading of write requests [101, 100]. Abd-el-malek et al. describe a system implementation

where data can be re-encoded and placed on different servers [2]. Finally, several distributed storage

systems each offer different consistency guarantees [7, 28, 145, 34, 78, 29, 75, 146, 17, 22]. In contrast

to these specialized implementations, sRoute offers a programmable IO routing abstraction that allows
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for all this functionality to be specified and customized at runtime.



Chapter 3

Errors in Main Memory

3.1 Introduction

Recent studies point to main memory as one of the leading hardware causes for machine crashes and

component replacements in today’s data centers [142, 124, 99]. As the amount of DRAM in servers keeps

growing and chip densities increase, DRAM errors might pose an even larger threat to the reliability of

future generations of systems.

As a testament to the importance of the problem, most server systems provide some form of protection

against memory errors. Most commonly this is done at the hardware level through the use of DIMMs

with error correcting codes (ECC). ECC DIMMs either provide single-bit error correction and double-bit

error detection (SEC-DED); or use more complex codes in the chipkill family [35] that allow a system to

tolerate an entire chip failure at the cost of somewhat reduced performance and increased energy usage.

In addition, some systems employ protection mechanisms at the operating system level. For example,

Solaris tries to identify and then retire pages with hard errors [142, 21]. Researchers have also explored

other avenues, such as virtualized and flexible ECC at the software level [161]. In contrast to server

systems, most consumer-grade systems provide no protection against memory errors, so any error can

potentially lead to corrupted data or a machine crash.

The effectiveness of different approaches for protecting against memory errors and the most promising

directions for designing future systems that are resilient in the face of increased DRAM error rates

depend greatly on the nature of memory errors. For example, SEC-DED based ECC is most effective for

protecting against transient random errors, such as soft errors caused by alpha particles or cosmic rays.

Conversely, mechanisms such as page retirement are only effective in protecting against hard errors,

which are due to physical device defects and tend to be repeatable. In general, any realistic evaluation

of system memory reliability relies on accurate information about the underlying error process, including

the relative frequency of hard versus soft errors, and the typical modes of hard errors (e.g. device defects

affecting individual cells, whole rows, columns, or an entire chip).

While there exists a large body of work on protecting systems against DRAM errors, the nature of

DRAM errors is not very well understood. Most existing work focuses solely on soft errors [85, 164,

105, 1, 143, 144, 37, 104, 72, 163], as soft error rates are often assumed to be orders of magnitudes

greater than typical hard error rates [36]. However, there are no large-scale field studies backing up this

assumption. Existing studies on DRAM errors are quite old and rely on controlled lab experiments,

9
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rather than production machines [105, 163, 162, 165], and focus on soft errors only [81]. One exception

is a study by Li et al. [80], which analyzes field data collected on 200 production machines and finds

evidence that the rate of hard errors might be higher than commonly assumed. However, the limited

size of their data set, which includes only a total of 12 machines with errors, makes it hard to draw

statistically significant conclusions on the rate of hard versus soft errors, or common modes of hard

errors. Another field study [126] speculates that the rate of hard errors might be significant based on

correlations they observe in error counts over time, but it lacks finer-grained data such as information

on the physical location errors, which would permit the study of error patterns and the likely frequency

of hard versus soft errors, in order to validate their hypothesis.

The goal of this chapter is two-fold. First, we strive to fill the gaps in our understanding of DRAM

error characteristics, in particular the rate of hard errors, their patterns, and their observed effects in

the field. Towards this end, we provide a large-scale field study based on a diverse range of production

systems, covering nearly 300 Terabyte-years of main memory. The data includes detailed information

on the location of errors, which allows us to statistically conclusively answer several important open

questions about DRAM error characteristics. In particular, we find that a large fraction of DRAM

errors in the field can be attributed to hard errors and we provide a detailed analytical study of their

characteristics.

As a second contribution, we use the results from the measurement study to identify a number of

promising directions for designing more resilient systems and evaluate the potential of different protection

mechanisms in the light of realistic error patterns. One of our findings is that simple page retirement

policies, which are currently not widely used in practice, might be able to mask a large number of DRAM

errors in production systems, while sacrificing only a negligible fraction of the total system’s DRAM.

3.2 Study Overview

3.2.1 Overview of data and systems

Our study is based on data from four different environments: the IBM Blue Gene/L (BG/L) super-

computer at Lawrence Livermore National Laboratory, the Blue Gene/P (BG/P) from the Argonne

National Laboratory, a high-performance computing cluster at the SciNet High Performance Computing

Consortium, and 20,000 machines randomly selected from Google’s data centers. Below we provide a

brief description of each of the systems and the data we obtained.

BG/L: Our first dataset is from the Lawrence Livermore National Laboratory’s IBM Blue Gene/L

(BG/L) supercomputer. The system consists of 64 racks, each containing 32 node cards. Each node

card is made up of 16 compute cards, which are the smallest replaceable hardware component for the

system; we refer to the compute cards as “nodes”. Each compute card itself contains two PowerPC 440

cores, each with their own associated DRAM chips, which are soldered onto the card; there is no notion

of a “DIMM” (see [48] for more details).

We obtained BG/L logs containing data generated by the system’s RAS infrastructure, including

count and location messages pertaining to correctable memory errors that occur during a job and are

reported upon job completion.

The BG/L memory port contains a 128-bit data part that’s divided into 32 symbols, where the

ECC is able to correct any error pattern within a single symbol, assuming no errors occur in any other
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symbols. However, the system can still function in the event of two symbols with errors by remapping

one of the symbols to a spare symbol, and correcting the other with ECC [106].

Due to limitations in the types of messages that the BG/L log contains, we are only able to report

on multi-bit errors that were detected (and corrected) within a single symbol. As such, we refer to these

as MBEs (multi-bit errors) for the BG/L system throughout the chapter. However it’s worth noting

that 350 compute cards (20% of all compute cards with errors in the system) reported activating symbol

steering to the spare symbol. This is indicative of more severe errors that required more advanced ECC

technologies (like bit-sparing) to correct. In addition, a cap was imposed on the total count of correctable

errors accumulated during a job for part of the dataset, making our results for both multi-bit errors and

total correctable error counts very conservative compared to the actual state of the system.

BG/P: The second system we studied is the Blue Gene/P (BG/P) from the Argonne National

Laboratory. The system has 40 racks containing a total of 40,960 compute cards (nodes). Each node

in BG/P has four PowerPC 450 cores and 40 DRAM chips totalling 2GB of addressable memory. As

the successor to BG/L, BG/P has stronger ECC capabilities and can correct single and double-symbol

errors. The system is also capable of chipkill error correction, which tolerates failure of one whole DRAM

chip [66].

We obtained RAS logs from BG/P reporting correctable error samples. Only the first error sample on

an address during the execution of a job is reported, and total occurrences for each error type summarized

at the end. Due to the sampling and counter size, the number of correctable errors is once again very

conservative. However, the correctable samples provide location information which allows us to study

the patterns and physical distribution of errors.

Unlike BG/L, there is no bit position information for single-symbol errors. There is no way to de-

termine the number of bits that failed within one symbol. Therefore, we report single-symbol errors as

single-bit errors and double-symbol errors as multi-bit errors, and refer to the latter as MBEs for the

BG/P system. A double-symbol error is guaranteed to have at least two error bits that originate from

the pair of error symbols. This is once again an under-estimation of the total number of multi-bit errors.

SciNet: Our third data source comes from the General Purpose Cluster (GPC) at the SciNet High

Performance Computing Consortium. The GPC at SciNet is currently the largest supercomputer in

Canada. It consists of 3,863 IBM iDataPlex nodes, each with 8 Intel Xeon E5540 cores and 16GB of

addressable memory that uses basic SEC-DED ECC. The logs we collected consist of hourly-dumps of

the entire PCI configuration space, which expose the onboard memory controller registers containing

counts (with no physical location information) of memory error events in the system.

Google: Our fourth data source comes from Google’s datacenters and consists of a random sample

of 20,000 machines that have experienced memory errors. Each machine comprises a motherboard with

some processors and memory DIMMs. The machines in our sample come from 5 different hardware

platforms, where a platform is defined by the motherboard and memory generation. The memory in

these systems covers a wide variety of the most commonly used types of DRAM. The DIMMs come from

multiple manufacturers and models, with three different capacities (1GB, 2GB, 4GB), and cover the three

most common DRAM technologies: Double Data Rate (DDR1), Double Data Rate 2 (DDR2) and Fully-

Buffered (FBDIMM). We rely on error reports provided by the chipset. Those reports include accurate

accounts of the total number of errors that occurred, but due to the limited number of registers available
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for storing addresses affected by errors only provides samples for the addresses of errors. For this reason,

the number of repeat errors we observe and the probability of errors repeating are very conservative

estimates, since there might be repeat errors that we missed because they were not sampled.

3.2.2 Methodology

A memory error only manifests itself upon an access to the affected location. As such, some systems

employ a memory scrubber (a background process that periodically scans through all of memory) to

proactively detect errors before they are encountered by an application. However, except for some of

the Google systems, all the systems we study rely solely on application-level memory accesses without

the use of a scrubber.

Categorizing errors observed in the field as either hard or soft is difficult as it requires knowing their

root cause. Obtaining a definite answer to the question of whether an observed error is hard and what

type of hard error it is (e.g. a stuck bit or a bad column) would require some offline testing of the

device in a lab or at least performing some active probing on the system, e.g. by running a memory

test after each error occurrence to determine whether the error is repeatable. Instead we have to rely

on observational data, which means we will have to make some assumptions in order to classify errors.

Matters are complicated further by the fact that many hard errors start out as intermittent errors and

only develop into permanent errors over time.

The key assumption that we rely on in our study is that repeat errors at the same location are likely

due to hard errors since it would be statistically extremely unlikely that the same location would be hit

twice within our measurement period by cosmic rays or other external sources of noise. We therefore

view such repeat errors as likely being caused by hard errors. Note however that in practice, hard errors

manifest themselves as intermittent rather than on every access to a particular memory location.

We consider different granularities for locations at which errors can repeat. We start by looking

at repeats across nodes, but then mainly focus on locations identified by lower-levels in the hardware.

To explain our analysis methodology and our findings, we first provide some background on memory

hardware. A DIMM comprises multiple DRAM chips, and each DRAM chip is organized into multiple

banks, typically 8 in today’s systems. A bank consists of a number of two-dimensional arrays of DRAM

cells. A DRAM cell is the most basic unit of storage, essentially a simple capacitor representing one bit.

The two dimensions of an array are also referred to as rows and columns. We look at repeats of errors

at the level of physical addresses, but also with respect to bank, rows and columns at the chip level.

System Time Nodes # DIMMs DRAM in TByte
(days) system (TB) years

BG/L 214 32,768 N/A 49 28
BG/P 583 40,960 N/A 80 127
SciNet 211 3,863 31,000 62 35
Google 155 20,000 ∼ 130,000 220 93

Table 3.1: Summary of system configurations
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System Nodes Nodes Total Failures in time
with errors with chipkill errs # of errors per billion hours of operation

BG/L 1,742 (5.32%) N/A 227 · 106 97,614
BG/P 1,455 (3.55%) 1.34% 1.96 · 109 167,066
SciNet 97 (2.51%) N/A 49.3 · 106 18,825
Google 20,000 N/A 27.27 · 109 N/A

Table 3.2: Summary of high-level error statistics recorded in different systems

3.3 Study of error characteristics

3.3.1 High-level characteristics

We begin with a summary of the high-level characteristics of memory errors at the node level. Table 3.1

presents a summary of system configurations, while Table 3.2 summarizes the prevalence of memory

errors in the four different systems. We observe that memory errors happen at a significant rate in all

four systems with 2.5-5.5% of nodes affected per system. For each system, our data covers at least tens

of millions of errors over a combined period of nearly 300 Terabyte years. In addition to correctable

errors (CEs), we also observe a non-negligible rate of “non-trivial” errors, which required more than

simple SEC-DED strategies for correction: 1.34% of the nodes in the BG/P system saw at least one

error that required chipkill to correct it.
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Figure 3.1: The left graph shows the CDF for the number of errors per month per machine. The middle
graph shows the fraction y of all errors that is concentrated in the top x fraction of nodes with the most
errors. The right graph shows the probability of a node developing future errors as a function of the
number of prior errors.

Figure 3.1 (left) and Figure 3.1 (middle) provide a more detailed view of how errors affect the nodes

in a system. Figure 3.1 (left) shows the cumulative distribution function (CDF) of the number of errors

per node for those nodes that experience at least one error. We see that only a minority (2-20%) of those

nodes experience just a single error occurrence. The majority experiences a larger number of errors, with

half of the nodes seeing more than 100 errors and the top 5% of nodes each seeing more than a million

errors. Figure 3.1 (middle) illustrates how errors are distributed across the nodes within each system.

The graph shows for each system the fraction of all errors in the system (X-axis) that is concentrated

on just the y% of nodes in the system with the largest number of errors (Y-axis). In all cases we see a

very skewed distribution with the top 5% of error nodes accounting for more than 95% of all errors.

Figure 3.1 (left) and (middle) indicate that errors happen in a correlated fashion, rather than inde-

pendently. This observation is validated in Figure 3.1 (right), which shows the probability of a node
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experiencing future errors as a function of the number of past errors. We see that even a single error on

a node raises the probability of future errors to more than 80%, and after seeing just a handful of errors

this probability increases to more than 95%.

The correlations we observe above provide strong evidence for hardware errors as the dominant error

mechanism, since one would not expect soft errors to be correlated in space or time. Our observations

agree with similar findings reported in [126, 80]. However, the results in [80] were based on a small

number of machines (12 machines with errors) and the analysis in [126] was limited to a relatively

homogeneous set of systems; all machines in the study were located in Google’s datacenters. Our results

show that these trends generalize to other systems as well and add statistical significance.

In addition to error counts, the BG systems also record information on the mechanisms that were

used to correct errors, which we can use as additional clues regarding the nature of errors. In particular,

both BG/P and BG/L provide separate log messages that allow us to distinguish multi-bit errors, and

BG/P also records information on chipkill errors (i.e., errors that required chipkill to correct them).

We observe that a significant fraction of BG/P and BG/L nodes experience multi-bit errors (22.08%

and 2.07%, respectively) and that these errors account for 12.96% and 2.37% of all observed errors,

respectively. The fraction of nodes with chipkill errors (only recorded on BG/P) is smaller but still

significant, with 1.34% of BG/P nodes affected. Interestingly, while only seen on a small number of

nodes, chipkill errors make up a large fraction of all observed errors: 17% of all errors observed on BG/P

were not correctable with simple SEC-DED, and required the use of chipkill ECC to be corrected.

These error characteristics motivate us to take a closer look at hard errors and their patterns in the

remainder of this chapter.

3.3.2 Error patterns

In this section, we attempt to categorize all banks with errors in our datasets into known error patterns

related to hardware defects: single (transient) events, bad cells, bad rows, bad columns, and a whole

chip error. A definite answer to the question which category a device with an error falls into would

require offline testing of the device in a lab setting. Instead we have to rely on observational data, which

means we will have to make a few assumptions when classifying devices. We group all banks that have

at least one error into one of the following categories:

repeat address: The bank has at least one error that repeats; i.e., there is at least one address on

this bank that is reported twice.

repeat row: The bank has at least one row that has experienced errors at two different locations; i.e.,

two different addresses on the row.

repeat column: The bank has at least one column that has experienced errors at two different loca-

tions; i.e., two different addresses on the column.

corrupt row: The bank has at least one row that has experienced errors at two different addresses on

the row and one of these is a repeat address.

corrupt column: The bank has at least one column that has experienced errors at two different

addresses on the column and one of these is a repeat address.

single event: These are banks that have only single events; i.e., they have no repeat errors on any of

their addresses, rows or columns.

whole chip: These are banks that have a large number of errors (> 100 unique locations) distributed
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over more than 50 different rows and columns.

Table 3.3 groups each error bank in our dataset into one of the above categories and reports for

each system the fraction of banks that falls into each of these categories. Note, that the repeat-address

category overlaps with the corrupt row and corrupt column categories. We therefore created an additional

entry that reports banks with repeat addresses that do not exhibit corrupt rows or columns.

BG/L BG/P Google
Error mode Banks Banks Banks
repeat address 80.9% 59.4% 58.7%
repeat address w/o row/cols 72.2% 30.0% 46.1%
repeat row 4.7% 31.8% 7.4%
repeat column 8.8% 22.7% 14.5%
corrupt row 3.0% 21.6% 4.2%
corrupt column 5.9% 14.4% 8.3%
whole chip 0.53% 3.20% 2.02%
single event 17.6% 29.2% 34.9%

Table 3.3: Frequency of different error patterns

We make a number of interesting observations. The vast majority (65-82%, depending on the system)

of all banks experience some form of error pattern that points towards hard errors, i.e. an error pattern

other than single events. This observation agrees with the findings in [80], however the conclusions on

the frequency of different patterns in [80] are limited due to their small dataset (12 machines with errors).

We find that among all error patterns, the single most common one is repeat addresses. Consistently for

all systems, more than 50% of all banks with errors are classified as repeat addresses. For all systems,

corrupt rows and corrupt columns happen at a significant rate. We note that each system has a clear

tendency to develop one type over the other, where the more common type is approximately twice as

often observed as the other one. For example, in the case of BG/L and Google, corrupt columns are

twice as likely as corrupt rows, while for BG/P it is the other way around. This is likely due to the fact

that there are twice as many rows in BG/P banks compared to BG/L banks.

Note that the above numbers on hard error patterns are conservative, and in practice likely higher.

Since our observation period for each of the systems is limited and we depend on accesses to memory

cells to detect errors, many of the non-repeat errors in our study might eventually have turned out to

be repeat errors, but the repeat did not fall within our measurement period. We observe for example

that for the systems with shorter observation time (BG/L and Google), the fraction of banks with only

repeat addresses, but no bad rows/columns, is higher than in the BG/P system whose data spans a

longer observation period. Most likely, the longer observation time increased the chances that a repeat

error will manifest and move a repeat row/column to the corrupt row/column category. That indicates

that a large fraction of errors we categorize conservatively as repeat rows/columns might actually be

true broken rows/columns.
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Figure 3.2: The left graph shows the CDF for the number of repeat errors per address (for those addresses
with at least one repeat). The middle graph shows the fraction y of all errors that is concentrated in the
top x fraction of addresses with the most errors. The right graph shows the CDF of the time between
successive errors on an address.

3.3.3 Repeat errors on addresses

The previous section identified repeat addresses as the dominant error pattern, but did not provide

any details on their characteristics. The only prior work that hints at repeat addresses as a common

error pattern in the field is based on a data set (a dozen machines with errors) that is too small for a

detailed study of repeat error characteristics [80]. We therefore study this question in more detail in

this subsection.

BG/L BG/P Google

# of error samples 201,206 308,170 1,091,777
# of unique addresses 9,076 44,624 556,161
% unique 4.5 14.5 50.9
% of addresses with repeats 48.2 30.6 32.6
Avg. # of errors / address 44.9 20.3 4.0

Table 3.4: Statistics on repeat addresses

We begin by providing some statistics on the frequency of repeat errors on addresses in Table 3.4. We

observe that a high fraction of addresses with errors experience later repeat errors on the same address:

a third (for Google) to nearly a half (for BG/L). The average number of repeat errors per address

ranges from 4 for Google to as many as 44 for BG/L. For a more detailed view, Figure 3.2 (left) shows

the cumulative distribution function (CDF) for the number of repeats per address. Most addresses

with repeats (50-60%) see only a single repeat and another 20% see only two repeats. However, the

distribution is very skewed with a long tail, where a small fraction of addresses at the end of the tail

experiences a huge number of repeats. Figure 3.2 (middle) illustrates the skew in the distribution by

plotting the fraction of errors that is made up by the top x% of addresses with the highest error count.

It shows that 10% of all addresses with errors account for more than 90% of all observed errors.

When trying to protect against repeat errors it is useful to understand the temporal characteristics

of errors. For example, a system using page retirement for pages with hard errors might want to wait

before retiring a page that experiences an error until a repeat error occurs, providing some confidence

that the problem is indeed due to a hard error. An interesting question is therefore how long it will take

before a repeat error happens and an error can confidently be classified as hard. To help answer this

question, Figure 3.2 (right) plots the CDF of the time between repeat errors on the same address. The
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graph shows that, if there is a repeat error it typically happens shortly after the first error occurrence. In

BG/P more than half of repeats happen within less than a couple of minutes after the first occurrence.

The timing information in the Google data is at a much coarser granularity (recall Section 3.2) and

due to sampling we might not see all repeats, which leads to generally longer times until a repeat error

shows up. However, we can conclude that more than half of the repeats happen within less than 6 hours.

Interestingly, for larger timescales, e.g. on the order of days, where the timing granularity of the Google

data should have less of an effect the trends for both systems start to look very similar. In both systems,

90% of all repeat errors are detected within less than 2 weeks.

When interpreting data regarding repeat of errors, it is important to recall that repeat errors (or any

errors) are not detected until either the application or a hardware scrubber accesses the affected cell.

For the Blue Gene systems, we know that hardware scrubbers are implemented as a feature, but we were

not able to determine whether this feature was actually enabled in our systems under study. On the

other hand, for the Google machines we know that a subset of them does employ a hardware scrubber

that periodically in the background reads through main memory to check for errors. This scrubber reads

memory at a rate of 1GB per hour, which means that each memory cell should be touched at least once

every day.

To determine how much sooner repeat errors could be detected if a memory scrubber were used we

compared the time until a repeat error is detected for those systems with and without the hardware

scrubber separately. Interestingly, we find that the use of a scrubber does not significantly reduce the

time until a repeat error is detected. Even in the tail of the distribution, where it takes a relatively long

time (e.g. several days or more) to identify a repeat error, there is not much difference between systems

with and without a scrubber. One possible explanation is that repeat errors might not always be due

to stuck bits, where a cell is permanently stuck at a particular value. Instead, they might be due to

weaknesses in the hardware that get exposed only under certain access patterns.

3.3.4 Repeat errors within a row/column

Memory errors that are due to hardware problems don’t only manifest themselves in the form of repeat

errors on the same cell. Section 3.3.2 pointed to repeating errors on different locations within the same

row or the same column as another common error mode (recall Table 3.3). This subsection takes a closer

look at the characteristics of repeat rows and repeat columns.

We begin by looking at the probability that an error at an individual address will develop into a row

or column error. Understanding those probabilities might help predict impending row/column errors,

allowing a system to take proactive measures. The three groups of bars in Figure 3.3 (left) summarize

our results for columns and Figure 3.3 (right) shows the corresponding results for rows. The gray center

bar in each group of bars shows the probability that after an error occurs on an address another error will

later develop at a different address along the same column (Figure 3.3 left) and row (Figure 3.3 right),

respectively (turning the error from a single event error into a repeat column/row). We observe that in

all three cases these probabilities are significant for all systems, with probabilities in the 15% to 30%

range.

To put the above repeat probabilities in perspective, we compare them with the unconditional prob-

ability of a random bank/row/column developing an error, shown in the black (left-most) bar (the bar

is barely visible due to its small magnitude). We see that the unconditional probabilities are orders of

magnitude smaller.
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Figure 3.3: The two graphs show the probability that a column (left graph) and a row (right graph) will
have an additional error after having one error (middle bar of each group of bars) and the probability
that it will have an additional unique error (right bar of each group of bars), i.e. an additional error at
an address different from the first.

We also study the probability that a repeat error on an address (rather than a single event error)

will turn into a row/column error, i.e. the probability that after a repeat error on an address another

address along the same row/column experiences an error. Those probabilities are shown in the white

right-most bar in each group of bars in Figure 3.3. In all systems, the presence of a repeat address on

a row/column further increases the probability of future errors on this bar/column. In some cases this

increase is quite large. For example, for BlueGene/P after observing a repeat error on an address the

probability of observing an additional error on another location on the same row/column increases to

more than 40%. Again, recall that BG/P is the system with the longest observation period among our

datasets, so the probabilities of repeat errors developing into row/column errors effect might be equally

strong in the other systems and we might just not observe it due to the shorter timespan of the data.
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Figure 3.4: Number of errors per repeat row/column

While we have provided information on the probabilities of rows/columns developing multiple errors,

another question is how many errors repeat rows and columns typically experience. Figure 3.4 (left) and



Chapter 3. Errors in Main Memory 19

(right) provide the CDF for the number of unique locations per row/column that experience errors. We

see that most rows/columns with multiple errors (40-60%) don’t develop more errors beyond the initial

2 errors. However, the top 10-20% of rows/columns develop errors on dozens of unique locations.
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Figure 3.5: Number of repeat rows/columns per bank

Section 3.3.2 showed that a significant number of error banks exhibit row/column errors, but does not

quantify the number of repeat rows/columns. We find that the most common case are banks with only

a single repeat row/column. Depending on the system, 80-95% of all banks with repeat rows/columns

have only a single one (see Figure 3.5). Around 3-8% of banks develop more than 10 repeat columns

and 2-5% develop more than 10 repeat rows.
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Figure 3.6: The distribution of the number of repeat rows and repeat columns per bank

Interestingly, we observe that a significant number of all banks (3.4%, 17.4%, and 4.4%, for BG/L,

BG/P and Google, respectively) experience both repeat rows and repeat columns. To better understand

the relationship between the number of repeat rows and columns on a bank, the scatter plot in Figure 3.6

shows for banks with at least one repeat row or column the number of repeat rows and columns. The

marker at coordinates (x,y) reflects the fraction of banks that have x repeat columns and y repeat rows.

The size of the marker in the scatter plot indicates the fraction of error banks that fall into each of the

categories and is chosen to be proportional to the logarithm of the probabilities. For all three systems

we observe that banks that have a larger number of repeat rows tend to also have a larger number of

repeat columns, and vice versa.
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3.3.5 Correlations across rows/columns

While the previous subsection demonstrated that an error on a row or column increases the probability

of follow-up errors on the same row/column, it does not tell us anything about correlations between

nearby rows/columns, e.g. do multiple errors on a row make it more likely that also some nearby rows

will have errors. In this subsection we answer the more general question of how the error probabilities

between cells are correlated depending on the physical distance in row and column space between those

cells.

The heatmap in Figure 3.7 is an attempt to visualize those correlations. The pixel at the center of

the plot at coordinates (0,0) represents a cell with an error. The pixel at coordinates (x,y) represents

the probability that the cell that is x columns and y rows away from the original error cell (i.e. at

row/column coordinates (a+x, b+y) where (a,b) are the row/column coordinates of the original error)

has an error as well. Lighter colors represent higher probabilities.
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Figure 3.7: A visualization of correlations between errors as a function of their distances in row/column
space

Not surprisingly, we observe that cells along the same row or column as the original error cell have

increased error probabilities, as indicated by the bright vertical and horizontal line crossing through

(0,0). This agrees with our previous observations that errors have a high probability of turning into

repeat rows/columns. But we also observe that the error probabilities are increased within a wide band

of neighboring rows and columns. For example, a closer study of the error probabilities as a function of

row/column distance shows that rows and columns that are within a distance of 10 of the original error

have an error probability of 2-5%. While this probability is clearly smaller than that of developing errors

on the same row/column, it is significantly larger than that of an average row/column. We also find that

the error probabilities show a roughly exponential drop-off as a function of the row/column distance,

and that the probabilities are still significantly increased within a range of up to 50-100 rows/columns,



Chapter 3. Errors in Main Memory 21

compared to an average row/column.

Our study of error probabilities as a function of distance from another error also shows evidence for

other patterns, beyond just proximity. In particular, we observe for some systems that cells whose column

or row distance from the original error is a multiple of certain powers of two have increased likelihood of

errors. Evidence for these regular patterns show up in the heatmap in the form of a grid-like background

pattern. By studying the CDF of the pairwise distances between errors, we find for example that for all

systems (BG/P, BG/L, Google), cells with distances in row space that are multiples of 4 have noticeably

increased error probabilities. Some systems also exhibit other patterns. For example, BG/P also shows

clearly increased probabilities at row distances that are multiples of 128.

3.3.6 Error density in different areas of a chip
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Figure 3.8: The error probabilities for different areas in the row/column space of a bank for BG/L and
BG/P.

In this subsection we look at the correlation between errors and their physical location on a chip, i.e.

we are asking the question of whether some areas of a chip are more likely than others to experience errors.

As before, we use bank, row and column information to distinguish different locations on a chip. We first

divide the row/column space of each bank into equal-sized square areas of 128x128 rows/columns, i.e.

chunks of size 16KB. We then determine for each of these square areas the probability of observing an

error in this area, i.e. the fraction of all unique banks in the system (across all nodes) that have at least

one error in this area. Figures 3.8,3.9 show a graphical representation of the results. For this analysis,

we report results separately for BG/P and BG/L and for the four different hardware platforms that the

Google data covers. Each graph represents the row/column space for one of the systems, each divided

into the 128x128 sized squares as described above. Each square is colored according to the observed

probability of errors in this area, where darker colors correspond to higher probabilities.

Figures 3.8,3.9 show several interesting trends that are consistent across systems. Focusing on the

dark areas in each graph, which present concentrations of errors, we first see that for all systems con-

sistently the top left area shows increased error density. This area tends to span at least the first 512

columns and the first 512 rows. For several of the systems, a whole band along the very top of the row

space, across all columns, shows increased error rates. For two of the six systems we observe similar
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Figure 3.9: The error probabilities for different areas in the row/column space of a bank for Google.

concentrations of errors at the end of the row/column space, i.e. in the bottom right of the graphs at

the highest numbered rows and columns. Secondly, we find that for three of the systems the entire rows

in the center of the row space exhibit increased error probabilities.

3.3.7 Hard errors from the OS’s point of view

Throughout this section we have observed different ways in which DRAM errors tend to cluster in space.

We have seen that errors tend to repeat on the same address, along the addresses of a row/column and

on certain areas of a chip. All these measures for spatial clustering were very hardware oriented. In

order to explore protection mechanisms at the OS level, an important question is how the clustering

of errors translates to the operating system level. For example, retiring pages with errors would work

most efficiently and effectively if most of the errors tended to cluster on a small number of pages.

Unfortunately, error clusters at the hardware level do not directly translate to clusters on pages. For

example, errors along the same row or column do not necessarily lie on the same page.

To shed some light on how errors are distributed across pages, Figure 3.10 (left) shows the CDF for

the number of errors per page and the number of unique locations with errors per page for those systems
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Figure 3.10: Error distribution over pages.

for which the information is available (BG/L and BG/P). The number of unique locations with errors

per page is low (on average 1.4 and 1.8 for BG/L and BG/P, respectively) and around 90% of all pages

have only a single one. However the total number of errors observed per page is still quite large, most

likely due to repeat addresses. More than 60% of the pages experience more than one error, and the

average number of errors per page is 31 and 12, for BG/L and BG/P respectively. More importantly, the

distribution of errors across pages is very skewed, maybe not surprisingly given the frequency of repeat

addresses that we observed earlier. Figure 3.10 (right) shows the fraction of all errors that is contributed

by the fraction of the top x% of pages with the most errors. 1% of all pages with errors account for

30-60% of all errors, depending on the system, and the top 10% of all pages with errors account for

more than 90% of all errors for both BG/L and BG/P. This skew in the number of errors per page is

good news for techniques relying on page retirement, as it means that by retiring a small fraction of

pages a large number of errors can be prevented. This observation motivates us to study the possible

effectiveness of different page retirement policies in Section 3.4.

3.3.8 Hard errors and multi-bit / chipkill errors

From a systems point of view, the most worrisome types of errors are multi-bit errors, and chipkill errors,

as these are the errors that in the absence of sufficiently powerful hardware ECC turn into uncorrectable

errors leading to a machine crash (or if undetected, to the use of corrupted data). Given the correlations

we observed between errors in the previous subsections, an interesting question is whether it is possible to

predict an increased likelihood of future multi-bit or chipkill errors based on the previous error behavior

in the system. In particular, one might speculate that prior repeat errors, which likely indicate hard

errors, will increase the probability of later multi-bit or chipkill errors. Knowledge about the increased

likelihood of future multi-bit or chipkill errors could be used by an adaptive system to take proactive

measures to protect against errors.

To shed some light on this question, we plot in Figure 3.11 (left) the probability that a node develops

a multi-bit error after seeing previous errors of different types for BG/L and BG/P. More precisely, each

set of 5 bars in the graph shows the following 5 probabilities. The first bar in each group of five bars
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Figure 3.11: The relationship between multi-bit errors and prior errors.

represents the baseline probability of a random node seeing a multi-bit error. (Note, that this probability

is so small that it is barely visible in the graph.) The second bar represents the probability that a node

that has seen a prior error (of any type) will later experience a multi-bit error. The other three bars show

the probability that a node will experience a later multi-bit error after experiencing a repeat address,

a repeat row or a repeat column, respectively. The figure clearly indicates that for both systems the

probability of a multi-bit error increases, after seeing previous errors. It also shows that the probability

increases dramatically if a previous error was a repeat error.

Figure 3.11 (left) tells us only that the probability of multi-bit errors increases after other errors have

been observed; it does not tell us whether most multi-bit errors were in fact preceded by prior errors

(which a system could use as an early warning sign of impending multi-bit errors). In order to look at

the latter, Figure 3.11 (right) plots the fraction of multi-bit errors that were preceded be the four types

of errors we considered previously (any error, repeat address, repeat row, repeat column). The graph

shows that multi-bit errors don’t usually happen without prior warning: 60-80% of multi-bit errors were

preceded by repeat addresses, 70-85% of multi-bit errors were preceded by a repeat row and 40-50% of

multi-bit errors were preceded by a repeat column.
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Figure 3.12: The relationship between chipkill errors and prior errors.
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Figure 3.12 repeats the same analysis for chipkill errors, rather than multi-bit errors (for BG/P only,

as chipkill errors do not apply to BG/L). While the overall probabilities are smaller (due to the lower

rate of chipkill errors), we observe the same trends. Prior errors greatly increase the probability of a

later chipkill error. Among nodes with prior error the probability increases to 7%. If there is a repeat

row or repeat column present in the system, the likelihood of a later chipkill error increases to around

20%.

3.4 Implications for system design

An underlying theme throughout the previous section has been the study of hard errors as the dominating

error mode among DRAM errors in the field. Compared to soft errors, hard errors have a greater potential

to increase error rates, due to their repetitive nature, and to increase the chance of future uncorrectable

errors. On the positive side, the repeating nature of hard errors makes them also more predictable than

soft errors creating a potential for taking proactive measures against them. In this section, we discuss

various implications on resilient system that follow from the insights derived from our measurement

study.

3.4.1 Page retirement

While error protection at the hardware level in the form of ECC is effective, it is not always the most

desirable option. In addition to the cost factor, another concern, in particular for the more powerful

ECC codes, is the increase in energy consumption and the possible impact on performance.

As an alternative to more powerful ECC codes (such as chipkill), and an extra level of protection in

addition to the use of ECC DIMMs, one could consider the retirement of pages that have experienced

previous (hard) errors. Page retirement can be accomplished by having the OS isolate pages containing

errors and prevent them from being allocated in the future. While this technique is not widely used in

today’s data centers, some operating systems, such as Solaris [142, 21], offer built-in support for page

retirement. For the standard Linux kernel there exists a patch that allows one to retire bad pages [118].

However, there is no rigorous study on the possible effectiveness of page retirement for realistic error

patterns and there is no published work comparing different policies for deciding on when to retire a

page.

The main trade-off in retiring pages is the amount of memory lost due to retired pages versus the

number of future errors prevented. An ideal retirement policy detects as early as possible pages that are

likely to develop a large number of errors in the future and retires only those pages. We have observed

several indicators that lend themselves well for such predictions. Below are a few simple policies that

were directly derived from the findings in Section 3.3.

repeat-on-address: Once an address experiences a repeat error the corresponding page is retired.

1-error-on-page: Since a large fraction of addresses with errors experiences a repeat, this policy

pessimistically assumes after the first occurrence of an error on a page that it will turn into a hard error

and retire the page.

2-errors-on-page: This policy retires a page once two errors have been observed on this page (either

on the same address or on two different addresses on the page).
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repeat-on-row: Since a row with 2 unique addresses has high chances of developing additional

errors, this policy retires all the pages on a row after two errors have been observed.

repeat-on-column: Equivalent to repeat-on-row, but for columns.

We simulate all of the above policies on our trace data for BG/L and BG/P and report the results

in Table 3.5. For each policy we include the average number of pages it retires per machine with errors,

the 95th percentile of the number of pages retired per machine, the percentage of all errors in the system

that would have been prevented by this policy (because they fall on previously retired pages) and the

percentage of all multi-bit and chipkill errors that could have been prevented.

All nodes with errors Nodes w/ multi-bit/
chipkill error

System Policy Pages 95%ile Errors MBEs Chipkill Pages 95%ile
retired pages avoided avoided avoided retired pages

retired (%) (%) (%) retired
BG/L repeat on address 2.2 2 94.2 88.1 N/A 15.8 103.25

any 1 error / page 3.8 4 96.8 96.7 N/A 42.4 319
any 2 errors / page 2.4 3 94.9 94.8 N/A 24.6 123.8
repeat on row 33.9 32 95.6 97.3 N/A 245.5 1620
repeat on column 14,336 16,384 96.5 90.6 N/A 257,930 1,212,416

BG/P repeat on address 4.8 18 86.3 86.4 61.8 4.8 18
any 1 error / page 17.6 62.7 91.4 91.5 71.0 17.7 62.7
any 2 errors / page 6.9 25.6 88.1 88.1 64.7 6.9 25.6
repeat on row 158.0 576 92.6 92.7 77.0 158 576
repeat on column 49,989 266,650 91.9 92 67.3 49,972 266,650

Table 3.5: Effectiveness of page retirement

We find that even the simple policies we are considering are quite effective at reducing the number

of errors a system would observe: All policies are able to prevent nearly 90% of all errors. The most

aggressive policies (retiring a page immediately after just one error, or retiring whole rows and columns)

are able to avoid up to 96% of all errors. The main difference between policies lies in the cost involved

in achieving this performance. The number of pages retired per machine averages at only 2.2 - 4.8 for

the repeat-on-address policy, which is a small price to pay for a large gain in the number of avoided

errors. For policies that retire entire rows or columns this number can grow into hundreds or thousands

of pages retired per machine. Retiring entire columns is particularly expensive, due to the large number

of pages that a column spans, and is prohibitive, at least in the form of the very simple policies that we

have experimented with.

Another interesting finding from our simulation study is the effectiveness of page retirements in

avoiding multi-bit and chipkill errors. All policies are able to avoid around two thirds of all chipkill

errors and nearly 90% of all multi-bit errors. While a system with chipkill ECC would have been able

to mask all of these errors, the high reduction of errors under page retirement is still interesting as it

does not come with an increase in hardware cost or energy consumption. The only price to pay is the

reduced amount of memory available, due to retired pages.

While the average number of pages retired per machine averaged across all machines with errors is

low when the right policy is chosen, this number might be higher for machines that experience multi-bit

or chipkill errors (or more precisely would have experienced multi-bit or chipkill errors in the absence of
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page retirement). We therefore also computed the statistics for the number of pages retired per machine

for only those machines in our dataset that experienced multi-bit and chipkill errors and report the

results in the right half of the above table. We find that both the average number of pages retired and

the 95th percentile of the number of pages retired is still very small, compared to the total amount

of memory in modern server systems. For example, under the repeat-on-address policy 5-16 pages are

retired for an average machine with errors. A machine in the 95th percentile of number of retired pages,

still sacrifices only 18-104 pages, i.e. less than half a MByte of total DRAM space. Even the for the more

aggressive 1-error-on-a-page policy the number of retired pages is still in the same order of magnitude.

More elaborate techniques based on statistical modeling or machine learning might be able to further

improve on the cost-efficiency trade-off of page retirement policies.

3.4.2 Selective error protection

Several of our findings indicate that errors are not uniformly distributed in space. For example, we saw

evidence that some parts of a chip and of the physical address space experience higher error rates than

others. This implies that selective error protection mechanisms might be an interesting avenue for future

work. For example, approaches along the lines of the work on virtualized and flexible ECC [161] might

provide effective solutions that exploit the differences in error rates in different parts of the system.

3.4.3 Proactive error detection and monitoring

The two previous subsections provide examples for techniques that operating systems can use to exploit

the characteristics of hard errors in order to reduce the negative impact of DRAM errors on system

availability. However, such techniques require that the operating system has full knowledge of all errors

happening at the underlying hardware level, including error counts, as well as more detailed information,

such as the addresses that were affected. ECC protection used in most server systems masks the presence

of errors and it is typically not trivial to obtain location information on errors. Our findings about the

nature of DRAM errors provide strong encouragement to improve error tracking and reporting to the

operating systems.

The second factor limiting the amount of knowledge about the underlying error process stems from

the fact that DRAM errors are latent, i.e. they will not be detected until the affected cell is accessed.

The chances that an error will eventually lead to an uncorrectable error, causing system downtime,

increases the longer it is left latent. While hardware scrubbers provide an attempt to proactively detect

errors and hence reduce this time, we observed in Section 3.3.3 that their effectiveness might be limited.

We speculate that this is likely due to the passive monitoring approach that they are taking, rather than

actively attempting to expose errors. Given the large amount of idle time that typical servers in data

centers experience [10], it might be worthwhile to invest a small fraction of this idle time to periodically

run a memory test, similar in functionality to memtest86, that actively probes the DRAM for memory

errors. Memory tests have a much higher potential for detecting hard errors than a scrubber, since

they can create access patterns that stress the memory, and because they actively write to memory

cells, rather than just checking the validity of currently written values. Such tests could either be done

periodically on all machines, or they could be used selectively in cases where there is a suspected hard

error, e.g. after observing an earlier error in the system (that has not yet repeated).
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3.4.4 Effectiveness of hardware mechanisms

While this was not the original focus of our study, our analysis lets us also draw conclusions about the

practical value of hardware mechanisms, such as chipkill ECC, in reducing the rate of machine crashes

due to uncorrectable errors. In the presence of only soft errors, the occurrence of error patterns requiring

chipkill ECC would be extremely unlikely. Our observation that a large number of errors observed in

the field is likely due to hard errors provides firmer grounding for using these techniques in practice,

despite their added cost and energy overheads.

Only one earlier study [126] that is based on large-scale field data comments on the effectiveness of

chipkill, however they only observe that in their systems under study hardware platforms with chipkill

show lower rates of uncorrectable errors than hardware platforms without chipkill. They are not able

to quantify how much of this difference in error rates is due to the use of chipkill versus other hardware

differences between the platforms.

Our fine-grained data allowed us to quantify exactly the number of errors that required chipkill to

be corrected and that would have led to a machine crash in the absence of chipkill. We find that a

significant fraction of machines experienced chipkill errors, i.e. errors whose correction was only possible

with the use of chipkill techniques. In fact, among the errors in our study, a large fraction (17%) of them

required the use of chipkill for correction providing some tangible benefits of the use of chipkill. We can

therefore conclude that for systems with stringent availability requirements the reduction in machine

crashes due to uncorrectable errors might make chipkill well worth the price.

3.4.5 System evaluation

Any evaluation of the impact of DRAM errors on system reliability or the effectiveness of mechanisms

protecting against them relies on realistic assumptions about the characteristics of the underlying error

process. In the absence of field data (or realistic models built based on field data), both analytical and

experimental work typically rely on very simplistic assumptions about errors. For example, analytical

models often assume that errors follow a Markov process and experimental work often relies on injecting

errors at uniformly randomly generated locations. Given the high occurrence rate of hard errors, these

simple approaches are likely to give misleading results (or results that represent only the less relevant

scenario of a system experiencing only soft errors), as they do not capture any of the correlations and

patterns present in hard errors.

While we are hoping that the findings we report here will help researchers and practitioners to base

their work on more realistic assumptions on DRAM errors, we believe that more work in this direction

is necessary. Towards this end, we are currently working on developing statistical models capturing the

various properties of DRAM error process that can be used to generate realistic patterns in simulation

or for error injection.

3.5 Conclusions

While a large body of work has been dedicated to studying the characteristics of DRAM errors and

how to best protect against them, the large majority of this work has focused on soft errors in DRAM.

Our work presents the first study based on data from a large number of production systems that shows

that a large fraction of errors observed in the field can be traced back to hard errors. For all systems
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we studied, more than a third of all memory banks that experienced errors show signs of hard errors,

most commonly in the form of repeating errors on the same physical address within less than 2 weeks.

Repeating errors on the same row/column are also common error modes. For some systems, as many

as 95% of all observed errors can be attributed to hard errors. We also provide a detailed study of

the statistical characteristics of hard errors. Some of these provide direct insights useful for protecting

against errors. For example, we observe that not all areas in memory are equally likely to be affected

by errors; specific regions such as low rows/columns have higher error probabilities. We speculate that

this might be due to different usage patterns in different memory areas, as we observe for example that

those areas used by the OS tend to see larger error counts. Furthermore, from the perspective of the

OS, a large fraction of the errors observed in a system is usually concentrated on a small set of pages

providing some motivation for proactively retiring pages after they experience errors. We also observed

that errors that have the highest potential to be uncorrectable, such as multi-bit errors and errors that

require chipkill for correction, are usually preceded by more benign early warning signs, such as repeating

errors on individual addresses, rows or columns. Finally, we observe that a significant number of errors

is complex enough to require more than simple SEC-DED error correction to be corrected. A significant

number of nodes with correctable errors in our study activated more advanced ECC mechanisms (20%-

45% activated redundant bit-steering, and 15% activated Chipkill) and a large fraction (17%) of all

errors required the use of chipkill for error correction.

As a second contribution, we identify various implications on resilient system design that follow from

the insights derived from our measurement study. One of our findings is that simple page retirement

policies can potentially mask a large number of errors with only a small sacrifice in the amount of

available DRAM. For example, a simple policy that retires a page after the first repeat error on an

address on this page can mask up to 95% of all errors and up to 60% of errors that would require chipkill

for correction, while giving up only a few dozen pages of main memory. This is an interesting finding,

since based on discussions with administrators of large datacenters, the use of page retirement is not

widely spread in practice, although it has been implemented in some systems in the past [21]. On the

other hand, we find that a commonly used technique for proactively detecting memory errors, the use of

background memory scrubbers, might not be as effective as one might think. We hypothesize that this is

because a large fraction of errors are intermittent, i.e. they manifest only under certain access patterns.

This observation, together with the observed high frequency of hard (and hence repeatable) errors, might

make it worthwhile to use the idle time that most servers in datacenters experience to periodically run

a memory test to actively probe for errors, in particular after observing prior errors on a node. Finally,

the fact that different areas of memory experience different error rates and that usage likely plays a role

in error frequencies suggests an interesting avenue for future work might be selective error protection

mechanisms, where different protection mechanisms are used for different areas of memory.



Chapter 4

Impact of Temperature on the

Storage Stack

4.1 Introduction

Data centers have developed into major energy hogs. The world’s data centers are estimated to consume

power equivalent to about seventeen 1,000 MW power plants, equaling more than 1% of total world

electricity consumption, and to emit as much carbon dioxide as all of Argentina [68]. More than a third,

sometimes up to one half of a data center’s electricity bill is made up by electricity for cooling [11, 77].

For instance, for a data center consisting of 30,000 square feet and consuming 10MW, the yearly cost of

running the cooling infrastructure can reach up to $4-8 million [110].

Not surprisingly, a large body of research has been devoted to reducing cooling cost. Approaches that

have been investigated include, for example, methods to minimize air flow inefficiencies [110, 139], load

balancing and the incorporation of temperature awareness into workload placement in data centers [14,

112, 117, 128], and power reduction features in individual servers [44, 47].

Interestingly, one key aspect in the thermal management of a data center is still not very well

understood: controlling the setpoint temperature at which to run a data center’s cooling system. Data

centers typically operate in a temperature range between 20C and 22C, some are as cold as 13C degrees

[15, 120]. Due to a lack of scientific data, these values are often chosen based on equipment manufacturers’

(conservative) suggestions. Some estimate that increasing the setpoint temperature by just one degree

can reduce energy consumption by 2 to 5 percent [15, 18]. Microsoft reports that raising the temperature

by two to four degrees in one of its Silicon Valley data centers saved $250,000 in annual energy costs [120].

Google and Facebook have also been considering increasing the temperature in their data centers [120].

While increasing data center temperatures might seem like an easy way to save energy and reduce

carbon emissions, it comes with some concerns, the most obvious being its impact on system reliability.

Unfortunately, the details of how increased data center temperatures will affect hardware reliability are

not well understood and existing evidence is contradicting. To address this problem, the first half of our

Sigmetrics 2012 paper [40] and its associated technical report [39] provide a detailed study of the effects

of temperature on hardware reliability by analyzing a large amount of field data. The data comes from

three different organizations spanning several dozen data centers and covers a diverse set of common

reliability issues, including hard disk failures, latent sector errors in hard disks, uncorrectable errors in

30
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DRAM, DRAM replacements, and general node outages.

The focus of this chapter is another important concern that arises with increasing data center tem-

peratures: the effect on server performance and power consumption. Hard disks, memory, and CPUs

all employ a number of hardware reliability mechanisms and features intended to maintain the integrity

of data at higher temperatures, and protect the hardware against damage or excessive errors. These

reliability mechanisms and features all impose performance penalties for the components in question. In

addition, increased temperatures also have a marked effect on server energy consumption, as they will

lead to increases in power leakage and higher (server internal) fan speeds.

This chapter contains an experimental study using a testbed that includes a thermal chamber and a

large set of different workloads to better understand the effects that temperature has on the performance

and power usage of systems. We provide extensive experimental results across a wide array of represen-

tative workloads that quantify the range of performance and power penalties across the entire spectrum

of configuration options. This study is intended as a guide to data center operators in understanding the

tradeoffs between operating at higher temperatures and the inherent performance and power penalties

of doing so.

4.2 Temperature and performance

While it is widely known that higher temperatures might negatively affect the reliability and lifetime of

hardware devices, less attention is paid to the fact that high temperatures can also negatively affect the

performance of systems. For example, in order to protect themselves against a possibly increasing rate

of Latent Sector Errors (LSEs), some hard disk models enable Read-after-Write (RaW) when a certain

temperature threshold is reached. Under RaW, every write to the disk is converted to a Write Verify

command, or a Write followed by a Verify operation, reading the sector that has just been written and

verifying its contents [140, 141] 1. Also, when CPU and memory temperatures reach a certain threshold,

most high-end servers employ CPU throttling (dynamic voltage frequency scaling) and memory throttling

(of the memory bus).

Unfortunately, features such as RaW are often considered trade secrets and are not well documented.

In fact, even within a company manufacturing hardware those features and associated parameters are

regarded confidential and not shared outside product groups. The goal in this part of our work is

to investigate experimentally how the performance of different components changes with increasing

temperatures.

4.3 Experimental Setup

To study the performance of a server under increasing ambient temperatures, we set up a testbed using

a thermal chamber. The thermal chamber is large enough to fit an entire server inside it, and allows us

to exactly control temperature within a range of −10C to 60C with a precision of 0.1C. How ambient

temperature affects the temperature of server-internal components depends on many factors, including

the design of the cooling system and the server and rack architecture. Therefore, instead of directly

1Note that Write Verify is not specified in the ATA standard, which might explain the absence of a performance hit for most

SATA drives, in the following sections.
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predicting the impact of data center ambient temperature on a system, we present our results as a

function of the temperature of server internal components.

The server we use in our study is a Dell PowerEdge R710, a model that is commonly used in data

center server racks. The server has a quad-core 2.26 GHz Intel Xeon 5520 with 8MB L3, with 16GB

DDR3 ECC memory, running Ubuntu 10.04 Server with the 2.6.32-28-server Linux kernel. We also

equipped the server with a large variety of different hard disk drives, including both SAS and SATA

drives and covering all major manufacturers:

Manufacturer Model Interface Capacity RPM

Hitachi Deskstar SATA 750GB 7200

Western Digital Caviar SATA 160GB 7200

Seagate Barracuda SATA 1TB 7200

Seagate Constellation SAS 500GB 7200

Seagate Cheetah SAS 73GB 15000

Fujitsu MAX3073RC SAS 73GB 15000

Hitachi Ultrastar SAS 300GB 15000

We use a wide range of workloads in our experiments, including a set of synthetic microbenchmarks

designed to stress different parts of the system, and a set of macrobenchmarks aiming to model a number

of real world applications:

STREAM: A microbenchmark measuring bandwidth of sequential memory accesses [86]. We used

an implementation from the lmbench suite [88, 135] and benchmarked the performance of accessing 4gb

of memory.

GUPS: Microbenchmark that measures memory random accesses, in giga-updates-per-second, as

defined by the High Performance Computing Challenge [114]. We tested the performance of 8kb-chunk

updates randomly to 4gb of memory.

Dhrystone: A well-known microbenchmark that evaluates the CPU performance for integer opera-

tions [157].

Whetstone: A well-known CPU benchmark for floating-point performance [31]. Our implementations

of Dhrystone and Whetstone were obtained from the Unixbench suite [103].

Random-Read/Write: A synthetic workload comprised of independent 64kb read (or write) requests

issued back-to-back at random disk sectors.

Sequential-Read/Write: Since a pure sequential workload would stress the on-disk cache, we opt for a

synthetic workload with a high degree of sequentiality, instead. We pick a random disk sector, and issue

back-to-back 64kb read (or write) requests on consecutive sectors for 8mb following the initial request.

OLTP-Mem: We configured TPC-C [150], a commonly used database benchmark modeling on-line

transaction processing (OLTP), with 30 warehouses resulting in a 3gb memory-resident database.

OLTP-Disk: Models the same workload as OLTP-Mem. To make the workload I/O-bound, we

configured the database with 70 warehouses (7gb), using 4gb RAM.

DSS-Mem: We configured TPC-H [151], a commonly used database benchmark modeling decision

support workloads (DSS), with a 1gb memory-resident MySQL InnoDB database.

DSS-Disk: Another TPC-H based workload, this time configured with a database of 10gb and a

3.4gb buffer pool, resulting in a disk-bound workload.

PostMark: A common file system benchmark [69], which we configured to generate 50−5000kb files,

and modified it to avoid using the OS cache entirely, so that all transactions are directed to disk.
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BLAST: An application [3] used by computational biology researchers, acting as a high-performance

computing benchmark that stresses both the CPU and memory. We used the parallel mpiBLAST

implementation [32] and ran 10 representative queries on a 5gb library.

4.4 Temperature and disk performance

To study the effect of temperature on disk performance, we ran our disk-bound workloads against each

of the drives in our testbed, while placing the drive in the heat chamber and gradually increasing the

temperature inside the chamber. The two graphs in Figure 4.1 show the results for the random-read

and random-write microbenchmarks, as a function of the drive internal temperatures, as reported by

the drives’ SMART statistics. Results for sequential-read and sequential-write were similar. We observe

that all SAS drives and one SATA drive (the Hitachi Deskstar) experience some drop in throughput for

high temperatures. The drop in throughput is usually in the 5-10% range, but can be as high as 30%.

Because of the fact that the throughput drop for a drive happens consistently at the same temperature,

rather than randomly or gradually, and that none of the drives reported any errors, we speculate that it

is due to protective mechanisms enabled by the drive. For example, in the case of the write workloads

(which show a more significant drop in throughput) this drop in throughput might be due to the enabling

of features such as RaW.
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Figure 4.1: Disk throughput under a synthetic random read and random write workload, respectively,
as a function of disk internal temperature. Results for sequential read and sequential write workloads
were comparable.

An interesting question is: at what temperature does the throughput start to drop? We observe in

Figure 4.1 drops at either around 50C (for the Seagate SAS drives) or 60C (for the Fujitsu and Hitachi

SAS drives). However, these are disk internal temperatures.

The two graphs in Figure 4.2 translate ambient temperatures (inside the heat chamber) to the ob-

served drives’ internal temperatures. Note that the 15,000 RPM drives naturally run at a hotter internal

temperature. The markers along the lines mark the points where we observed a drop in throughput. We

observe a drop in throughput for temperatures as low as 40C (for the Seagate 73GB and Hitachi SAS

drives), 45C for the Fujitsu and Seagate 500GB SAS drives, and 55C for the Hitachi Deskstar, ranges
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Figure 4.2: Disk internal temperature as a function of ambient temperature for different drive models
and random reads (left) and random writes (right).

that are significantly lower than the maximum of 50-60C that manufacturers typically rate hard disks

for.

While data centers will rarely run at an average inlet temperature of 40C or above, most data centers

have hot spots which are significantly hotter than the rest of the data center, and which might routinely

reach such temperatures.
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Figure 4.3: Throughput under two different I/O intensive workloads (Postmark, OLTP-disk) as a func-
tion of disk internal temperature.

Figure 4.3 shows how temperature affects the throughput of two of our disk-intensive applications,

Postmark and OLTP-disk. We observe similar trends as for the microbenchmarks, with throughput

drops at the same temperature point. Interestingly, the order of magnitude in the throughput drop

for Postmark and OLTP-disk is in most cases even larger than for the synthetic microbenchmarks.

The drop in throughput for Hitachi and Seagate SAS drives increases to 10-20%, while the throughput

drop for Fujitsu and Seagate SAS drives is in the range of 40% and 80%, respectively. While the
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performance impact on DSS-disk is somewhat lower, it is important to note that this is the average drop

in performance across all queries in the DSS workload. For each SAS drive there are some queries that

are impacted by as much as 10–25%. The drops observed for DSS-disk looked more similar in magnitude

to those for the synthetic benchmarks.

4.5 Temperature and CPU/memory performance

Most enterprise class servers support features to protect the CPU and memory subsystem from damage

or excessive errors due to high temperatures. These include scaling of the CPU frequency, reducing

the speed of the memory bus, and employing advanced error correcting codes (ECC) for DRAM. For

example, our server supports a continuous range of CPU frequencies, bus speeds of either 800MHz

or 1066MHz, and three memory protection schemes: single-error-correction and double-error-detection

(SEC-DED), advanced ECC (AdvEcc), which allows the detection and correction of multi-bit errors,

and mirroring, which provides complete redundancy. Server manuals tend to be purposely vague as to

when such features are enabled (CPU and memory bus throttling can be automatically activated by the

server), or possible performance impact. In particular, for the memory options it is difficult to predict

how they affect performance and power consumption. Since running data centers at higher temperatures

might necessitate the use of such features more frequently, we use our testbed to study their impact on

performance and power consumption.
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Figure 4.4: The effect of memory error protection and bus speed on performance (left) and power
consumption (right).

For the temperature range we experimented with (heat chamber temperatures up to 55C, significantly

higher than the 35C inlet temperature at which most servers are rated) we did not observe any throttling

triggered by the server. To study the effect of different memory features, we manually configured the

server to run with different combinations of memory bus speed (800MHz vs. 1066MHz) and ECC

schemes (SEC-DED, AdvEcc, Mirror). The effect on throughput for the different benchmarks is shown in

Figure 4.4 (left). Throughput is normalized by the maximum attainable throughput, i.e. the throughput

achieved when combining a 1066MHz bus speed with the SEC-DED ECC scheme. The results for the

two microbenchmarks designed to stress the memory (GUPS and Stream) show that drops in throughput

can potentially be huge. Switching to the lower bus speed can lead to a 20% reduction in throughput.



Chapter 4. Impact of Temperature on the Storage Stack 36

The effect of the ECC scheme is even bigger: enabling AdvECC can cost 40% in throughput. The

combination of features can cause a drop of more than 50%. For the macrobenchmarks modeling real-

world applications the difference in throughput is (not surprisingly) not quite as large, but can reach

significant levels at 3–4%. We also measured the server’s power consumption (Figure 4.4 (right)), and

found that the impact of memory configurations on server power is small (1-3%) compared to increases

of up to 50% due to increased temperatures that we will observe in the next section.

4.6 Increased server energy consumption

Increasing the air intake temperature of IT equipment can have an impact on the equipment’s power

dissipation. Many IT manufacturers start to increase the speed of internal cooling fans once inlet air

temperatures reach a certain threshold to offset the increased ambient air temperature. Also, leakage

power of a processor increases with higher temperatures, and can make up a significant fraction of

a processor’s total power consumption. To study the effect of increasing ambient temperatures on a

server’s power consumption, we repeated all our earlier experiments with a power meter attached to our

server and, in addition, monitored fan speeds.
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Figure 4.5: The effect of ambient temperature on power consumption (left) and server fan speeds (right).

Figure 4.5 (left) shows the server’s power usage as a function of the ambient (thermal chamber)

temperature for the CPU and memory intensive workloads. While the absolute energy used by different

workloads varies widely, we observe the same basic trend for all workloads: power consumption stays

constant up to 30C and then begins to continually increase, until it levels off at 40C. The increase in

power consumption is quite dramatic: up to 50%.

An interesting question is whether this increase in power comes from an increase in fan speed (some-

thing that can be controlled by the server) or from increased leakage power (which is governed by physical

laws). Unfortunately, it is not possible to measure leakage power directly. Nevertheless, there is strong

evidence that the increase in power is dominated by fan power: Figure 4.5 (right) plots the fan speed as

a function of the ambient temperature for all workload experiments. We observe that the temperature

thresholds we notice for which fan speeds increase line up exactly with the temperatures at which when

power consumption increases. We also observe that power consumption levels off once fan speeds level

off, while leakage power would continue to grow with rising temperatures. As a result, we can conclude
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that as ambient temperature increases, the resulting increase in power is significant and can be mostly

attributed to fan power. By comparison, leakage power is negligible.
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Figure 4.6: The effect of ambient temperature on CPU temperature (left) and memory temperature
(right).

Another interesting observation is that power usage starts to increase at the same ambient tempera-

ture point for all workloads, although server internal temperatures vary widely across workloads, which

means fan speeds increase based on ambient rather than internal temperature. Figure 4.6 shows the

CPU and memory temperature as a function of ambient temperature for the different workloads, and for

an idle server. We see, for example, that CPU core temperature is more than 20C higher for BLAST and

OLTP-Mem than for most other workloads. That means that for many workloads the server internal

temperatures are still quite low (less than 40C) when the fan speeds start to increase. In particular,

we observe that for an idle server, the temperature measured at the CPU and memory is still at a very

modest 25-30C 2 when the fan speeds start to increase. This is an important observation, since most

servers in data centers spend a large fraction of their time idle. As such, we conclude that smart control

of server fan speeds is imperative to running data centers hotter. A significant fraction of the observed

increase in power dissipation in our experiments could likely be avoided by more sophisticated algorithms

controlling the fan speeds.

4.7 Reduced safety margins

One concern with increasing data center temperatures is that most data centers tend to have hot spots

that are significantly hotter than the average temperature in the facility. When raising the temperature

setpoint in a data center’s cooling system, it is important to also keep in mind how this will affect

the hottest part of the system, rather than just the system average. In addition to hot spots, another

concern is reduced safety margins: most servers are configured with a critical temperature threshold

and will shut down when that threshold is reached, in order to avoid serious equipment damage. As

the ambient temperature in a data center increases, equipment will be operating closer to the maximum

temperature, reducing the time available to shut down a server cleanly or take protective measures in

2For reference, DRAM, for example, is typically rated for up to 95C.
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the case of data center events, such as cooling or fan failures.

To better understand temperature imbalances we studied data collected from January 2007 to May

2009 at 6 different data centers (DCs) at Google covering three different disk models. For each of

the disks, we have monthly reports of the average (internal) disk temperature and temperature vari-

ance in that month. The data was collected and analyzed using the Systems Health infrastructure at

Google [113]. The infrastructure consists of 3 layers: data collection, a distributed storage repository,

and an analysis framework. The data collection was done by polling the disks’ internal self-monitoring

facility (SMART). The data was stored in Bigtable [22], where different columns represent different vari-

ables, different rows represent different machines, and different versions are used to keep a time-ordered

history of variable values [113]. Data analysis was done using a Mapreduce job written in the Sawzall

language for data extraction [113], and R for statistical analyisis and graph generation. The table below

summarizes our data:

Model ID #DCs #Disks #Disk Months

3 3 18,692 300,000

4 3 17,515 300,000

6 4 36,671 300,000

In addition, Lawrence Livermore National Laboratories (LANL) have made available data on node

outages for more than 20 of their high-performance computing clusters, including information on the

root cause of an outage and the duration of the outage. The data can be downloaded from the Usenix

Computer Failure Data Repository [153] and a more detailed description of the data and systems can

be found in [124]. For one of LANL’s clusters, periodic temperature measurements from a motherboard

sensor are also available. We refer to this system as LANL-system-20, since the ID for this system on

LANL’s web page is 20.

We consider how much hotter the disk/node in the 95th and 99th percentile of the distribution in

the data center is, compared to the median disk/node.
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Figure 4.7: The cumulative distribution function of the per node/disk average temperatures for the
Google data centers in our study and LANL’s system 20.

Interestingly, the trends for temperature imbalances are very similar across data centers, despite the

fact that they have been designed and managed by independent entities. We find that for all of Google’s
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data centers in our study, and LANL’s system 20, the node/disk in the 95th percentile is typically around

5 degrees C hotter than the median node/disk, and that the 99th percentile is around 8–10 degrees hotter

than the median node/disk. Figure 4.7 shows the full CDFs of the per node/disk distribution for both

the Google data centers and LANL’s system 20.

4.8 Summary and Implications

Increasing data center temperatures creates the potential for large energy savings and reductions in

carbon emissions. Unfortunately, the pitfalls possibly associated with increased data center tempera-

tures are not very well understood, and as a result most data centers operate at very conservative, low

temperatures. The experiments in this chapter quantify the range of performance and power penalties

incurred when operating at higher temperatures. Indeed, both the disk and the CPU/memory subsys-

tems can incur significant performance penalties due to reliability mechanisms and features that attempt

to maintain the integrity of the data and protect the hardware against damage. These mechanisms tend

to kick in only at very high temperatures, and the performance penalties can be significant, depending

on the workload.

Our encouraging results on the impact of temperature on hardware reliability [40, 39] move the focus

to other potential issues with increasing data center temperatures. One such issue is an increase in the

power consumption of individual servers as inlet air temperatures go up. The two most commonly cited

reasons for such an increase are increased power leakage in the processor and increased (server internal)

fan speeds. Our experimental results show that power leakage seems to be negligible compared to the

effect of server fans. In fact, we find that even for relatively low ambient temperatures (on the orders that

are commonly found in the hotter areas of an otherwise cool data center) fan power consumption makes

up a significant fraction of total energy consumption. Much of this energy might be spent unnecessarily,

due to poorly designed algorithms for controlling fan speed.

4.9 Conclusion

We now conclude the part of the thesis focused on understanding and improving system reliability and

temperature-related performance and power considerations in data centers. The following chapters will

focus on building a programmable and controlable software storage stack, that allows vertical special-

ization and customization for data center applications.



Chapter 5

Software-Defined Caching

5.1 Introduction

An increasing number of enterprise applications have migrated to hosted platforms in private enterprise

and public cloud data centers. Such platforms are typically virtualized, i.e., tenants deploy applications

in virtual machines (VMs) whose access to the underlying resources (memory, storage, network) is shared

with other tenants, and mediated by hypervisors such as Hyper-V, VMware ESX, or Xen. Uninhibited

sharing of such resources in a multi-tenant environment leads to poor and variable application perfor-

mance. While recent efforts give providers control over how resources like network [54, 8, 130, 115, 65]

and storage [52, 131, 147, 53, 13] are shared, there is no coordinated end-to-end control of the distributed

caching infrastructure, made up of storage caches at multiple places along the IO stack (inside VMs,

hypervisors, storage servers; see Figure 5.1).

VM VM

Hypervisor Hypervisor

VM VM

Hypervisor

Storage Storage

VM VM

Figure 5.1: Simplified IO stack in a multi-tenant data center. Two tenants, a green and red one are
shown, with 3 VMs each spread over 3 hypervisors. The circles represent typical caches on the IO stack.

Today, storage caches along the IO stack are transparent to both applications and cloud providers,

lack workload-aware mechanisms, and are each managed in isolation, leading to multiple problems:

• Lack of performance isolation. Since caches are not tenant- or workload-aware, applications

with different IO patterns and request rates sharing the same cache will impact each other’s cache

40
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performance. For example, depending on the cache eviction policy, one application’s large sequential

reads can blast away another workload’s working set. Even with scan-resistant cache management

policies, such as ARC [89], aggressive clients with higher request rates will still be allocated larger

portions of the cache.

• Lack of customization. Since caches are not tenant-aware, the entire cache is treated as a

single pool with one cache write policy (write-through, write-back, etc.), despite different durability

requirements of different applications, and one eviction policy, despite the fact that different workloads

benefit from different cache eviction policies. For example, Figure 5.2a shows two IOMeter workloads

under two different eviction policies, LRU and MRU [27] respectively. The workload on the left performs

at its peak with an MRU policy, while the one on the right performs best with LRU. Today, if both

workloads were running atop the same hypervisor, they would have to follow the same eviction policy,

leading to performance penalties on the order of 4-5x.

• Lack of coordination. Each cache in the IO stack makes its decisions locally, agnostic to the

state of other caches in the stack, leading to inefficiencies, such as double caching, as was also noted by

Wong and Wilkes [159].

• Lack of adaptability. Currently, the organization and configuration of caches is fixed. Caches

cannot be added, removed, or resized on the fly to adapt to changes in the workload or in provider

objectives.

•Waste of system resources. Simple solutions for partitioning caches along the IO stack are not

sufficient. For example, Figure 5.2b shows that the observed performance triples when cache space is

optimally allocated according to workload characteristics (the workload consists of 4 tenants using 120

VMs in total), compared to the case when caches are naively allocated across tenants. We will describe

the details of this experiment in Section 5.5, but note that all workloads’ throughputs benefit when the

right cache size is chosen. This is true even for tenants that receive less total cache, as the contention

at the storage device is reduced.
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Figure 5.2: Performance depends on the cache policy (a) and allocation (b).

While some of these problems have been tackled in isolation, there is no comprehensive framework for

the end-to-end management of caches that allows providers to address the major issues they are facing

today. We present Moirai1, a tenant- and workload-aware system that allows data center providers to

1Moirai (Ancient Greek for “apportioner”) in Greek mythology are the three personifications of fate, who control the
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control their distributed caching infrastructure to achieve provider objectives, such as improving resource

utilization and request latency, achieving tenant isolation and QoS guarantees. Moirai does not require

changes to the IO stack architecture, is transparent to applications and VMs, and does not change cache

consistency semantics.

5.2 Design

We do not change the IO stack architecture, so IOs continue to flow along the same path as before.

As a result, we do not pool or group caches together to provide cooperative caching or any new shared

memory abstractions. Furthermore, it is our goal that our mechanisms do not change cache consistency

semantics.
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Figure 5.3: The Moirai architecture.

Figure 5.3 shows the architecture of Moirai, which comprises three key components:

1. The Metrics Engine, a hypervisor-based module that captures key characteristics for each workload.

2. Tenant-aware programmable storage caches.

3. A logically-centralized controller that uses information on workload characteristics to determine

how much cache to allocate to each workload, where to place it, and what policies the cache should

be configured with, then effects those changes on the data plane.

Details on each of the three components are provided next.

5.2.1 The Metrics Engine

The Metrics Engine is a hypervisor-based module that maintains key characteristics for each workload

running on the system, such as throughput, number of reads vs. writes, and also hit ratio curves, which

describe the percentage of requests serviced from cache as a function of the cache size. We use phantom

thread of life of every mortal from birth to death, analogously to the end-to-end control of caches by the three components
that comprise Moirai.
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createCache (<size,eviction pol,write pol>)
returns a reference to the newly created cache c

removeCache (Cache c)
createRule (IO Header h, Cache c)

creates cache rule <src,op,file,range>→ c
removeRule (IO Header h, Cache c)
configureCache (<size,eviction pol,write pol>, Cache c)
getCacheStats (Cache c)

returns cache statistics

Table 5.1: Moirai’s API for a configurable cache.

caches, which inspect IO headers (with fields such as accessed file name, offset, length, etc.) and exploit

techniques from recent work [158, 156, 123] to generate hit ratio curves efficiently at runtime. The

Metrics Engine periodically sends these performance metrics to the centralized controller.

5.2.2 Programmable Caches

Caches along the IO stack are programmable through a simple API shown in Table 5.1. Caches are

created at the desired position in the IO stack by sending a createCache call to the appropriate level in

the stack (more details in Section 5.4). The createRule call is used to make a cache c workload-aware by

specifying which IOs should be cached in c through the creation of rules to match incoming IO headers

to the specified IO header entries. If an incoming IO matches its header with a rule, the IO (header +

data) is sent through the cache. If no match is obtained, the IO bypasses the cache. The controller can

also configure cache properties (configureCache) to set the size, eviction, and write policies. Similarly,

cache performance metrics are obtained via the getCacheStats call.

Care must be taken to maintain consistency semantics when the location of a cache changes. For

example, the controller could decide to cache at the storage server rather than at the hypervisor. In

order to maintain consistency, Moirai first removes the caches on the old path, which automatically

triggers the eviction of all cached state, including writing any dirty blocks to the back-end storage, and

then installs caches on the new path.

5.2.3 Controller

The centralized controller uses the API described in Section 5.2.2 and information provided by the

Metrics Engine to create and configure caches in order to implement a set of objectives specified by the

provider, as illustrated in the next section.

5.3 Data Plane Transformations

In this section, we explore Moirai’s ability to program and transform the data plane to implement

various cloud provider objectives and improve workload performance. For each goal, we illustrate how

the controller effects the necessary changes on the data plane.
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5.3.1 Prioritizing a Workload

It’s often desirable to be able to isolate the performance of a particular (high-priority) application A

from that of another application B sharing a cache in the same VM. The controller can achieve this by

configuring a dedicated cache C (a 50 GB LRU write-through cache in this particular example) inside

the hypervisor, which is exclusive to workload A:

C = createCache (< 50GB, LRU, write-through>)

createRule (< VM , *, A.file, *>, C)

The createRule call configures the cache to accept all R/W IOs originating from the VM, that

access any part of A.file. The figure below shows the resulting data plane. Workload A flows through

its own cache C in the hypervisor, while workload B continues along its previous path, bypassing that

cache, effectively isolating A’s traffic from it.
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Figure 5.4: Isolating and prioritizing a workload’s cache.

5.3.2 Providing Per-Workload Bandwidth Guarantees

Next we extend the objectives beyond simple priorities, and examine how Moirai allocates cache space to

several arbitrary workloads W1,W2, . . . ,Wn, all running on the the same system, in order to guarantee

each workload Wi a particular bandwidth Bi. Similar to Section 5.3.1, the controller passes each work-

load’s traffic through its own dedicated cache Ci at the hypervisor (see Figure 5.5 ), but the question

now becomes what the size each of the caches needs to be. In this section, we focus on hypervisor level

caches only, but the techniques can be expanded to include simultaneous allocation of hypervisor and

storage level cache space, as we explain in Section 5.3.5.
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Figure 5.5: Allocating caches to multiple workloads.

To answer this question, the controller uses information from the Metrics Engine to first determine

the hit ratio Hitcachei required for workload Wi to meet a certain bandwidth guarantee, and then allocates

the workload Wi cache space ai, such that U(ai) = Hitcachei , where U is the workload’s hit ratio function

(provided by the Metrics Engine).
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More precisely, note that if the total bandwidth achievable from the storage back-end 2 is BW storage
i

and main memory bandwidth is BWmemory, a workload’s bandwidth depends on its hit ratio Hitcachei

as follows:

SLABW
i ≤ Hitcachei ×BWmemory + (1−Hitcachei )×BW storage

i (5.1)

That means the cache hit ratio in order to achieve a bandwidth SLABW
i needs to be at least:

Hitcachei ≥
SLABW

i −BW storage
i

BWmemory −BW storage
i

(5.2)

After the minimum data bandwidth guarantees SLABW
1 , . . . , SLABW

n are met for all n workloads, the

leftover cache space can be allocated based on priorities or using approaches highlighted in Section 5.3.3

to optimize for global utility.

5.3.3 Maximizing Global Workload Utility

Rather than per-workload guarantees, a provider might strive to maximize the global workload utility,

i.e., the sum of the utilities across all workloads in the system. Utility of a workload could be measured

by hit ratio, or be defined more generally in terms of bytes per second (Bps) satisfied by the cache, or

by extending the notion of hit ratio by introducing weights to account for the type of IO (i.e. reads

vs. writes), or even to account for the impact of a workload on the storage device (e.g. sequential vs.

random access). The choice of definition for utility will be dictated by the optimization goals of the

cloud provider.

Using the example of hit ratios as the utility function, the controller can create a separate cache

for each workload (similar to Section 5.3.2) and then use a classic result [138] to determine the cache

allocations a1, ..., an. The algorithm, shown in Algorithm 5.3.1, uses a water-filling approach, i.e, it

allocates the cache to workloads in small increments. The basic idea at each step is to allocate the

next increment of cache to the workload that will achieve the highest hit rate out of the allocation.

When the hit rate curves of workloads are concave functions, this algorithm will achieve an allocation

that maximizes the total hit rate, i.e., total hit rate at the cache. We are currently investigating

meta-heuristics to deal with non-concave hit ratio curves. For example, Soundararajan [134] proposed

hill-climbing search, although we find that their particular algorithm and implementation is too slow for

our system to react dynamically.

One might argue that a standard, workload-agnostic system that manages the entire cache as a

single pool and applies its favourite replacement policy to it is also designed to achieve the same goal of

maximizing overall hit ratio. However, Moirai can provide generalizations of this goal (e.g. a weighted

sum of the hit ratios across workloads) and simultaneously provide other goals, such as isolation (e.g.

protecting one workload from the effects of workload spikes in another workload), which a standard

system cannot.

2If the storage back-end is remote, BW
storage
i

is the minimum of the network, and the back-end storage array’s
bandwidth.
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Algorithm 5.3.1 Utility-maximizing cache allocation

Require: n workloads sharing a cache of capacity C; U1,...,Un: hit rate curves for workloads.
Ensure: Assign cache allocation ai to workload i s.t.

∑
ai = C, and max

∑
U(ai)

1: ∀i, ai = 0 //Initialize allocations
2: leftC = C //Cache left to distribute
3: ε = 0.001 × C //Water-filling constant (as fraction of C)
4: while (leftC > 0) do
5: cacheAlloc = min(ε, leftC)
6: j = argmax

i
(Ui(ai + cacheAlloc) − Ui(ai)) //workload with the most utility gained from extra cache

7: aj+ = cacheAlloc

8: leftC− = cacheAlloc

5.3.4 Consolidating Memory Over Fast Networks

As systems are increasingly making use of fast networks with speeds in excess of 40-100 Gbps, and

RDMA capabilities [38], use of remote resources is becoming increasingly feasible and can improve

overall utilization of resources. Consider as an example a read-only dataset DATA.file accessed by N

VMs across N hypervisors. Placing one consolidated cache at the storage server can result in an Nx

reduction in total cache space used, with potentially only small increases in latency. The controller can

accomplish this as follows (using the example of a 100 GB MRU write-back cache C as the consolidated

cache):

C = createCache (<100 GB, MRU, write-back>)

createRule (< VM1−N , *, DATA.file, *>, C)

The resulting data plane is shown in the figure below:
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Figure 5.6: Consolidating memory at the storage server

5.3.5 Scaling Out Caches

In addition to fully-remote caching, caching capacity per workload can be split across the compute and

storage server, while appearing to the VM and applications as one single aggregate cache. Note that

today, workloads do flow through both caches (at the hypervisor, and at the storage server), but this

occurs in an uncontrolled fashion, leading to wasted memory capacity by double-caching of data in both

places.

In situations where the hypervisor is hosting several applications and memory is limited, the controller

has several choices for how to split the cache for a workload A and configure it at the hypervisor(1) and

storage server(2). If the workload access is uniform across the file, one choice is to cache half the file in

each of the respective caches:
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createRule (< VM , *, A.file, 0, size/2>, C1)

createRule (< VM , *, A.file, size/2+1, size>, C2)

The resulting data plane is shown in Figure 5.7:
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Figure 5.7: Scaling out a local cache

The controller can also match workload access patterns to the way the cache is split based on hot or

cold blocks or files.

Another option is to treat both caches as a global LRU cache. To do that, the controller programs

C1 to cache the IOs from A.file, and C2 to only cache IOs that were evicted (or “demoted”) from C1.

To provide per-workload bandwidth guarantees, Moirai extends the cache allocation method presented

in Section 5.3.2. The controller now needs to determine two things:

1. How much cache space ai to allocate for the global LRU cache made up of both C1 and C2, such

that:

U(ai) = Hitcachei (5.3)

2. The individual cache space allocations a1i and a2i , for C1 and C2 respectively. Thus, for some α:

a1i = α× ai

a2i = (1− α)× ai
(5.4)

The relationship between these variables is illustrated using a simple, example hit rate utility function

in Figure 5.8.

A workload’s bandwidth SLABW
i now depends on the hit ratio Hitcachei of the global LRU cache as

follows:

SLABW
i ≤ Hitcachei ×BWGlobalLRU

i + (1−Hitcachei )×BW storage
i (5.5)

Similar to Equation (5.2), the cache hit ratio Hitcachei needs to be at least:

Hitcachei ≥
SLABW

i −BW storage
i

BWGlobalLRU
i −BW storage

i

(5.6)

Here, BWGlobalLRU
i refers to the total bandwidth achievable from the global LRU cache.

Since C1 and C2 form the global LRU cache, the fraction α of cache space allocated to C1 will result

in U(αai)% of the hits, while the rest of the hits, [U(ai) − U(αai)]%, will be served from C2. Since

C1 is a hypervisor cache, its achievable bandwidth is BWmemory, while C2’s achievable bandwidth is

constrained by the bandwidth of the network BWnetwork
i . Thus:
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Figure 5.8: Example of a cache hit rate function U, and associated parameters ai and α, used to compute
cache allocations for scaled-out LRU caches with bandwidth guarantees.

BWGlobalLRU
i = U(αai)×BWmemory

+ [U(ai)− U(αai)]×BWnetwork
i

(5.7)

Simultaneously using Equations (5.3), (5.4), (5.6), and (5.7), the controller solves for ai, and α,

effectively determining the cache allocations a1i and a2i , for C1 and C2 respectively. Further constraints

can also be added to the problem statement (e.g., imposing a maximum size on either C1, or C2) to

limit the solution space.

5.4 Implementation

We have implemented and deployed a Moirai prototype, comprising all components described in Sec-

tion 5.2, on a Windows-based system and made the code publicly available [92]. The controller is

implemented in around 6000 LOC of C# and communicates with the caches through RPCs over TCP.

The Metrics Engine is implemented as a user-level stage in the hypervisor in around 500 LOC and uses a

variant of SHARDS [156] to determine hit ratio curves. Cache modules implement the APIs in Table 5.1

at user-level in around 2000 LOC in C#.

One implementation challenge is how to classify and direct a tenant’s traffic to the configurable caches.

We decided to build an extension of the IOFLow framework [147] to implement this functionality. Note

that while in its original form IOFlow does keep track of each IO’s tenant class, it was designed to provide

IO queueing and rate limiting based on IO request headers. By contrast, caching involves inspection and

manipulation of the data associated with an IO request. We implemented an extension of the IOFlow

architecture to add support for data transformations using a version of the Windows messaging API for
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H.Index H.Data H.Msg H.Log Exchange
Read % 75% 61% 56% 1% 40%
IO Sizes 64 KB 8 KB 64 KB 64 KB 8 KB
Seq/rand Mixed Rand Rand Seq Rand
# IOs 32M 158M 36M 54M 60M

Table 5.2: Characteristics for 4 Hotmail workloads, part of a 2-day Hotmail IO trace and an Exchange
workload, part of a 1-day Exchange IO trace. Seq/rand refer to sequential and random-access respec-
tively. M=million.

filter drivers, in around 500 new LOC. IOs are passed to a user-level cache through an upcall, while a

kernel-mode thread handling the I/O request blocks pending a return code from the cache. The latter

decides whether the request is terminated at the filter driver (hit), or is sent further down the IO stack.

5.5 Experimental Evaluation

This section provides an experimental evaluation of some of Moirai’s use cases presented in Section 5.3.

Our experimental testbed has 12 servers, each with 16 Intel Xeon 2.4 GHz, 384 GB of RAM and three

Seagate Constellation 2 disks or four Intel 520 SSDs in RAID-0. The servers run Windows Server 2012

R2 operating system and can act as either Hyper-V hypervisors or as storage servers. Each server has a

40 Gbps Mellanox ConnectX-3 NIC supporting RDMA and connected to a Mellanox MSX1036B-1SFR

switch. We use a combination of real enterprise application traces and benchmarks, as specified in more

detail below. As Moirai is transparent to applications and VM’s, they can run on our testbed without

modifications

We use a mixture of real enterprise application traces and benchmarks in the evaluation. For the

former, we use public traces from an enterprise Exchange email server [133] and Hotmail [148]. Key

characteristics of these traces are shown in Table 5.2. The traces are diverse across a number of metrics

such as the Read-to-Write ratio, IO sizes, sequentiality of access and number of IOs which allows for a

comprehensive evaluation across realistic workload mixes. However, a limitation of these workloads is

that they were originally collected underneath file caches. As such, they under-represent the amount of

application reads.

To account for this limitation, we also use TPC-E [152] and TPC-H [151] to cover a broad class

of workloads, ranging from transaction processing OLTP operations with small IO sizes (TPC-E) to

large streaming IO from data mining queries (TPC-H). They run over unmodified SQL Server 2012 R2

databases. When error bars are shown they represent the average, minimum and maximum from 5 runs.

5.5.1 Enforcing Priorities

We examine Moirai’s ability to prioritize a workload using the example of a VM with one SQL Server in-

stance running both TPC-E and TPC-H. The corresponding database files, “TPCE.VHD” and “TPCH.VHD”

each have a footprint of 50 GB and are stored on Virtual Hard Drives (VHDs) on two separate disk-based

storage servers.

We run two experiments, one with default caching and one where we use Moirai to prioritize the

TPC-E workload, as explained in Section 5.3.1 and measure the throughput (transactions/min) for the

TPC-E workload. The results are shown in Figure 5.9.
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Figure 5.9: Prioritizing one workload (TPC-E) vs another (TPC-H). With Moirai, the performance of
TPC-E is not impacted by TPC-H. In contrast, today, running both workloads together would result in
a 5x performance hit for TPC-E.

We observe that in the system without Moirai, TPC-E’s performance drops by more than 5X when

TPC-H runs. On the other hand, we find that with Moirai, TPC-E’s throughput running alongside

TPC-H is within 2.3 % of its throughput running by itself.

Note that our current implementation of Moirai results in a data plane overhead of 20% for workload

throughput (this difference is due to using our user-level cache vs. SQL Server’s native cache, which

is heavily optimized). The overhead stems in part from extra memory copies between the kernel and

the user-level cache. However, we believe that this overhead is acceptable compared to the 5x drop in

performance with today’s caching infrastructure. Further, note that the controller can detect when no

other workloads are running and remove the user-level cache and thus avoid the extra overhead.

5.5.2 Maximizing Global Hit Rate

We consider the example of maximizing global hit rate using four tenants with 30 VMs each, spread

over 10 hypervisors accessing VHDs on an SSD-based storage server. Each tenant’s VM uses IOMeter,

parameterized with the key characteristics of the Hotmail workloads (Tenants 1-4 are running the Index,

Data, Msg and Log workloads respectively).

The experiment has two phases. In the first phase, naive caching is used, where each tenant receives

an equal amount of cache. Note that tenant 4 represents the log workload - any cache it consumes is

wasted (0% hit rate) because the workload is sequential. In the second phase, Moirai is enabled, and it

uses the method described in Section 5.3.3 to partition the cache and reconfigure the data plane. The

results are shown in Figure 5.10.

Interestingly, we observe not only that overall throughput increases by more than 2.5x, but also that

this improvement comes at no cost to any of the individual four tenants. The reason is that all tenants

benefit from the decreased load at the storage back-end.

We have experimented with other workload combinations as well. In the worst case across all exper-

iments the overall throughput still increased by 35%, but this came at the cost of a small penalty to one
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Figure 5.10: Maximizing global hit rate for 4 tenants.

tenant, whose throughput dropped by 10%. A cloud provider could feed into the controller a minimum

amount of cache space or minimum hit rate it wants to guarantee each workload, and then ask it to

divide the remaining cache space to maximize global utility.

5.5.3 Consolidating Memory Over Fast Networks

In this section we use Moirai on a TPC-H workload running on ten different hypervisors to illustrate the

trade-offs for memory consolidation over fast networks. We compare the case where Moirai is used to

insert a 50 GB cache inside each of the 10 hypervisors, to the case where Moirai inserts one shared 50 GB

cache at the storage server, which is either accessed at 1Gbps over TCP or at 40Gbps over RDMA. In

all cases, all the data resides in memory (100% hit rate). The results are shown in Figure 5.11.
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Figure 5.11: Latency for 5 TPC-H queries. The controller can decide to use file caches in the storage
server for fast RDMA-based networks. Y-axis is log scale.
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We observe that the average latency overhead when using a consolidated cache over the fast network

is around 26%, compared to using local hypervisor caches. For the slow network the overheads are

153%. Note that in exchange for paying these overheads one gains a 10X reduction in the total amount

of cache space allocated for this workload. Such savings can be passed to tenants for consuming less

resources as well. Also note that with Moirai a provider has the option to seamlessly switch from one

cache configuration to another, depending on the state of the system. For example, a provider might

switch to a consolidated cache at the cost of some latency penalties when cache space is scarce.

5.5.4 Scaling Out Caches
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Figure 5.12: Splitting IOs for TPC-E across two different caches. Today, “double caching” occurs since
all IOs flow through all caches. Moirai can prevent this, and match the performance of an aggregate
cache.

In this section, we evaluate Moirai’s ability to scale out the storage cache as described in Section 5.3.5.

We consider a TPC-E workload on a machine low on memory. The provider wishes to scale out TPC-E’s

5 GB hypervisor cache to include another 5 GB at the storage server.

Figure 5.12 shows the performance of TPC-E in the experiment. The first bar shows TPC-E’s baseline

performance with 5 GB of hypervisor-only cache. The second bar shows another baseline today, where

5 GB of cache are used in both compute and storage server, but because all IOs take the same path,

the second cache is ineffective due to double caching. The third bar shows that TPC-E performance

increases by 63% over the baseline hypervisor-only cache when Moirai is in use. Finally, the last bar

shows that using Moirai is as efficient as the case when the hypervisor cache is given 10 GB of memory.

5.5.5 Dynamic Workloads

The controller in Moirai continuously monitors the metrics and dynamically reacts to changes after

some reaction time s, a configurable parameter. For example, Moirai will detect when a cache goes

unutilized and reuse the space accordingly. We have worked with values for s on the order of 15-30
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seconds - we believe that this range presents a good trade-off between responsiveness and unwarranted

reconfigurations due to momentary changes in workload demand.

To illustrate Moirai’s dynamic capabilities, in Figure 5.13, we evaluate a setup consisting of 10

hypervisors each with 12 VMs, where each VM has a 2GB file stored on an SSD back-end that it

accesses through IOMeter.
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Figure 5.13: Moirai adapting to workloads dynamically over time. Note there are two y-axis.

In the first phase, the VMs run with no cache. In the second phase, the controller allocates a total

of 72GB cache at the hypervisor level, which is evenly split between VMs (i.e., each receiving 72/120

GB), and passes the 120 VMs’ traffic through 10 user-level caches (one in each hypervisor machine).

The application’s throughput improves because the cache hit rate increases to 30%. In the third phase,

half of the VMs finish their work and go idle. The aggregate used cache size drops. The controller

detects that drop and increases the size of the remaining 60 VM caches. In the hypervisors with the

inactive VMs, the unused cache space is released to the OS and can be used by other applications. The

total throughput increases as the 60 VMs get a 60% hit rate. In the final phase, all VMs again become

active, triggering a re-configuration of the cache sizes by the controller. The decreased cache size at each

hypervisor results in a lower overall hit rate as expected.

5.5.6 Control Plane Overheads

We now consider Moirai’s overheads on the control plane. Moirai implements a version of SHARDS [156]

in the Metrics Engine to construct hit ratio curves at runtime. Our current implementation uses up to

100% of one core. While our current implementation is not as highly-optimized, the original SHARDS

paper showed that hit ratio curves with very high fidelity can be constructed online using less than 10MB

of memory per workload [156], and marginal (less than 5%) CPU overhead. We believe these overheads

are very reasonable.

We also evaluated the time it takes to compute the optimal cache size allocation as a function of

the number of VMs in the system (Algorithm 3.1, described in Section 3.3). We varied the number of

VMs from 100 to 5000, and measured the time it took to compute the allocation. For 5000 VMs, it
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took less than 15s to make that decision, with a water-filling constant ǫ of 1MB. For ǫ of 2MB, the time

is less than 5s. This highlights the tradeoff between how fine-grained the cache allocation is, and the

completion time for the allocation algorithm. However, since cache allocations can feasibly be done at

granularities (ǫ) coarser than 2MB, and they do not need to be re-computed at very short time intervals,

we believe this method of cache allocation is very reasonable. We are currently exploring optimizations

to reduce the runtime further.

5.6 Summary

Caches are a critical resource in data centers. They improve latency, throughput and reduce the load

on networks and storage. But today, caches are implicit, not designed for controlled sharing, leading

to severe inefficiencies under multi-tenancy. This chapter presents Moirai, a software-defined caching

architecture that enables control of caches in a multi-tenant data center. Moirai is transparent to hosted

tenants. Their throughput and latency benefit without requiring any tenant input or hints. We show

using several different use cases how Moirai can help ease the management of the distributed caching

infrastructure and enable the provider to achieve a series of different objectives. We hope that our public

release of the code [92] implementing Moirai will help foster future work in this area.
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Treating the Storage Stack Like a

Network

6.1 Introduction

An application’s IO stack is rich in stages providing compute, network, and storage functionality. These

stages include guest OSes, file systems, hypervisors, network appliances, and distributed storage with

caches and schedulers. There are over 18+ types of stages on a typical data center IO stack [147].

Furthermore, most IO stacks support the injection of new stages with new functionality using filter

drivers common in most OSes [95, 46, 84], or appliances over the network [129].

Controlling or programming how IOs flow through this stack is hard if not impossible, for tenants

and service providers alike. Once an IO enters the system, the path to its endpoint is pre-determined and

static. It must pass through all stages on the way to the endpoint. A new stage with new functionality

means a longer path with added latency for every IO. As raw storage and networking speeds improve, the

length of the IO stack is increasingly becoming a new bottleneck [111]. Furthermore, the IO stack stages

have narrow interfaces and operate in isolation. Unlocking functionality often requires coordinating the

functionality of multiple such stages. These reasons lead to applications running on a general-purpose

IO stack that cannot be tuned to any of their specific needs, or to one-off customized implementations

that require application and system rewrite.

This chapter’s main contribution is experimenting with applying a well-known networking primitive,

routing, to the storage stack. IO routing provides the ability to dynamically change the path and

destination of an IO, like a read or write, at runtime. Control plane applications use IO routing to

provide customized data plane functionality for tenants and data center services.

Consider three specific examples of how routing is useful. In one example, a load balancing service

selectively routes write requests to go to less-loaded servers, while ensuring read requests are always

routed to the latest version of the data (Section 6.5.1). In another example, a control application

provides per-tenant throughput versus latency tradeoffs for replication update propagation, by using IO

routing to set a tenant’s IO read- and write-set at runtime (Section 6.5.2). In a third example, a control

application can route requests to per-tenant caches to maintain cache isolation (Section 6.5.3).

IO routing is challenging because the storage stack is stateful. Routing a write IO through one path

to endpoint A and a subsequent read IO through a different path or to a different endpoint B needs to

55



Chapter 6. Treating the Storage Stack Like a Network 56

be mindful of application consistency needs. Another key challenge is data plane efficiency. Changing

the path of an IO at runtime requires picking a point on the data plane the path is changed in order to

minimize the number of hops an IO takes, as well as to minimize IO processing times.

sRoute’s approach builds on the IOFlow storage architecture [147]. IOFlow already provides a

separate control plane for storage traffic and a logically centralized controller with global visibility over

the data center topology. As an analogy to networking, sRoute builds on IOFlow just like software-defined

networking (SDN) functions build on OpenFlow [87]. IOFlow also made a case for request routing.

However, it only explored the concept of bypassing stages along the IO path, and did not consider the

full IO routing spectrum where the path and endpoint can also change, leading to consistency concerns.

This chapter provides a complete routing abstraction.

This chapter makes the following contributions:

• We propose an IO routing abstraction for the IO stack.

• sRoute provides per-IO and per-flow routing configuration updates with strong semantic guaran-

tees.

• sRoute provides an efficient control plane. It does so by distributing the control plane logic required

for IO routing using delegate functions.

• We report on our experience in building three control applications using IO routing: tail latency

control, replica set control, and file caching control.

The results of our evaluation demonstrate that data center tenants benefit significantly from IO

stack customization. The benefits can be provided to today’s unmodified tenant applications and VMs.

Furthermore, writing specialized control applications is straightforward because they use a common IO

routing abstraction.

6.2 Background

The data plane, or IO stack comprises all the stages an IO request traverses from an application until it

reaches its destination. For example, a read to a file will traverse a guest OS’ file system, buffer cache,

scheduler, then similar stages in the hypervisor, followed by OSes, file systems, caches and device drivers

on remote storage servers. We define per-IO routing in this context as the ability to control the IO’s

endpoint as well as the path to that endpoint. The first question is what the above definition means for

storage semantics. A second question is whether IO routing is a useful abstraction.

To address the first question, we looked at a large set of storage system functionalities and distilled

from them three types of IO routing that make sense semantically in the storage stack. Figure 6.1

illustrates these three types. In endpoint routing, IO from a source p to a destination file X is routed to

another destination file Y . In waypoint routing, IOs from sources p and r to a file X are first routed to

a specialized stage W . In scatter routing, IOs from p and r are routed to a subset of data replicas.

This chapter makes the case that IO routing is a useful abstraction. We show that many specialized

functions on the storage stack can be recast as routing problems. Our hypothesis when we started this

work was that, because routing is inherently programmable and dynamic, we could substitute hard-coded

one-off implementations with one common routing core. Table 6.1 shows a diverse set of such storage

stack functionalities, categorized according to the type of IO routing that enables them.
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Figure 6.1: Three types of IO routing: endpoint, waypoint and scatter. p, r refer to sources such as
VMs or containers. X,Y, Z are endpoints such as files. W represents a waypoint stage with specialized
functionality, for example a file cache or scheduler.

Functionality How IO routing helps

Endpoint Tail latency control Route IO to less loaded servers
Copy-on-write Route writes to new location
File versioning Route IO to right version

Waypoint Cache size guarantee Route IO to specialized cache
Deadline policies Route IO to specialized scheduler

Scatter Maximize throughput Route reads to all replicas
Minimize latency Route writes to replica subset
Logging/Debugging Route selected IOs to loggers

Table 6.1: Examples of specialized functionality and the type of IO routing that enables them.

Endpoint routing. Routes IO from a multi-source application {p, r} to a file X to another file

Y . The timing of the routing and operation semantics is dictated by the control logic. For example,

write requests could go to the new endpoint and reads could be controlled to go to the old or new

endpoints. Endpoint routing enables functionality such as improving tail latency [33, 101], copy-on-

write [107, 57, 122], file versioning [93], and data re-encoding [2]. These policies have in common the

need for a dynamic mechanism that changes the endpoint of new data and routes IO to the appropriate

endpoint. Section 6.5.1 shows how we implement tail latency control using endpoint routing.

Waypoint routing. Routes IO from a multi-source application {p, r} to a file X through an

intermediate waypoint stage W . W could be a file cache or scheduler. Waypoint routing enables

specialized appliance processing [129]. These policies need a dynamic mechanism to inject specialized

waypoint stages or appliances along the stack and to selectively route IO to those stages. Section 6.5.3

shows how we implement file cache control using waypoint routing.

Scatter routing. Scatters IO from file X to additional endpoints Y and Z. The control logic dictates

which subset of endpoints to read data from and write data to. Scatter routing enables specialized

replication and erasure coding policies [145, 78], as well as interactive logging and debugging of the storage

stack[9, 132, 45]. These policies have in common the need for a dynamic mechanism to choose which

endpoint to write to and read from. This control enables programmable tradeoffs around throughput

and update propagation latency. Section 6.5.2 shows how we implement replica set control using scatter

routing.

6.2.1 Challenges

IO routing is challenging for several reasons:
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Consistent system-wide configuration updates. IO routing requires a control-plane mechanism

for changing the path of an IO request. The mechanism needs to coordinate the forwarding rules inserted

into the data plane to change the path of IOs. Any configuration changes must not lead to system

instability, where an IO’s semantic guarantees are violated by having it flow through an incorrect path.

Metadata consistency. IO routing allows read and write IOs to be sent to potentially different

endpoints. Several applications benefit from this flexibility. Some applications, however, have stricter

consistency requirements and require, for example, that a read always follow the path of a previous

write. A challenge is keeping track of the data’s latest location. Furthermore, IO routing metadata

needs to coexist consistently with metadata in the rest of the system. The guest file system, for example,

has a mapping of files to blocks and the hypervisor has a mapping of blocks to virtual disks on an (often)

remote storage backend. The backend could be a distributed system of its own with a metadata service

mapping files or chunks to file systems to physical drives.

File system semantics. Some file system functionality (such as byte-range file locking when

multiple clients access the same file) depends on consulting file system state to determine the success

and semantics of individual IO operations. The logic and state that dictates the semantics of these

operations resides inside the file system, at the destination endpoint of these IOs. IO routing needs to

maintain the same file system functionality and semantics in the storage stack.

Efficiency. Providing IO stack customization requires a different way of building specialized func-

tionality. We move away from an architecture that hard-codes functionality on the IO stack to an

architecture that dynamically directs IOs to specialized stages. Any performance overheads incurred

must be minimal.

6.3 Design
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Figure 6.2: System architecture. sSwitches can route IO within a physical machine’s IO stack and across
machines over the network.

Figure 6.2 shows sRoute’s architecture. It is composed of sSwitches on the data plane, that change

the route of IOs according to forwarding rules. sSwitches are programmable through a simple API with

four calls shown in Table 6.2. The sSwitches forward IOs to other file destinations, the controller, or to

specialized stages (e.g., one that implements a particular caching algorithm). A control plane with
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a logically-centralized controller specifies the location of the sSwitches and inserts forwarding rules in

them. Specialized stages take an IO as an input, perform operations on its payload and return the IO

back to the sSwitch for further forwarding.

6.3.1 Baseline architecture

The baseline system architecture our design builds on is that of an enterprise data center. Each tenant is

allocated VMs or containers1 and runs arbitrary applications or services in them. Network and storage

are virtualized and VMs are unaware of their topology and properties.

The baseline system is assumed to already have separate control and data planes and builds on the

IOFlow architecture [147]. That architecture provides support for flow-based classification and queuing

and communication of basic per-flow statistics to a controller.

6.3.2 Design goals

sRoute’s design targets several goals. First, we want a solution that does not involve application or VM

changes. Applications have limited visibility of the data center’s IO stack. This chapter takes the view

that data center services are better positioned for IO stack customization. These are then exposed to

applications through new types of service level agreements (SLA), e.g., guaranteeing better throughput

and latency. Second, data-plane performance overheads should be minimal. Third, the control plane

should be flexible and allow for a diverse set of application policies.

The rest of this section focuses on the sSwitches and the control plane interfaces to them. Section 6.4

presents implementation details. Section 6.5 focuses on control applications. Figure 6.3 provides the

construct definitions used in the rest of the chapter.

6.3.3 sSwitches on the data plane

An sSwitch is a special stage that is inserted into the IO stack (data plane) to provide IO routing. An

sSwitch forwards IO according to rules specified by the control plane. A forwarding rule contains two

parts: an IO header and an action or delegate function2. IO packets are matched against the IO header,

and the associated delegate in the first successful rule match executes (hence, the order of installed

rules matters). In the simplest form, this delegate returns a set of stages where the IO should next be

directed. For example, routing all traffic from VM1 for file X on server S1 to file Y on server S2 can be

represented with this rule:

1: < VM1, ∗, //S1/X >→ (; return{< IO, //S2/Y >})

An sSwitch implements four control plane API calls as shown in Table 6.2. The APIs allow the

control plane to Insert a forwarding rule, or Delete it. Rules can be changed dynamically by two

entities on the control plane: the controller, or a control Delegate function.

As defined in Figure 6.3, the IO header is a tuple containing the source of an IO, the operation,

and the file affected. The source of an IO can be a process or a VM uniquely authenticated through

1This chapter’s implementation uses VMs.
2The reason the second part of the rule is a function (as opposed to simply a set of routing locations) is for control

plane efficiency in some situations, as is explained further in this section.
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Insert (IOHeader, Delegate)
Creates a new fwd. rule matching the IO header,
using dynamic control delegate to look up destination
Delete (IOHeader)
Deletes all rules matching the header
Quiesce (IOHeader, Boolean)
Blocks or unblocks incoming IO matching IO header
when Boolean is true or false respectively
Drain (IOHeader)
Drains all pending IOs matching the IO header

Table 6.2: Control API to the sSwitch.

Rule := IOHeader → Delegate(IOHeader)
IOHeader := < Source,Operation, F ile >
Delegate := F (IOHeader); return{Detour}
Source := Unique Security Identifier
Operation := read|write|create|delete
File := < FileName,Offset, Length >
Detour := < IO|IOHeader,DetourLoc >
DetourLoc := File|Stage|Controller
Stage := < HostName,DriverName >
F := Restricted code

Figure 6.3: Construct definitions.

a security identifier. The destination is a file in a (possibly remote) share or directory. Building on

IOFlow’s classification mechanism [147] allows an sSwitch to have visibility over all this information and

other relevant IO header entries at any point in the IO stack (without IOFlow, certain header entries

such as the source, could be lost or overwritten as IO flows through the system).

The operation can be one of read, write, create or delete. Wildcards and longest prefix matching

can be used to find a match on the IO header. A default match rule sends an IO to its original destination.

A detour location could be a file (e.g., another file on a different server from the original IO’s destination),

a stage on the path to the endpoint (example rule 1 below), or the centralized controller (example rule

2 below that sends the IO header for all writes from VM2 to the controller):

1: < VM1, ∗, //S1/X >→ (; return{< IO, //S2/C >})

2: < VM2, w, ∗ >→ (; return{< IOHeader, Controller >})

The sSwitch is responsible for transmitting the full IO or just its header to a set of stages. The

response does not have to flow through the same path as the request, as long as it reaches the initiating

source3.

Unlike in networking, the sSwitch needs to perform more work than just forwarding. It also needs

to prepare the endpoint stages to accept IO, which is unique to storage. When a rule is first installed,

the sSwitch needs to open a file connection to the endpoint stages, in anticipation of IO arriving. The

sSwitch needs to create it and take care of any namespace conflicts with existing files. Open and create

operations are expensive synchronous metadata operations. There is an inherent tradeoff between lazy

3sSwitches cannot direct IO responses to sources that did not initiate the IO. Finding scenarios that need such source
routing and the mechanism for doing so is future work.
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file creation upon the first IO arriving and file creation upon rule installation. The former avoids

unnecessarily creating files for rules that do not have any IO matching them, but upon a match the first

IO incurs a large latency. The latter avoids the latency but could create several empty files. The exact

tradeoff penalties depend on the file systems used. By default this chapter implements the latter, but

ideally this decision would also be programmable (but it is not so yet.)

sSwitches implement two additional control plane APIs. A Quiesce call is used to block any further

requests with the same IO header from propagating further. The implementation of this call builds on

the lower-level IOFlow API that sets the token rate on a queue [147]. Drain is called on open file handles

to drain any pending IO requests downstream. Both calls are synchronous. These calls are needed to

change the path of IOs in a consistent manner, as discussed in the next section.

6.3.4 Controller and control plane

A logically centralized controller has global visibility over the stage topology of the data center. This

topology comprises all physical servers, network and storage components as well as the software stages

within a server. Maintaining this topology in a fault-tolerant manner is already feasible today [63].

The controller is responsible for three tasks. First, it takes a high level tenant policy and translates

it into sSwitch API calls. Second, it decides where to insert the sSwitches and specialized stages in the

IO stack to implement the policy. Third, it disseminates the forwarding rules to the sSwitches. We show

these tasks step-by-step for two simple control applications below.

The first control application directs a tenant’s IO to a specialized file cache. This policy is part of

a case study detailed in Section 6.5.3. The tenant is distributed over 10 VMs on 10 different hypervisors

and accesses a read-only dataset X . The controller forwards IO from this set of VMs to a specialized

cache C residing on a remote machine connected to the hypervisors through a fast RDMA network.

The controller knows the topology of the data paths from each VM to C and injects sSwitches at each

hypervisor. It then programs each sSwitch as follows:

1: for i← 1, 10 do

2: Quiesce (< VMi, *, //S1/X>, true)

3: Drain (< VMi, *, //S1/X>)

4: Insert (< VMi, *, //S1/X>, (; return {<IO, //S2/C>}))

5: Quiesce (< VMi, *, //S1/X>, false)

Lines 2 and 3 are needed to complete any IOs in-flight. This is done so that the sSwitch does not

need to keep any extra metadata to know which IOs are on the old path. That metadata would be

needed, for example, to route a newly arriving read request to the old path since a previous write

request might have been buffered in an old cache on that path. The delegate on line 4 simply returns

the cache stage. Finally, line 5 unblocks IO traffic. The controller also injects an sSwitch at server S2

where the specialized cache resides, so that any requests that miss in cache are sent further to the file

system of server S1. The rule at S2 matches IOs from C for file X and forwards them to server S1:

1: Insert (< C, *, //S1/X>, (; return {<IO, //S1/X>}))

The second control application improves a tenant’s tail latency and illustrates a more complex

control delegate. The policy states that queue sizes across servers should be balanced. This policy is
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part of a case study detailed in Section 6.5.1. When a load burst arrives at a server S1 from a source

VM1 the control application decides to temporarily forward that load to a less busy server S2. The

controller can choose to insert an sSwitch in the VM1’s hypervisor or at the storage server S1. The

latter means that IOs go to S1 as before and S1 forwards them to S2. To avoid this extra network hop

the controller chooses the former. It then calls the following functions to insert rules in the sSwitch:

1: Insert (<VM1, w, //S1/X>, (F(); return <IO, //S2/X>))

2: Insert (<VM1, r, //S1/X>, (return <IO, //S1/X>))

The rules specify that writes “w” are forwarded to the new server, whereas reads “r” are still

forwarded to the old server. This application demands that reads return the latest version of the data.

When subsequently a write for the first 512 KB of data arrives4, the delegate function updates the read

rule through function F () whose body is shown below:

1: Delete (<VM1, r, //S1/X>)

2: Insert (<VM1, r, //S1/X, 0, 512KB >, (return <IO, //S2/X>))

3: Insert (<VM1, r, //S1/X>, (return <IO, //S1/X>)

Note that quiescing and draining are not needed in this scenario since the sSwitch is keeping the

metadata necessary (in the form of new rules) to route a request correctly. A subsequent read for a

range between 0 and 512 KB will match the rule in line 2 and will be sent to S2. Note that sSwitch

matches on byte ranges as well, so a read for a range between 0 and 1024 KB will be now split into two

reads. The sSwitch maintains enough buffer space to coalesce the responses.

Delegates

The above examples showed instances of control delegates. Control delegates are restricted control

plane functions that are installed at sSwitches for control plane efficiency. In the second example above,

the path of an IO depends on the workload. Write requests can potentially change the location of a

subsequent read. One way to handle this would be for all requests to be sent by the sSwitch to the

controller using the following alternate rules and delegate function:

1: Insert (<VM1, w, //S1/X>, (return <IO, Controller>))

2: Insert (<VM1, r, //S1/X>, (return <IO, Controller>))

The controller would then serialize and forward them to the appropriate destination. Clearly, this is

inefficient, bottlenecking the IO stack at the controller. Instead, the controller uses restricted delegate

functions that make control decisions locally at the sSwitches.

This chapter assumes a non-malicious controller, however the design imposes certain functionality

restrictions on the delegates to help guard against accidental errors. In particular, delegate functions

may only call the APIs in Table 6.2 and may not otherwise keep or create any other state. They may

insert or delete rules, but may not rewrite the IO header or IO data. That is important since the IO

header contains entries such as source security descriptor that are needed for file access control to work

in the rest of the system. These restrictions allow us to consider the delegates as a natural extension of

the centralized controller. Simple programming language checks and passing the IO as read-only to the

delegate enforce these restrictions.

4The request’s start offset and data length are part of the IO header.
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6.3.5 Consistent rule updates

Forwarding rule updates could lead to instability in the system. This section introduces the notion

of consistent rule updates. These updates preserve well-defined storage-specific properties. Similar to

networking [119] storage has two different consistency requirements: per-IO and per-flow.

Per-IO consistency. Per-IO consistent updates require that each IO flows either through an old

set of rules or an updated set of rules, but not through a stack that is composed of old and new paths.

The Quiesce and Drain calls in the API in Table 6.2 are sufficient to provide per-IO consistent updates.

Per-flow consistency. Many require a stream of IOs to behave consistently. For example, an

application might require that a read request obtains the data from the latest previous write request.

In cases where the same source sends both requests, then per-IO consistency also provides per-flow

consistency. However, the second request can arrive from a different source, like a second VM in the

distributed system. In several basic scenarios, it is sufficient for the centralized controller to serialize

forwarding rule updates. The controller disseminates the rules to all sSwitches in two phases. In the

first phase, the controller quiesces and drains requests going to the old paths and, in the second phase,

the controller updates the forwarding rules.

However, a key challenge are scenarios where delegate functions create new rules. This complicates

update consistency since serializing these new rules through the controller is inefficient when rules are

created frequently (e.g., for every write request). In these cases, control applications attempt to provide

all serialization through the sSwitches themselves. They do so as follows. First, they consult the topology

map to identify points of serialization along the IO path. The topology map identifies common stages

among multiple IO sources on their IO stack. For example, if two clients are reading and writing to the

same file X , the control application has the option of inserting two sSwitches with delegate functions

close to the two sources to direct both clients’ IOs to Y . This option is shown in Figure 6.4(a). The

sSwitches would then need to use two-phase commit between themselves to keep rules in sync, as shown

in the Figure. This localizes updates to participating sSwitches, thus avoiding the need for the controller

to get involved.
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Figure 6.4: Three possible options for placing sSwitches for consistent rule updates. Either can be chosen
programmatically at runtime.

A second option would be to insert a single sSwitch close to X (e.g., at the storage server) that

forwards IO to Y . This option is shown in Figure 6.4(b). A third option would be to insert an sSwitch

at Y that forwards IO back to X if the latest data is not on Y . This type of forwarding rule can be

thought of as implementing backpointers. Note that two additional sSwitches are needed close to the

source to forward all traffic, i.e., reads and writes, to Y , however these sSwitches do not need to perform
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two-phase commit. The choice between the last two options depends on the workload. If the control

application expects that most IO will go to the new file the third option would eliminate an extra network

hop.

6.3.6 Fault tolerance and availability

This section analyzes new potential risks on fault tolerance and availability induced by our system. Data

continues to be N-way replicated for fault tolerance and its fault tolerance is the same as in the original

system.

First, the controller service is new in our architecture. The service can be replicated for availability

using standard Paxos-like techniques [76]. If the controller is temporarily unavailable, the implication

on the rest of the system is at worst slower performance, but correctness is not affected. For example,

IO that matches rules that require transmission to the controller will be blocked until the controller

recovers.

Second, our design introduces new metadata in the form of forwarding rules at sSwitches. It is a

design goal to maintain all state at sSwitches as soft-state to simplify recovery — also there are cases

where sSwitches do not have any local storage available to persist data. The controller itself persists

all the forwarding rules before installing them at sSwitches. The controller can choose to replicate the

forwarding rules, e.g., using 3-way replication (using storage space available to the controller —either

locally or remotely).

However, forwarding rules created at the control delegates pose a challenge because they need persist-

ing. sRoute has two options to address this challenge. The first is for the controller to receive all delegate

updates synchronously, ensure they are persisted and then return control to the delegate function. This

option involves the controller on the critical path. The second option (the default) is for the delegate

rules to be stored with the forwarded IO data. A small header is prepended to each IO containing the

updated rule. On sSwitch failure, the controller knows to which servers IO has been forwarded, and

recovers all persisted forwarding rules from them.

Third, sSwitches introduce new code along the IO stack, thus increasing its complexity. When

sSwitches are implemented in the kernel (see Section 6.4), an sSwitch failure may cause the entire server

to fail. We have kept the code footprint of sSwitches small and we plan to investigate software verification

techniques in the future to guard against such failures.

6.3.7 Design limitations

In the course of working with sRoute we have identified several current limitations:

• The behaviour and semantics of some file system operations (e.g., file locking) is determined by

state stored inside the file system. Because IO routing is done inside the storage stack, above the

file system layer, maintaining the semantics of these operations introduces extra complexity to our

design. Currently there are two solutions to maintaining the semantics of these operations: i) the

state can remain in the file system at the original endpoint, and sSwitches can issue RPCs to query

it as IOs flow through the system (naturally, this is not desirable due to the extra communication

overhead per IO) or ii) when an sSwitch begins routing a flow, the relevant file system state can be

pushed into the sSwitch, and subsequently maintained there, such that the sSwitch can maintain

the desired semantics for subsequent incoming IOs.
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• IO routing is currently done in the IO stack, without application involvement or application seman-

tics taken into account. While this is sufficient for most of the functionality described here, other

functionality may require some amount of application involvement (or knowledge of application

semantics) to maintain correctness. For example, performing a backup requires obtaining a con-

sistent snapshot of the application. Storage policies implemented using sRoute that interact with

such functionality may require more information about application state, and potentially direct

cooperation from the application.

6.4 Implementation

An sSwitch is implemented partly in kernel-level and partly in user-level. The kernel part is written

in C and its functionality is limited to partial IO classification through longest prefix matching and

forwarding within the same server. The user-level part is written in C#, and implements further sub-

file-range classification using hash tables. It also implements forwarding IO to remote servers. An

sSwitch is a total of 25 kLOC.

Routing within a server’s IO stack. Our implementation makes use of the filter driver archi-

tecture in Windows [96]. Each filter driver implements a stage in the kernel and is uniquely identified

using an altitude ID in the IO stack. The kernel part of the sSwitch automatically attaches control code

to the beginning of each filter driver processing. Bypassing a stage is done by simply returning from the

driver early. Going through a stage means going through all the driver code.

Routing across remote servers. To route an IO to an arbitrary remote server’s stage, the kernel

part of the sSwitch first performs an upcall sending the IO to the user-level part of the sSwitch. That

part then transmits the IO to a remote detour location using TCP or RDMA (default) through the SMB

file system protocol. On the remote server, an sSwitch intercepts the arriving packet and routes it to a

stage within that server.

sSwitch and stage identifiers. An sSwitch is a stage and has the same type of identifier. A stage

is identified by a server host name and a driver name. The driver name is a tuple of <device driver name,

device name, altitude>. The altitude is an index into the set of drivers or user-level stages attached to

a device.

Other implementation details. For the case studies in this chapter, it has been sufficient to inject

one sSwitch inside the Hyper-V hypervisor in Windows and another on the IO stack of a remote storage

server just above the NTFS file system using file system filter drivers [96]. Specialized functionality is

implemented entirely in user-level stages in C#. For example, we have implemented a user-level cache

(Section 6.5.3). The controller is also implemented in user-level and communicates with both kernel-

and user-level stages through RPCs over TCP.

Routing happens on a per-file basis, at block granularity. Our use cases do not employ any semantic

information about the data stored in each block. For control applications that require such information,

the functionality would be straightforward to implement, using miniport [94] drivers, instead of filter

drivers.

Applications and VMs always run unmodified on our system. However, some applications pass

several static hints such as “write through” to the OS using hard-coded flags. The sSwitches intercept

open/create calls and can change these flags. In particular, for specialized caching (Section 6.5.3) the

sSwitches disable OS caching by specifying Write-through and No-buffering flags. Caching is then
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implemented through the control application. To avoid namespace conflict with existing files, sRoute

stores files in a reserved “sroute-folder” directory on each server. That directory is exposed to the cluster

as an SMB share writable by internal processes only.

Implementation limitations. A current limitation of the implementation is that sSwitches cannot

intercept individual IO to memory mapped files. However, they can intercept bulk IO that loads a file

to memory and writes pages to disk, which is sufficient for most scenarios.

Another current limitation of our implementation is that it does not support byte-range file locking

for multiple clients accessing the same file, while performing endpoint routing. The state to support

this functionality is kept in the file system, at the original endpoint of the flow. When the endpoint is

changed, this state is unavailable. To support this functionality, there are two alternatives, as described

in Section 6.3.7.
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Figure 6.5: Current performance range of an sSwitch.

The performance range of the current implementation of an sSwitch is illustrated in Figure 6.5. This

throughput includes passing an IO through both kernel and user-level. Two scenarios are shown. In

the “Only IO routed” scenario, each IO has a routing rule but an IO’s response is not intercepted by

the sSwitch (the response goes straight to the source). In the “Both IO and response routed” scenario

both an IO and its response are intercepted by the sSwitch. Intercepting responses is important when

the response needs to be routed to a non-default source as well (one of our case studies for caches in

Section 6.5.3 requires response routing). Intercepting an IO’s response in Windows is costly (due to

interrupt handling logic beyond the scope of this chapter) and the performance difference is a result of

the OS, not of the sSwitch. Thus the performance range for small IO is between 50,000-180,000 IOPS

which makes sSwitches appropriate for an IO stack that uses disk or SSD backends, but not yet a

memory-based stack.

6.5 Control applications

This section makes three points. First, we show that a diverse set of control applications can be built

on top of IO routing. Thus, we show that the programmable routing abstraction can replace one-off
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Figure 6.6: Load on three Exchange server volumes showing load imbalances.

hardcoded implementations. We have built and evaluated three control applications implementing tail

latency control, replica set control and file cache control. These applications cover each of the detouring

types in Table 6.1. Second, we show that tenants benefit significantly from the IO customization provided

by the control applications. Third, we evaluate data and control plane performance.

Testbed. The experiments are run on a testbed with 12 servers, each with 16 Intel Xeon 2.4 GHz

cores, 384 GB of RAM and Seagate Constellation 2 disks. The servers run Windows Server 2012 R2

operating system and can act as either Hyper-V hypervisors or as storage servers. Each server has a

40 Gbps Mellanox ConnectX-3 NIC supporting RDMA and connected to a Mellanox MSX1036B-1SFR

switch.

Workloads. We use three different workloads in this section. The first is TPC-E [152] running over

unmodified SQL Server 2012 R2 databases. TPC-E is a transaction processing OLTP workload with

small IO sizes. The second workload is a public IO trace from an enterprise Exchange email server [133].

The third workload is IoMeter [62], which we use for controlled micro-benchmarks.

6.5.1 Tail Latency Control

Tail latency in data centers can be orders of magnitude higher than average latency leading to applica-

tion unresponsiveness [33]. One of the reasons for high tail latency is that IOs often arrive in bursts.

Figure 6.6 illustrates this behavior in publicly available Exchange server traces [133], showing traffic to

three different volumes of the Exchange trace. The difference in load between the most loaded volume

and the least loaded volume is two orders of magnitude and lasts for more than 15 minutes.

Data center providers have load balancing solutions for CPU and network traffic [51]. IO to storage

on the other hand is difficult to load balance at short timescales because it is stateful. An IO to an

overloaded server S must go to S since it changes state there. The first control application addresses

the tail latency problem by temporarily forwarding IOs from loaded servers onto less loaded ones while

ensuring that a read always accesses the last acknowledged update. This is a type of endpoint routing.

The functionality provided is similar to Everest [101] but written as a control application that decides
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when and where to forward to based on global system visibility.

The control application attempts to balance queue sizes at each of the storage servers. To do so, for

each storage server, the controller maintains two running averages based on stats it receives5: ReqAvg,

and ReqRec. ReqAvg is an exponential moving average over the last hour. ReqRec is an average over a

sliding window of one minute, meant to capture the workload’s recent request rate. The controller then

temporarily forwards IO if:

ReqRec > αReqAvg

where α represents the relative increase in request rate that triggers the forwarding. We evaluate the

impact of this control application on the Exchange server traces shown in Figure 6.6, but first we show

how we map this scenario into forwarding rules.

There are three flows in this experiment. Three different VMs VMmax, VMmin and VMmed on

different hypervisors access one of the three volumes in the trace “Max”, “Min” and “Median”. Each

volume is mapped to a VHD file V HDmax, V HDmin and V HDmed residing on three different servers

Smax, Smin and Smed respectively. When the controller detects imbalanced load, it forwards write IOs

from the VM accessing Smax to a temporary file T on server Smin:

1: 1 :< ∗, w, //Smax/V HDmax >→ (F (); return < IO, //Smin/T >)

2: 2 :< ∗, r, //Smax/V HDmax >→ (return < IO, //Smax/V HDmax >)

Read IOs follow the path to the most up-to-date data, whose location is updated by the delegate

function F () as the write IOs flow through the system. We showed how F () updates the rules in

Section 6.3.4. Thus, the forwarding rules always point a read to the latest version of the data. If no

writes have happened yet, all reads by definition go to the old server VMmax.

The control application may also place a specialized stage O in the new path that implements an

optional log-structured layout that converts all writes to streaming writes by writing them sequentially

to Smin. The layout is optional since SSDs already implement it internally and it is most useful for

disk-based backends. The control application inserts a rule forwarding IO from the VM first to O (rule

1 below), and another to route from O to Smin (rule 2).

1: 1 :< ∗, ∗, //Smax/V HDmax >→ (return < IO, //Smin/O >)

2: 2 :< O, ∗, //Smax/V HDmax >→ (return < IO, //Smin/T )

Note that in this example data is partitioned across VMs and no VMs share data. Hence, the delegate

function in the sSwitch is the only necessary point of metadata serialization in system. This is a simple

version of case (a) in Figure 6.4 where sSwitches do not need two-phase commit. The delegate metadata

is temporary. When the controller detects that a load spike has ended, it triggers data reclaim. All

sSwitch rules for writes are changed to point to the original file V HDmax. Note that read rules still

point to T until new arriving writes overwrite those rules to point to V HDmax through their delegate

functions. The controller can optionally speed up the reclaim process by actively copying forwarded

data to its original location. When the reclaim process ends, all rules can be deleted, the sSwitches and

specialized stage removed from the IO stack, since all data resides in and can be accessed again from

the original server Smax.

We experiment by replaying the Exchange traces using a time-accurate trace replayer on the disk-

based testbed. We replay a 30 minute segment of the trace, capturing the peak interval and allowing

5The controller uses IOFlow’s getQueueStats API [147] to gather system-wide statistics for all control applications.
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Figure 6.7: CDF of response time for baseline system and with IO routing.

for all forwarded data to be reclaimed. We also employ a log-structured write optimization stage that

converts all writes to sequential writes. Figure 6.7 shows the results. IO routing results in two orders of

magnitude improvements in tail latency for the flow to Smax. The change latency distribution for Smin

(not shown) is negligible.

Overheads. 2.8 GB of data was forwarded and the delegate functions persisted approximately

100,000 new control plane rules with no noticeable overhead. We experimentally triggered one sSwitch

failure, and measured that it took approximately 30 seconds to recover the rules from the storage server.

The performance benefit obtained is similar to specialized implementations [101]. The CPU overhead

at the controller was less than 1%.

6.5.2 Replica set control

No one replication protocol fits all workloads [2, 145, 78]. Data center services tend to implement one

particular choice (e.g, primary-based serialization) and offer it to all workloads passing through the stack

(e.g., [17]). One particularly important decision that such an implementation hard-codes is the choice

of write-set and read-set for a workload. The write-set specifies the number of servers to contact for a

write request. The size of the write-set has implications on request latency (a larger set usually means

larger latency). The read-set specifies the number of servers to contact for read requests. A larger

read-set usually leads to higher throughput since multiple servers are read in parallel.

The write- and read-sets need to intersect in certain ways to guarantee a chosen level of consistency.

For example, in primary-secondary replication, the intersection of the write- and read-sets contains just

the primary server. The primary then writes the data to a write-set containing the secondaries. The

request is completed once a subset of the write-set has acknowledged it (the entire write-set by default).

The replica set control application provides a configurable write- and read-set. It uses only scatter

routing to do so, without any specialized stages. In the next experiment the policy at the control

application specifies that if the workload is read-only, then the read-set should be all replicas. However,
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for correct serialization, if the workload contains writes, all requests must be serialized through the

primary, i.e., the read-set should be just the primary replica. In this experiment, the application consists

of 10 IoMeters on 10 different hypervisors reading and writing to a 16 GB file using 2-way primary-based

replication on the disk testbed. IoMeter uses 4 KB random-access requests and each IoMeter maintains

4 requests outstanding.

The control application monitors the read:write ratio of the workload through IOFlow and when it

detects it has been read-only for more than 30 seconds (a configurable parameter) it switches the read-set

to be all replicas. To do that, it injects sSwitches at each hypervisor and sets up rules to forward reads

to a randomly chosen server Srand. This is done through a control delegate that picks the next server

at random. To make the switch between old and new rule the controller firsts quiesces writes, then

drains them. It then inserts the new read-set rule (rule 1):

1: 1 :< ∗, r, //S1/X >→ (F (); return < IO, //Srand/X >)

2: 2 :< ∗, w, ∗ >→ (return < IOHeader, Controller >)

The controller is notified of the arrival of any write requests by the rule (2). The controller then

proceeds to revert the read-set rule, and restarts the write stream.
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Figure 6.8 shows the results. The performance starts high since the workload is in a read-only

state. When the first write arrives at time 25, the controller switches the read-set to contain just the

primary. In the third phase starting at time 90, writes complete and read performance improves since

reads do not contend with writes. In the fourth phase at time 125, the controller switches the read-set

to be both replicas, improving read performance by 63% as seen in Figure 6.8(left). The tradeoff is

that the first write requests that arrive incur a latency overhead from being temporarily blocked while

the write is signalled to the controller, as shown in Figure 6.8(right). Depending on the application

performance needs, this latency overhead can be amortized appropriately by increasing the time interval

before assuming the workload is read-only. The best-case performance improvement expected is 2x, but

the application (IoMeter) has a low number of outstanding requests and does not saturate storage in

this example.

Overheads. The control application changes the forwarding rules infrequently at most every 30
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seconds. In an unoptimized implementation, a rule change translated to 418 Bytes/flow for updates

(40 MB for 100,000 flows). The control application received stats every second using 302 Bytes/flow for

statistics (29 MB/s for 100,000 flows). The CPU overhead at the controller is negligible.

6.5.3 File cache control

File caches are important for performance: access to data in the cache is more than 3 orders of magnitude

faster than to disks. A well-known problem is that data center tenants today have no control over the

location of these caches or their policies [4, 41, 19, 137]. The only abstraction the data center provides

to a tenant today is a VMs’s memory size. This is inadequate in capturing all the places in the IO

stack where memory could be allocated. VMs are inadequate even in providing isolation: an aggressive

application within a VM can destroy the cache locality of another application within that VM.

Chapter 5 has explored the programmability of caches on the IO stack, and showed that applications

and cloud providers can greatly benefit from the ability to customize cache size, eviction and write

policies, as well as explicitly control the placement of data in caches along the IO stack. Such explicit

control can be achieved by using filter rules installed in a cache (as shown in Chapter 5). All incoming IO

headers are matched against installed filter rules, and an IO is cached if its header matches an installed

rule. However, this type of simple control only allows IOs to be cached at some point along their fixed

path from the application to the storage server. The ability to route IOs to arbitrary locations in the

system using sSwitches while maintaining desired consistency semantics allows disaggregation of cache

memory from the rest of a workload’s allocated resources.

This next file cache control application provides several IO stack customizations through waypoint

routing. We focus on one here: cache isolation among tenants. Cache isolation in this context means

that a) the controller determines how much cache each tenant needs and b) the sSwitches isolate one

tenant’s cache from another’s. sRoute controls the path of an IO. It can forward an IO to a particular

cache on the data plane. It can also forward an IO to bypass a cache as shown in Figure 6.9.

Cache
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IO Cache
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Cache
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sSwitch
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Figure 6.9: Controller sets path of an IO through multiple cache using forwarding rules in sSwitches.

The experiment uses two workloads, TPC-E and IoMeter, competing for a storage server’s cache.

The storage backend is disks. The TPC-E workload represents queries from an SQL Server database

with a footprint of 10 GB running within a VM. IoMeter is a random-access read workload with IO sizes

of 512KB. sRoute’s policy in this example is to maximize the utilization of the cache with the hit rate

measured in terms of IOPS. In the first step, all IO headers are sent to the controller which computes
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their miss ratio curves using a technique similar to SHARDS [156].

Then, the controller sets up sSwitches so that the IO from IOMeter and from TPC-E go to different

caches CIOMeter and CTPCE with sizes provided by SHARDS respectively (the caches reside at the

storage server):

1: < IOMeter, ∗, ∗ >, (return < IO,CIOMeter >)

2: < TPCE, ∗, ∗ >, (return < IO,CTPCE >)
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Figure 6.10: Maximizing hit rate for two tenants with different cache miss curves.

Figure 6.10 shows the performance of TPC-E when competing with two bursts of activity from the

IoMeter workload, with and without sRoute. When sRoute is enabled (Figure 6.10(b)), total throughput

increases when both workloads run. In contrast, with today’s caching (Figure 6.10(a)) total throughput

actually drops. This is because IoMeter takes enough cache away from TPC-E to displace its working

set out of the cache. With sRoute, total throughput improves by 57% when both workloads run, and

TPC-E’s performance improves by 2x.

Figure 6.10(c) shows the cache allocations output by our control algorithm when sRoute is enabled.

Whenever IoMeter runs, the controller gives it 3/4 of the cache, whereas TPC-E receives 1/4 of the

cache, based on their predicted miss ratio curves. This cache allocation leads to each receiving around

40% cache hit ratio. Indeed, the allocation follows the miss ratio curve that denotes what the working
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set of the TPC-E workload is – after this point diminishing returns can be achieved by providing more

cache to this workload. Notice that the controller apportions unused cache to the TPC-E workload 15

seconds after the IoMeter workload goes idle.

Overheads. The control application inserted forwarding rules at the storage server. Rule changes

were infrequent (the most frequent was every 30 seconds). The control plane uses approximately

178 Bytes/flow for rule updates (17 MB for 100,000 flows). The control plane subsequently collects

statistics from sSwitches and cache stages every control interval (default is 1 second). The statistics are

around 456 Bytes/flow (roughly 43 MB for 100,000 flows). We believe these are reasonable control plane

overheads. Our current method for generating miss ratio curves (a non-optimized variant of SHARDS)

runs offline, and consumes 100% of two cores at the controller.

6.6 Conclusion

This chapter presents sRoute, an architecture that enables an IO routing abstraction, and makes the

case that it is useful. We show that many specialized functions on the storage stack can be recast as

routing problems. Our hypothesis when we started this work was that, because routing is inherently

programmable and dynamic, we could substitute hard-coded one-off implementations with one common

routing core. This chapter shows how sRoute can provide unmodified applications with specialized tail

latency control, replica set control and achieve file cache isolation, all to substantial benefit.



Chapter 7

Conclusion and Future Work

7.1 Conclusion

The world’s computation is moving increasingly into data centers, and digital storage is a crucial part of

this move, as we store the large majority of the data we produce as a species in data center systems. The

ever-increasing demands on these systems for scale and functionality have put significant strain on the

storage stack, leading to a storage stack that is unrealiable and non-performant. This thesis addressed

the main barriers to a storage stack that is suitable for today’s modern data centers, by improving our

understanding of how systems fail in practice and efficient ways of mitigating these failures, as well as

introducing new paradigms for how to build and manage the software in the storage stack.

The key results of this dissertation are as follows:

• Errors in main memory can predominantly be attributed to hard errors, which are highly indicative

of recurring hardware problems. This knowledge needs to be incorporated into future system

designs in order to make systems resilient to memory errors. To this end, page retirement at the

OS level was shown to be a very promising solution that does not necessitate hardware changes.

• Raising temperatures in data centers is a promising way of cutting costs spent on their cooling,

and reducing their carbon emission impact on the environment. However, doing so entails a

performance tradeoff, as many critical system components employ mechanisms to maintain data

integrity. These tradeoffs are highly dependent not only on temperature, but particularly on the

characteristics of individual workloads.

• The lack of configurability and adaptability of the many software stages across the storage stack

can negatively impact application performance, and lead to serious inefficiencies across the stack.

Employing a logically-centralized control plane with global visibility to configure and control these

software stages allows the storage stack to be vertically specialized and dynamically adapted to

workload characteristics, and to different and changing client and cloud provider objectives.

• IO routing is a powerful abstraction that can be used as a programmable primitive to enhance

and implement entirely new functionality in the storage stack. Along with global visibility on the

control plane, and the ability to configure software stages along the stack, this presents a powerful

new paradigm for implementing and managing distributed functionality in the storage stack.

74
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7.2 Future Work

Here, we briefly survey some directions for future work.

• There is more work to be done on making systems resilient to memory errors. In addition to the

reactive policies for page retirement we proposed in Chapter 3, further investigation into more

proactive policies is also warranted. Our study suggests that current memory scrubbers are not

very effective at discovering memory errors, in large part due to their simplistic read-only access

patterns. Evidence (both data and anecdotal) sugests that memory scrubbers need to use realistic

access patterns more akin to a real application’s in order to cause memorry errors to manifest

themselves. One approach would be to proactively quarantine suspicious memory areas (migrating

their contents to new pages), and scheduling active probing of those areas using realistic access

patterns during idle periods, to minimize the impact on system performance. On the mechanism

side, current page retirement mechanisms cannot retire kernel memory pages, where the effects of

errros are arguably more harmful. Our study shows that kernel pages are more likely to develop

errors than application pages, prompting a need for mechanisms that can also mitigate against

errors in kernel space.

• Our initial investigations into software-defined storage showed that our approach can be a powerful

new paradigm for enhancing and implementing distributed storage functionality. But, there are,

of course, several directions for interesting future work.

1. At the moment, sRoute lacks any verification tools that could help programmers. For example,

it is possible to write incorrect control applications that route IOs to arbitrary locations,

resulting in data loss. Thus, the routing flexibility is powerful, but unchecked. There are

well-known approaches in networking, such as header space analysis [70], that we believe

could also apply to storage, but we have not investigated them yet. Similar approaches could

also be used to make sure that routing rules from multiple control applications running on

the same controller co-exist in the system safely, and that they collectively achieve the correct

desired functionality.

2. Software-defined networking has become a well-established field for several years now. As a

research community, we have gained experience with SDN controllers, and following this work

also with SDS controllers. It would also be desirable to have a control plane that understands

both the network and storage. For example, it is currently possible to get inconsistent end-to-

end policies, where the storage controller decides to send data from server A to B, while the

network controller decides to block any data from A going to B. Unifying the control plane

across resources is an important area for future work.

3. Another interesting area of exploration relates to handling policies for storage data at rest.

Currently, sRoute operates on IO as it is flowing through the system. Once the IO reaches its

destination it is considered at rest. It might be advantageous for an sSwitch itself to initiate

data movement for data at rest. That would require new forwarding rule types and make an

sSwitch more powerful.

4. It would also be interesting to explore domain-specific languages, to specify and control storage

functionality built using the lower-level programmable storage primitives explored in this
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thesis. The goal would be to raise the level of abstraction for programmers using our system,

and make it easier to specify storage policies and functionality at a higher level, rather than

directly controlling the lower-level mechanisms used to implement this functionality.
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