
Diss. ETH No 21189

Algorithms and Interfaces
for Real-Time Deformation

of 2D and 3D Shapes

Alec Jacobson

PhD Thesis
May 2013

Diss. ETH No 21189

ALGORITHMS AND INTERFACES
FOR REAL-TIME DEFORMATION OF 2D AND 3D SHAPES

DISSERTATION

Submitted to

ETH ZURICH

for the degree of

DOCTOR OF SCIENCES

presented by

ALEC JACOBSON

M.A., New York University

November 4, 1987

citizen of
The United States of America

accepted on the recommendation of

Prof. Dr. Olga Sorkine-Hornung
Dr. Jovan Popović

Prof. Dr. Mario Botsch

2013

Abstract

This thesis investigates computer algorithms and user interfaces which assist in the process of
deforming raster images, vector graphics, geometric models and animated characters in real
time. Many recent works have focused on deformation quality, but often at the sacrifice of
interactive performance. A goal of this thesis is to approach such high quality but at a fraction
of the cost. This is achieved by leveraging the geometric information implicitly contained in
the input shape and the semantic information derived from user constraints.

Existing methods also often require or assume a particular interface between their algorithm
and the user. Another goal of this thesis is to design user interfaces that are not only ancillary
to real-time deformation applications, but also endowing to the user, freeing maximal creativity
and expressiveness.

This thesis first deals with discretizing continuous Laplacian-based energies and equivalent
partial differential equations. We approximate solutions to higher-order polyharmonic equa-
tions with piecewise-linear triangle meshes in a way that supports a variety of boundary condi-
tions. This mathematical foundation permeates the subsequent chapters. We aim this energy-
minimization framework at skinning weight computation for deforming shapes in real-time
using linear blend skinning (LBS). We add additional constraints that explicitly enforce bound-
edness and later, monotonicity. We show that these properties and others are mandatory for
intuitive response. Through the boundary conditions of our energy optimization and tetrahedral
volume meshes we can support all popular types of user control structures in 2D and 3D. We
then consider the skeleton control structure specifically, and show that with small changes to
LBS we can expand the space of deformations allowing individual bones to stretch and twist
without artifacts. We also allow the user to specify only a subset of the degrees of freedom
of LBS, automatically choosing the rest by optimizing nonlinear, elasticity energies within the
LBS subspace. We carefully manage the complexity of this optimization so that real-time rates

i

are undisturbed. In fact, we achieve unprecedented rates for nonlinear deformation. This opti-
mization invites new control structures, too: shape-aware inverse kinematics and disconnected
skeletons. All our algorithms in 3D work best on volume representations of solid shapes. To en-
sure their practical relevancy, we design a method to segment inside from outside given a shape
represented by a triangle surface mesh with artifacts such as open boundaries, non-manifold
edges, multiple connected components and self-intersections. This brings a new level of robust-
ness to the field of volumetric tetrahedral meshing.

The resulting quiver of algorithms and interfaces will be useful in a wide range of applica-
tions including interactive 3D modeling, 2D cartoon keyframing, detailed image editing, and
animations for video games and crowd simulation.

ii

Zusammenfassung

Diese Dissertation erforscht Computer-Algorithmen und Benutzerschnittstellen, die mit dem
Prozess der Deformation der Vektorgrafiken, der geometrischen Modelle, und der animierten
Figuren helfen. Viele vorgeschlagene Methoden konzentrieren sich auf Deformation-Qualität
ohne Rücksicht auf interaktive Leistung. Ein Ziel dieser Dissertation ist hohe Qualität bei De-
formationen in vernünftigen Rechenzeiten zu bekommen. Wir werden unser Ziel mit der Kom-
bination von der geometrischen Information der Eingabe-Figuren und der semantischen Infor-
mation der vom Benutzer eingegebenen Bedingungen erreichen.

Existierende Methoden brauchen eine spezifische Benutzerschnittstelle zwischen den Algorith-
men und dem Benutzer. Ein anderes Ziel dieser Dissertation ist Benutzerschnittstellen zu erstel-
len, die nicht nur hilfreich für Echtzeit-Deformationen sind, sondern auch maximale Kreativität
und Ausdrucksfähigkeit inspirieren.

Diese Dissertation beginnt mit der Diskretisierung von stetigen Laplacian-basierten Energien
und der äquivalenten partiellen Differentialgleichungen. Wir nähern Lösungen für polyharmo-
nische Gleichungen höherer Ordnungen mit stückweise-linearen Funktionen auf Dreiecksnetze
so an, dass viele Randbedingungen unterstützt werden können. Diese mathematische Grundla-
ge dringt durch die nächsten Kapiteln durch. Wir verwenden diese Energieoptimierung für die
Berechnung von Linear Blend Skinning (LBS) Gewichten. Wir fügen andere Nebenbedingun-
gen hinzu, die die Variablen begrenzen und später Monotonie erzwingen. Wir zeigen, dass diese
und andere Eigenschaften obligatorisch für intuitives Kontrollieren sind. Mit unseren Randbe-
dingungen zur Energieoptimierung und volumetrischen Tetraeder-Netzen unterstützen wir alle
populären Benutzerschnittstellen in 2D und 3D.

Als nächstes betrachten wir die besondere Benutzerschnittstelle für Knochengerüste (skeleton).
Wir zeigen, dass der Raum der möglichen Deformationen durch kleine Änderungen zu LBS er-
weitert werden kann. Einzelne Knochen können ohne Artefakte verdreht und gedehnt werden.

iii

Wir erlauben auch, dass die Benutzerin nur eine Untermenge der Freiheitsgrade der LBS angibt,
und die Übrigen werden automatisch durch eine nichtlineare, elastische Energieoptimierung in
dem Unterraum der LBS erzeugt. Wir gehen mit der Komplexität dieser Optimierung vorsichtig
um, damit wir immer noch in Echtzeit arbeiten können. Auf diese Weise realisieren wir bei-
spiellose Frameraten für Echtzeit Deformationen. Dieses Optimierungsverfahren erlaubt neue
Benutzerschnittstellen wie Formen-bewusste inverse Kinematik und disjunkte Knochengerüste.
Unsere Algorithmen in 3D funktionieren am besten mit volumetrisch festen Formdarstellun-
gen. Für die praktische Relevanz dieser Algorithmen schlagen wir auch eine Methode vor, die
das Innere und das Äussere eines Dreieckenetzes mit Artefakten wie Löcher, vielen zusam-
menhängenden Räumen und nicht-Mannigfaltigen Kanten segmentieren und volumetrisch feste
Forme erzeugen kann. Diese Methode bringt ein neues Maß der Robustheit zur Schaffung von
volumetrischen Tetraeder-Netzen.

Die resultierende Sammlung von Algorithmen und Benutzerschnittstellen ist nützlich für viele
Anwendungen wie interaktive 3D Modellierung, 2D Schlüsselbildanimation, detaillierte Bild-
bearbeitung und Animationen in Videospielen und Gruppensimulationen.

iv

Acknowledgments

This thesis is dedicated to Annie Ytterberg. She is my ambition, my muse, my idol, and my
best friend.

As a child, my mother gave me math homework over the summer breaks and extra homework
during the school year. She always said I would thank her later. I said I never would. Mom,
thank you. I admire my father as a model scientist and researcher. If you can only be smarter
by surrounding yourself by people smarter than you, then I am triply lucky to have my brother,
Seth, and my sisters, Tess & Elli.

Thank you, Kendalle Jacobson, for sending me cards all my life, even while I live overseas.
My grandfather, via the ancient philosophy of cynicism, has made my research beliefs more
concrete.

Denis Zorin encouraged me to undertake this PhD and introduced me to my advisor. He has
helped me every step of the way. His openness to new ideas and patience with lesser minds are
inspirational.

My internship with Jovan Popović in David Salesin’s Creative Technologies Lab at Adobe was
a turning point in my research. I am thankful to both for giving me this opportunity. Jovan has
been not just a collaborator and coauthor, but also a role-model, mentor, and advisor.

Thank you, Jovan and Mario Botsch, for refereeing my examination and reviewing my thesis.

I would have published nothing without my coauthors. I have enjoyed collaborating with all of
them: Ladislav Kavan, Ilya Baran, Alex Sorkine-Hornung, Kaan Yücer, Tino Weinkauf, David
Günther, Jan Reininghaus.

I am fortunate to have worked on my PhD in two labs. My years at the Media Research Lab
in the Courant Institute at NYU were formative to my research in many ways. Conversations

v

with Ken Perlin and Murphy Stein kept my mind open and engaged. My officemate, Ofir Weber,
taught me immeasurably. I am also thankful to the others at MRL: Yotam Gingold, James Zhou,
David Harmon, Rob Fergus, Denis Kovacs, Ashish Myles, Yang Song.

When I arrived at ETH Zurich, the Interactive Geometry Lab doubled in size. For those first few
months Markus Gross’s Computer Graphics Lab and the Disney Research Zurich group were
my new families. I am thankful for the welcoming environment cultivated by Markus and his
PhD students, postdocs and researchers: Thomas Oskam, Masi Germann, Tanja Käser, Claudia
Kuster, Jean-Charles Bazin, Tiberiu Popa, Sebi Martin, Peter Kaufman, Barbara Solenthaler,
Tobias Pfaff. I am also thankful to the intellectual coffee breaks with newer members: Alex
Chapiro, Changil Kim, Pascal Bérard, Fabian Hahn, Mélina Skouras. Of course, IGL is growing
now, and I have learned and benefited so much from its members: Olga Diamanti, Daniele
Panozzo, Kenshi Takayama, Emily Whiting, Leo Koller-Sacht.

Many administrators have made my PhD easier. I am thankful to Marianna Berger, Sarah Disch,
Hong Tam and Denise Spicher.

Dr. Željko Bajzer of the Mayo Clinic gave me my first introduction to scientific and mathemat-
ical research.

My friends Brandon Reiss and Dan Leventhal politely listened to my harebrained ideas.

Our papers would be uglier without the help of Maurizio Nitti and Felix Hornung.

I am indebted to my funders: Intel, SNF, Adobe Systems Inc. and the MacCracken Fellowship.

The enormous public database of old photographs provided by US Library of Congress inspires
my research.

I have been fortunate to have the opportunity to discuss my research with many great minds
in computer graphics as they visited our lab. Conversations with Craig Gotsman, Kai Hor-
man, Tamy Boubekeur, Jernej Barbić, Leo Guibas, Pierre Alliez, and Peter Schröder have been
invaluable.

Giving presentations to other groups has been a delight, and I am very thankful to Baoquan
Chen, Konrad Polthier, Remo Ziegler and Enrico Puppo for inviting me into their labs.

I am grateful to fellow researchers who shared their code and kindly responded to requests and
questions throughout my thesis, notably Hang Si, Marco Attene, Scott Schaefer, Pascal Frey,
Philippe Decaudin and Eftychios Sifakis.

I would like to thank all the peer reviewers who anonymously improved my work over the years.
Countless insights are due to perspectives gained while reading our reviewers. Though we often
accommodated required changes begrudgingly at the time, I am confident our publications and
this thesis are better as a result.

Of course, this thesis would not exist without my advisor Olga Sorkine-Hornung. She has
taught me so many things. Her enthusiasm for new research and scientific rigor are reassuring
and inspiring. I am forever thankful to be her student.

vi

Contents

1 Introduction 1
1.1 Shape deformation . 1
1.2 Organization . 4

2 Mathematical foundation 5
2.1 Dirichlet energy and the Laplace equation . 5

2.1.1 Neumann boundary conditions . 8
2.1.2 Cotangent weights . 9

Tetrahedral volume meshes . 11
A law of sines for tetrahedra . 12
Relationship to finite differences . 14

2.1.3 Mass matrix . 14
Quadrature rules . 15
Reference element . 16
Lumping . 17

2.2 Constrained optimization . 18
2.2.1 Constant equality constraints . 19
2.2.2 Linear equality constraints . 19

LU decomposition via two Cholesky decompositions 20
Weak constraints via quadratic penalty functions 22

2.2.3 Linear inequality constraints and the active set method 23
2.2.4 Conic programming . 25

Conversion from quadratic to conic program 27

3 Mixed finite elements for variational surface modeling 29

vii

Contents

3.1 Introduction . 29
3.2 Previous work . 31
3.3 Model problems . 32

3.3.1 Low-order decomposition . 33
3.3.2 Boundary condition types . 34

3.4 Mixed finite element discretization . 37
3.4.1 Laplacian energy & biharmonic equation 37
3.4.2 Laplacian gradient energy & triharmonic equation 40

3.5 Evaluation and applications . 43
3.6 Conclusions . 47
3.7 Appendix: Ciarlet-Raviart discretization and region boundary conditions 49
3.8 Appendix: Reproducing the Three Pipes . 50

3.8.1 Parametric domain . 51
3.8.2 Boundary conditions . 52

4 Bounded biharmonic weights for real-time deformation 55
4.1 Introduction . 55
4.2 Previous work . 57
4.3 Bounded biharmonic weights . 58

4.3.1 Formulation . 60
4.3.2 Comparison to existing schemes . 63
4.3.3 Shape preservation . 63
4.3.4 Implementation . 64

4.4 Results . 67
4.5 Conclusion . 72
4.6 Appendix: Equivalence of higher order barycentric coordinates and LBS 74
4.7 Appendix: Relationship to precomputed bases 75
4.8 Appendix: A cotangent Laplacian for images as surfaces 83
4.9 Appendix: Bijective mappings with barycentric coordinates — a counterexample 86

5 Smooth shape-aware functions with controlled extrema 89
5.1 Introduction . 89
5.2 Background . 91
5.3 Method . 95

5.3.1 Ideal optimization . 96
5.3.2 Constraint simplification . 96
5.3.3 Choice of representative function . 97
5.3.4 Implementation . 99

5.4 Experiments and results . 102
5.5 Limitations and future work . 105
5.6 Conclusion . 106
5.7 Appendix: Conversion to conic programming 106
5.8 Appendix: Iterative convexifiction . 107

6 Stretchable and twistable bones for skeletal shape deformation 111
6.1 Introduction . 111
6.2 Stretchable, twistable bones . 117

viii

Contents

6.2.1 Dual-quaternion skinning . 118
6.2.2 Properties of good endpoint weights 119
6.2.3 Defining endpoint weights . 121

6.3 Implementation and results . 124
6.4 Conclusion . 125

7 Fast automatic skinning transformations 127
7.1 Introduction . 127
7.2 Related work . 129
7.3 Method . 132

7.3.1 Automatic degrees of freedom . 133
7.3.2 Rotation clusters . 137
7.3.3 Additional weight functions . 138

7.4 Results . 140
7.5 Limitations and future work . 145
7.6 Conclusion . 146
7.7 Appendix: Physically based dynamics . 146

7.7.1 ARAP with dynamics . 146
7.7.2 Reduction . 148

8 Robust inside-outside segmentation via generalized winding numbers 149
8.1 Introduction . 149
8.2 Related work . 152
8.3 Method . 154
8.4 Winding number . 155

8.4.1 Generalization to R3 . 156
8.4.2 Open, non-manifold and beyond . 157
8.4.3 Hierarchical evaluation . 159

8.5 Segmentation . 161
8.5.1 Energy minimization with graphcut 163
8.5.2 Optional hard constraints . 165

8.6 Experiments and results . 166
8.7 Limitations and future work . 169
8.8 Conclusion . 170

9 Conclusion 177
9.1 Recapitulation of core contributions . 178
9.2 Publications . 179

9.2.1 Journal publications . 179
9.2.2 Technical reports . 179

9.3 Reflections . 180
9.3.1 Lingering, unsolved problems . 181

9.4 Future work . 182
9.4.1 Physical interfaces . 182
9.4.2 Semantics . 183

References 185

ix

Contents

Appendix: 2D dataset 198

Appendix: Curriculum Vitæ 199

x

1
Introduction

We do not expect to be able to display the object exactly as it would appear in
reality, with texture, overcast shadows, etc. We hope only to display an image that
approximates the real object closely enough to provide a certain degree of realism
[Phong 1975].

Thirty-eight years later, textures and shadows have long been incorporated into rendering
pipelines. However, the continued ubiquity of the Phong shading and Phong lighting model
is evidence of their success as computer graphics algorithms. Phong’s algorithms incorporate
principles relevant to the entirety of computer graphics research. Our algorithms should:

1. approximate human perception of reality rather than reality directly,

2. prefer models with a simple mathematical result,

3. execute efficiently on a computer, and

4. be easy for humans to understand and control.

As we turn to the topic of this thesis, shape deformation, we will remember these as tenants
to which our solutions should also adhere. With these in mind we remain faithful both to the
audience of computer graphics (film-goers, video-gamers) and the authors of computer graphics
(artists, designers).

1.1 Shape deformation

The research field of geometry processing studies the entire life of a shape. A shape is born by
geometry acquisition (e.g. scanning a physical object) or by creation with a modeling tool (e.g.

1

1 Introduction

Figure 1.1: Our algorithms form a framework that can deform 100 Armadillos, each 80,000 triangles
at 30 frames per sec. The deformations minimize volumetric, nonlinear, elasticity energies
defined over a tetrahedral mesh, but reduced to the LBS subspace using our automatically
computed bounded biharmonic weights.

the advanced AUTODESK MAYA software). The life of a shape ends with consumption. It is ren-
dered on screen, e.g. in film or video game, or it is fabricated into a physical object. Throughout
the other stages of this geometry processing pipeline, a shape is analyzed and manipulated.

One of those manipulations stages is articulated shape deformation, where a user is directing
changes to a shape’s geometry to achieve a specific goal. The direction may be either explicit,
for example, fixing regions of the shape to certain positions; or implicit, simulating the elastic
behavior of a gummy bear. The goal may even be unknown or ill-posed when the process is
begun, for example, modeling novel poses of a dancing hippopotamus. Such articulated shape
deformation is fundamental to computer graphics applications such as 3D character animation
and interactive shape modeling. If we treat images as planar geometry (often just rectangles)
with color attributes attached to points in 2D space (pixels), then shape deformation is also
fundamental to image manipulation, a subfield of the related field of image processing.

Tasks like interactive modeling and graphic design require immediate visual feedback to facil-
itate user exploration of shape space: the typically unbounded space of all possible configu-
rations of a given shape. Real-time performance becomes especially important when dealing
with high-resolution data, such as megapixel images or scanned 3D geometry with millions of
vertices. Applications like crowd simulation and video games demand that deformations be
computed repeatedly for many objects on screen simultaneously. Previous work has shown that
it is difficult to achieve both high deformation quality and high framerates. In this thesis, we will
develop deformation algorithms that approach the quality of more computationally expensive
methods but remain inherently simple and extremely fast.

Broadly, interactive shape deformation is also the task of assisting the user to reconfigure a
shape. In the case of surface mesh deformations, the user could manually reposition each mesh
vertex, but this is unnecessarily tedious. The space of all possible positions for every vertex
of a mesh is much larger than the space of coherent reconfigurations. Rather, we would like
the user to only provide a few, high-level constraints like “move the feet here”, “turn the head
90 degrees” or “stretch the ears to there.” The rest of the shape should immediately deform in
an intuitive manner. We develop algorithms that efficiently navigate in the space of coherent
deformations which meet the user’s constraints.

2

1.1 Shape deformation

Exactly defining what is an “intuitive”, “coherent”, or “high quality” deformation in a math-
ematical way is, in general, impossible. Rewording these demands in terms of an en-
ergy minimization, we could say that ideally our deformation should minimize user surprise
[Gingold 2008]. We approximate this ill-posed and highly subjective energy with objective,
mathematical quantities which directly measure properties like surface curvature or local rigid-
ity. We prioritize quantities derived from continuous differential geometry, which when care-
fully discretized lead to practical assurances with respect to discretization.

Variational techniques provide a straightforward setup for modeling the deformation problem,
but complicated objective terms and nonlinear constraints quickly lead to slow optimizations,
far from real-time. Rather than minimize deformation energies directly on the shape, we build
our foundation around Linear Blend Skinning (LBS) and point our high-powered optimizations
at the skinning weight functions and transformations. LBS is a time-tested standard for real-
time deformation, dating to at least [Magnenat-Thalmann et al. 1988], but probably used fre-
quently before [Badler and Smoliar 1979, Magnenat-Thalmann and Thalmann 1987]. Despite
its known artifacts, LBS remains a popular mechanism for shape deformation because it is sim-
ple to implement and fast at runtime. New shape positions are computed as a linear combination
of a small number of affine transformations:

x′j =
m∑
i=0

wi(xj) Ti

(
xj
1

)
. (1.1)

Once the weight functions wi and transformations matrices Ti are defined, the deformation of
a point on a shape from its rest position xj to a new position x′j is simple and embarrassingly
parallel. LBS is easily integrated into the larger computer graphics pipeline using GPU vertex
shaders, where vertices are deformed immediately before rendering at only a small overhead.
However, a large amount of time and effort is spent by specialized riggers to paint the weight
functions wi manually. A core contribution of this thesis is to define wi functions automatically
based on an input shape and control structure (e.g. internal skeleton).

We first investigate discretizations of continuous quadratic energies resulting in high quality
deformations of surfaces represented as triangle meshes (Chapter 3). We focus on quadratic
energies corresponding to polyharmonic equations: ∆ku = 0. Constraints may then be added
to similar optimizations in order to design LBS weight functions automatically, achieving a
number of important qualities necessary for high quality and intuitive deformation (Chapters 4
& 5). By utilizing these optimized weights and making small changes to the LBS formula, we
may then greatly expand the space of deformations achievable in real time (Chapter 6). We also
employ further energy optimization to assist the user in defining the LBS transformation matri-
ces based on just a small set of constraints (Chapter 7). Our optimizations never interfere with
the runtime performance (see Figure 1.1). We do this by maximizing precomputation and by
exploiting LBS as a limited, but potentially high quality subspace of all possible deformations.

We focus on deforming shapes described by popular parametric representations: surfaces are
triangle meshes and solids are tetrahedral meshes. Often only the triangle mesh of the sur-
face of a solid shape is given. To ensure practical relevance of our deformation methods for
solids, we design a method to robustly determine inside from outside given a triangle mesh with
imperfections like holes, self-intersections and non-manifold components (Chapter 8).

How the user interacts with a particular deformation method is arguably just as important as

3

1 Introduction

the underlying mathematics. Methods that restrict a user to a particular control structure (e.g.
an internal skeleton or exterior cage) place a burden on the user that permeates the entire pro-
cess (Chapter 4). To this end, this thesis investigates the appropriateness of proposed control
structures for given tasks. Hypothesizing that all existing structures have advantages and are
thus useful options to the user, we design algorithms which treat the choice of control structure
as a first-class input parameter. We also reduce the amount of necessary control, allowing the
user to make high level directions with minimal effort (Chapter 7). In this way, the original
control structure and associated LBS weights not only define a more manageable optimization
search space, but also encode semantic information, otherwise not available when crafting a
deformation energy.

1.2 Organization

This thesis is organized around seven core chapters: one background chapter and six chapters
associated with interim publications of this thesis’s contributions (for a complete list of publi-
cations see Section 9.2). The content of these six chapters largely mirrors the respective pub-
lications, but more details, derivations and results are supplied for each. Errata are corrected
and connections are drawn between works which would have been otherwise anachronistic.
The one-column format of this thesis better facilitates large figures and mathematical deriva-
tions than the typical two-column format of graphics journal publications (e.g. Transactions on
Graphics, Computer Graphics Forum). Rather than inconspicuously slip significant, previously
unpublished material in the middles of these six chapters, such larger discussions will instead
appear as supplemental appendices following the main text in each chapter.

4

2
Mathematical foundation

The chapters in this thesis will follow a similar story. First the goal will be stated in English.
This goal will be approximated by concretely defining a mathematical energy that attempts to
measure deviation from this goal. The energy is defined in terms of the input geometry. An
attempt will be made to define this energy in a way that is derived from continuous quantities.
Once discretized, the result is a system of differential equations.

This chapter contains the background information about discretization and energy minimization
necessary for understanding and reproducing the technical contributions in following chapters.
While it is assumed that linear algebra, trigonometry and calculus are known to the reader, we
will make an effort to provide simple in-place derivations in this chapter. These are useful not
only as a reference, but also to provide insights and heighten our intuition.

As a warm up, we first consider a very common problem in computer graphics and mathematics
at large: the Dirichlet problem. Variants of this problem appear in each of the six core chapters
of this thesis.

2.1 Dirichlet energy and the Laplace equation

The Dirichlet energy ED(u) is a quadratic functional that measures how much a differentiable
function u changes over a domain Ω:

ED(u) =

∫
Ω

‖∇u(x)‖2dx. (2.1)

Colloquially we can say that minimizers of the Dirichlet energy are as-constant-as-possible.

5

2 Mathematical foundation

The corresponding Euler-Lagrange equation is the Laplace equation, a second-order partial
differential equation (PDE):

∆u = 0. (2.2)

Solutions of the Laplace equation are called harmonic functions and enjoy a host of special
properties. Besides minimizing the Dirichlet energy in Equation (2.1), harmonic functions:

1. are uniquely defined by their value on the boundary of the domain ∂Ω,

2. obey the maximum principle,

3. and obey the mean-value property.

These functions and their higher-order cousins (biharmonic, triharmonic, etc.) will prove very
useful in shape deformation algorithms as they help approximate surface fairness and intuitive
deformation behavior. They are smooth and may be efficiently computed numerically for a
given set of boundary values (realizations of user constraints).

When solving the Dirichlet boundary value problem, we seek solutions to the optimization
problem:

arg min
u

∫
Ω

‖∇u‖2dA (2.3)

subject to u|∂Ω = u0. (2.4)

or equivalently

solve ∆u|Ω = 0 (2.5)
with u|∂Ω = u0. (2.6)

For the sake of generality we will consider the Poisson equation with a nonzero right-hand side:

solve ∆u|Ω = f (2.7)
with u|∂Ω = u0. (2.8)

We can write Equation (2.7) in its equivalent weak form:∫
Ω

∆u v dA =

∫
Ω

fv dA, ∀v s.t. v|∂Ω = 0, (2.9)

where v is an arbitrary test function. We can then apply integration by parts and rewrite the
left-hand side: ∫

Ω

∆u v dA =

�
�

�
�

��
∮
∂Ω

∂u

∂n
v ds−

∫
Ω

∇u∇v dA, (2.10)

where the boundary term may be ignored if we choose our test functions v such that v|∂Ω = 0.
Note that now our equation only involves first derivatives. This means we can use piecewise
linear functions as their first derivatives are defined almost everywhere: everywhere except a
Lebesgue measure zero subset.

6

2.1 Dirichlet energy and the Laplace equation

0 0

φi1

0 0

φi1

0

0
0

0

Figure 2.1: Left: a piecewise-linear hat function visualized as a height field above a 2D triangle mesh.
Right: a piecewise-linear hat function in 1D.

We can discretize Equation (2.10) with the finite element method (FEM) by defining hat func-
tions φi at each node or vertex of a simplicial mesh. For now, assuming Ω ⊂ R2 we use hat
functions defined over a triangle mesh (see Figure 2.1). Then we approximate the unknown
function and test functions as:

u =
∑
i∈I

ui φi, (2.11)

v =
∑
j∈I

vj φj, vj|∂Ω = 0, (2.12)

where I is the set of all mesh vertices.

If Equation (2.9) holds for v = φj it also holds for any piecewise-linear v. So, it is sufficient to
use all v such that v = φj for some j. Considering each of these gives a system of n equations
with the jth equation being:

−
∫
Ω

∇
(∑

i∈I

ui φi

)
∇φjdA =

∫
Ω

(∑
i∈I

fiφi

)
φjdA, (2.13)

and moving the integrals, gradients and products inside the summations gives:

∑
i∈I

ui

∫
Ω

−∇φi∇φjdA =
∑
i∈I

fi

∫
Ω

φi φjdA. (2.14)

Again, this is the jth equation in a system of equations, each corresponding to an interior node
j ∈ IΩ\∂Ω, where I = IΩ\∂Ω ∪ I∂Ω, with cardinalities |IΩ\∂Ω| = n and |I∂Ω| = nb.

Because the values of u are known on the boundary we move these to the right-hand side:

∑
i∈IΩ\∂Ω

ui

∫
Ω

−∇φi∇φjdA =
∑
i∈I

fi

∫
Ω

φi φjdA+
∑
i∈I∂Ω

u0
i

∫
Ω

∇φi∇φjdA. (2.15)

7

2 Mathematical foundation

By declaring that:

Lij =

∫
Ω

−∇φi∇φjdA (2.16)

bj =
∑
i∈I

fi

∫
Ω

φi φjdA+
∑
i∈I∂Ω

u0
i

∫
Ω

∇φi∇φjdA, (2.17)

we arrive at an n× n linear system in matrix form:

Lu = b, (2.18)

where the system matrix L is called the stiffness matrix of this elliptic PDE.

2.1.1 Neumann boundary conditions

Up to computing the entries of L and b in Equations (2.16) & (2.17), we have sufficiently
described the finite element method for solving a Poisson equation with Dirichlet boundary
conditions (i.e. fixed boundary values). Now we will see that by altering the choice of test
functions v we may enable Neumann boundary conditions (i.e. fixed boundary derivatives).
The Poisson problem in Equation (2.7) rewritten with Neumann boundary conditions is:

solve ∆u|Ω = f (2.19)

with
∂u

∂n

∣∣∣∣
∂Ω

= g, (2.20)

where n is the outward pointing normal vector along the boundary. Derivative control like
this will become an especially powerful tool when defining bi-, triharmonic functions where
derivatives are defined in combination with Dirichlet boundary conditions: the combination
called Cauchy boundary conditions (see Chapter 3).

Recall that for Dirichlet boundary conditions we required that the test functions v vanished on
the boundary. That is, in Equation (2.10) we had∫

Ω

∆u v dA =

∮
∂Ω

∂u

∂n︸︷︷︸ v ds−
∫
Ω

∇u∇v dA. (2.21)

might not be zero, so we needed v|∂Ω = 0 (2.22)

However, if the unknown function satisfies Neumann conditions then we may use test functions
with nonzero boundary values:∫

Ω

∆u v dA =

∮
∂Ω

∂u

∂n︸︷︷︸ v ds−
∫
Ω

∇u∇v dA. (2.23)

because
∂u

∂n

∣∣∣∣
∂Ω

= g this is known, move to right-hand side (2.24)

8

2.1 Dirichlet energy and the Laplace equation

So, the jth equation in our system becomes:∑
i∈I

ui

∫
Ω

−∇φi∇φjdA =
∑
i∈I

fi

∫
Ω

φi φjdA+
∑
i∈I∂Ω

gi

∮
∂Ω

φi φjds. (2.25)

Because of the choice of test functions, we notice that we have nontrivial equations correspond-
ing to j ∈ I∂Ω. Thus, whereas for Dirichlet boundary conditions in Equation (2.15) we had
n equations, for Neumann boundary conditions we have n + nb equations. This, of course,
makes sense because we need to solve for u not just for the n interior nodes but also for the nb
boundary nodes.

2.1.2 Cotangent weights

By defining φi as piecewise-linear hat functions, the values in the system matrix Lij are uniquely
determined by the geometry of the underlying mesh. These values are famously known as
cotangent weights. “Cotangent” because, as we will shortly see, of their trigonometric formulae
and “weights” because as a matrix L they define a weighted graph Laplacian for the given mesh.
Graph Laplacians are employed often in geometry processing, and often in discrete contexts
ostensibly disconnected from FEM (e.g. [Floater 2003, Sorkine et al. 2004, Zhou et al. 2005]).
The choice or manipulation of Laplacian weights and subsequent use as a discrete Laplace
operator has been a point of controversy in geometry processing research [Grinspun et al. 2006,
Wardetzky et al. 2007b].

Though the cotangent formulae resulting from:

Lij =

∫
Ω

−∇φi∇φjdA, (2.26)

in Equation (2.16) are long known [MacNeal et al. 1949], it is worth clearly explaining its
derivation here as it provides geometric insights.

We first notice that∇φi are constant on each triangle, and only nonzero on triangles incident on
node i. For such a triangle, Tα, this ∇φi points perpendicularly from the opposite edge ei with
inverse magnitude equal to the height h of the triangle treating that opposite edge as base:

‖∇φi‖ =
1

h
=
‖ei‖
2A

, (2.27)

where ei is the edge ei as a vector and A is the area of the triangle (see Figure 2.2).

Now, consider two neighboring nodes i and j, connected by some edge eij . Then ∇φi points
toward node i perpendicular to ei and likewise ∇φj points toward node j perpendicular to ej .
Call the angle formed between these two vectors θ. So we may write:

∇φi · ∇φj = ‖∇φi‖‖∇φj‖ cos θ =
‖ej‖
2A

‖ei‖
2A

cos θ. (2.28)

Now notice that the angle between ei and ej , call it αij , is π − θ, but more importantly that:

cos θ = − cos (π − θ) = − cosαij. (2.29)

9

2 Mathematical foundation

. . .

∇φi

h

1

h
∇φ

i
∇φ

i∇
φ
i

∇
φ
i

i

j

i

αij βij

hi

hj

θ
eij

ei

ej

∇φi

∇φj

Figure 2.2: Left: the gradient ∇φi of a hat function φi is piecewise-constant and points perpendicular
to opposite edges. Right: hat function gradients∇φi and∇φj of neighboring nodes meet at
angle θ = π − αij .

So, we can rewrite equation (2.28) into:

− ‖ej‖
2A

‖ei‖
2A

cosαij. (2.30)

Now, apply the definition of sine for right triangles:

sinαij =
hj
‖ei‖

=
hi
‖ej‖

, (2.31)

where hi is the height of the triangle treating ei as base, and likewise for hj . Rewrite (2.30),
replacing one of the edge norms, e.g. ‖ei‖:

− ‖ej‖
2A

hj
sinαij

2A
cosαij. (2.32)

Combine the cosine and sine terms:

− ‖ej‖
2A

hj
2A

cotαij. (2.33)

Finally, since ‖ej‖hj = 2A, our constant dot product of these gradients in our triangle is:

∇φi · ∇φj = −cotαij
2A

. (2.34)

Similarly, inside the other triangle Tβ incident on nodes i and j with angle βij we have a constant
dot product:

∇φi · ∇φj = −cot βij
2B

, (2.35)

where B is the area Tβ .

10

2.1 Dirichlet energy and the Laplace equation

i

j

k
�

i

j

k
�αij

�ij

∇φi

∇φj

∇φi

∇φj

θij

i

j

k
�

∇φi

h

1

h

Figure 2.3: Inside a tetrahedron (left), a hat function gradient ∇φi is constant and points orthogonal to
the face opposite node i (middle). The dihedral angle αij between faces (right) is related to
the angle between overlapping hat function gradients∇φi and∇φj : θij = π−αij (corner).

Recall that φi and φj are only both nonzero inside these two triangles, Tα and Tβ . So, since
these constants are inside an integral over area we may write:∫

Ω

∇φi · ∇φj = A∇φi · ∇φj
∣∣∣∣
Tα

+B∇φi · ∇φj
∣∣∣∣
Tβ

= −1

2
(cotαij + cot βij) . (2.36)

which is also the Lij term in the Laplacian matrix L in Equation (2.16).

Tetrahedral volume meshes

We have derived the cotangent Laplacian for triangle meshes in R2. The result of
this derivation may be extended—without modification—to surfaces (2-manifolds in R3)
[Pinkall and Polthier 1993]. Often we will want to work with not just surfaces, but also vol-
umes in R3. These may be discretized with a tetrahedral mesh. We may similarly define the
continuous Dirichlet energy in Equation (2.3), but now Ω ⊂ R3, and again we may geometri-
cally derive the contents of the Laplacian matrix for an FEM discretization, where now elements
are the tetrahedra of our volume mesh. Recall, the integral in question is:

Lij =

∫
Ω

−∇φi∇φjdV, (2.37)

where φi are again hat functions, but now defined to be linear functions in each tetrahedron
incident on node i. These hat functions are again locally compact so we are only concerned with
neighboring nodes i and j. Just as inR2, because φi is linear in each tetrahedron,∇φi is constant
in each tetrahedron and only nonzero for neighboring tetrahedra. For such a tetrahedron, T , this
∇φi points perpendicularly from the opposite face with magnitude inverse of the height of the
tetrahedron treating that opposite face as base (see Figure 2.3):

‖∇φi‖ =
1

h
=
Ai
3V

, (2.38)

11

2 Mathematical foundation

where Ai is the area of the opposite face (triangle) from node i, h is the height of T treating this
face as base, and V is the volume of the tetrahedron.

If we restrict our integral to T and consider the hat function of another incident node φj (whose
∇φj is also constant in T) then we have:∫

T

−∇φi∇φjdV = −V ‖∇φi‖‖∇φj‖ cos θij (2.39)

= V ‖∇φi‖‖∇φj‖ cosαij (2.40)

=
AiAj
9V

cosαij, (2.41)

where θij is the angle between ∇φi and ∇φj . Let αij = π − θij and notice that αij is also the
dihedral angle between the faces opposite nodes i and j.

A law of sines for tetrahedra

i

j αij

Ai

Aj

hi
x

ij

Deriving a law of sines for tetrahedra is straightforward and re-
lies on simple geometric rules.1 Consider node i of a tetrahe-
dron, we start with the typical formula for volume:

V =
1

3
Aihi. (2.42)

Now, consider another node j. Make a right triangle perpendic-
ular to the face opposite node i. Let the triangle’s corners be:

node i, the orthogonal projection of node i onto the opposite face, and the orthogonal projection
of node i on to the edge shared by the faces opposite nodes i and j. The angle in this triangle
opposite node i is by definition the dihedral angle between those faces αij . By the trigonometric
definition of sine we have:

sinαij =
hi
x
, hi = x sinαij, (2.43)

where x is the hypotenuse of this right triangle. But more importantly, x is also the height of
the face opposite node j, which we know is related to the area via:

Aj =
x`ij
2

, x =
2Aj
`ij

. (2.44)

Substituting Equation (2.43) and Equation (2.44) into Equation (2.42) reveals:

V =
1

3
Aix sinαij (2.45)

=
1

3
Ai

2Aj
`ij

sinαij (2.46)

=
2

3`ij
AiAj sinαij. (2.47)

1Thanks to Leo Koller-Sacht for assisting in this derivation.

12

2.1 Dirichlet energy and the Laplace equation

Rotationally symmetric Reflectionally symmetric

Figure 2.4: Delaunay tetrahedralizations of a regular grid cell in R3 may vary drastically. Compare
the six rotationally symmetric tetrahedra (left) to the six reflectionally symmetric tetrahedra
(right).

This result was equivalently derived by [Lee 1997] as an application of the law of cosines for
tetrahedra.

Substituting Equation (2.47) into Equation (2.41) produces:

∫
T

−∇φi∇φjdV =
AiAj

3 2
`ij
AiAj sinαij

cosαij =
`ij
6

cotαij. (2.48)

A pair of nodes i and j will in general have many shared tetrahedra inR3, so we write the entire
integral as:

Lij =

∫
Ω

−∇φi∇φjdV =
∑

T∈N(i)∩N(j)

`Tij
6

cotαTij. (2.49)

where N(i) are the edge neighbors of node i.

Meyer et al. provide a similar derivation [2003], writing that “we have the same formula as [our
Equation (2.36)], this time with cotangents of the dihedral angles opposite to the edge”. Taken at
face value, this is statement is only almost true. A naïve reader might blindly replace triangle an-
gles with dihedral angles in Equation (2.36), but this results in an incorrect operator. Indeed, the
`Tij length factor is important to ensure correct behavior of the operator in R3. A full derivation
is given in [Barth 1992], and for general n-manifolds in [Xu and Zikatanov 1999]. This cotan-
gent formula was successfully employed by [Liao et al. 2009, Chao et al. 2010, Li et al. 2012].
The geometric derivation here agrees with the results of discrete calculus [Tong et al. 2003] and
“by the book” FEM discretization [Sharf et al. 2007].

13

2 Mathematical foundation

ij

k

�

ij

k

�

αij

ij

k

�

αjk

ij

k

�

αik

ij

k

�

αj�

ij

k

�
αi�

ij

k

�

αk�

αij = 45◦ αik = 90◦ αi� = 90◦

αjk = 60◦ αj� = 90◦ αk� = 45◦

Figure 2.5: Six tetrahedra rotational symmetric about ei` fit in one regular grid cell. With loss of gener-
ality assume that `ij = 1 then `jk cotαjk =

√
3 cot 60◦ = 1 = 1 cot 45◦ = `ij cotαij as

expected to match the FD stencil.

Relationship to finite differences

If we consider a regular rectangular grid in R2, then our FEM stiffness matrix matches exactly
one derived using the finite-difference method (FD). This is evident by examining the cotangent
formula: diagonal edges are nullified because cot 90◦ = 0. This is true regardless of connec-
tivity, so long as it is Delaunay—each regular grid cell has four points on a circle so Delaunay
triangulations are not unique.

With regular grids in R3 we must be a bit more careful, as even Delaunay connectivities can
result in a skewed stiffness matrix using FEM. Each grid cube may be split into five or six
tetrahedra, assuming no new vertices are introduced. All eight vertices are on the same circum-
sphere, so there are different ways to cut up the cube while still Delaunay. For example, we
may pack six rotationally symmetric tetrahedra around the axis formed between two opposite
vertices (see Figure 2.4 left). This results in a balanced FEM stiffness matrix which matches FD
(see Figure 2.5). Alternatively, we could divide the cube in half with a plane cutting 45◦ across
two opposite faces. On either side we place one trirectangular tetrahedron and two oblong
tetrahedra, totaling six (see Figure 2.4 right). This arrangement is Delaunay, but the resulting
FEM stiffness matrix does not match finite-differencing. There are even negative off-diagonal
coefficients, meaning that solutions to the Laplace equation will not necessarily obey the max-
imum principle. Related criteria and yet another connectivity (using five tetrahedra per cube)
are discussed and illustrated in [Fleishmann et al. 1999].

2.1.3 Mass matrix

We previously derived the assembly of the stiffness matrix geometrically. Now we derive the
matrix assembly of another important matrix: the mass matrix. Here we wish to determine the

14

2.1 Dirichlet energy and the Laplace equation

entries:
Mij =

∫
Ω

φi φjdA (2.50)

Recall again, our hat functions φi are locally supported on our triangle mesh, so Mij is only
nonzero for neighboring nodes i and j (and along the diagonal when i = j).

Quadrature rules

A large theory surrounds the method of numerical integration by a carefully weighted average
of function evaluations at carefully chosen quadrature points:

1∫
0

f(x)dx ≈
m∑
i=1

wif(xi), (2.51)

where we approximate the finite integral of the function f(x) as a sum of evaluations of f at
some chosen points xi weighted by scalars wi. Importantly, this approximation becomes exact
when f(x) is a polynomial of degree n and we use an appropriate choice of weights and points,
for example if we employ Gaussian quadrature rules. In the case of Equation (2.50), we again
can divide the integral into the contributions of each triangle simultaneously incident on node i
and node j:

Mij =
∑

T∈N(i)∩N(j)

∫
T

φi φjdA, (2.52)

where T are those triangles incident on nodes i and j (typically there are two). Now we consider
a Gaussian quadrature rule applied to each integral term:∫

T

φi φjdA =
AT
3

(φi(x1)φj(x1) + φi(x2)φj(x2) + φi(x3)φj(x3)) , (2.53)

where A is the area of the triangle T and we use uniform weighting (1
3
) evaluating at locations

x1,x2,x3, which are simply the midpoints of the edges of T . Note that our formula is exact
because φi φj is a quadratic polynomial [Felippa 2004].

Because we know φi are simple linear functions over each triangle we may further evaluate this
formula arriving at:

AT
3

(
1

2
· 1

2
+

1

2
· 1

2
+ 0 · 0

)
=
AT
6

if i = j (2.54)

AT
3

(
1

2
· 1

2
+ 0 · 1

2
+

1

2
· 0
)

=
AT
12

otherwise. (2.55)

Finally, putting the two triangle integral terms together we have:

Mij =
∑

T∈N(i)∩N(j)

{
AT
6

if i = j
AT
12

otherwise.
(2.56)

15

2 Mathematical foundation

i

j

T

T̃

D

Figure 2.6: The reference element method inR2 defines integral with respect to a simple triangle T (left)
and an affine map D to any arbitrary triangle T̃ (right).

Reference element

Though the previous derivation using quadrature rules suffices for assembly of the mass matrix,
it is interesting to consider another approach which defines the integral over the triangle in
equation Equation (2.53) as a function of the integral defined over a reference triangle. To do
this we first consider a right triangle in the unit square as depicted in Figure 2.6. Treating T in
Equation (2.53) as this triangle, we may explicitly write:

∫
T

φi φjdA =

∫ 1−x

0

∫ 1

0

φi (x, y)φj (x, y) dxdy (2.57)

=

{∫ 1−x
0

∫ 1

0
x2 dxdy = 1/12 if i = j∫ 1−x

0

∫ 1

0
xy dxdy = 1/24 otherwise.

(2.58)

We can deform this reference triangle T to any arbitrary triangle T̃ using an affine transforma-
tion D. Employing integration by substitution we have that:

∫
T

fdA = det (D)

∫
T̃

fdÃ = 2Ã

∫
T̃

fdÃ, (2.59)

where Ã is the area of T̃ . Applying this to our integral we arrive at the same assembly as in
Equation (2.56). Similar derivations and further discussions of the stiffness matrix and mass
matrix occur in many books (e.g. [Sayas 2008]).

We may also consider the mass matrix defined for a tetrahedral mesh in R3. Both the refer-
ence element and quadrature rule derivations extend analogously with a larger matrix D or an
additional quadrature point, respectively.

16

2.1 Dirichlet energy and the Laplace equation

Figure 2.7: Left to right: The barycenter splits a triangle into three equal area parts. Summing the areas
of parts incident on a triangle mesh vertex equals its barycentric mass matrix entry. The
Voronoi center splits the triangle area into unequal parts: the areas correspond to the portion
of the triangle closer to one vertex than the others. The sum of these areas equals a vertex’s
Voronoi mass matrix entry.

Lumping

The full mass matrix M just described is often replaced by a lumped mass matrix, i.e. a diagonal
matrix Md. The lumping step is mathematically sound:∫

Ω

uudA ≈
∫

Ω

∑
i∈I

ui φi
∑
j∈I

uj φjdA = uTMu ≈ uTMdu, (2.60)

where our hat functions φi are built over a mesh with average edge length h. The convergence
rate with respect to h is not damaged if the quadrature rule has accuracyO(h), which is satisfied
by using vertices as quadrature points [Ciarlet 1978, Brezzi and Fortin 1991]. This leads to the
diagonal mass matrix Md. The sum of the (unnormalized) diagonal entries Md

i will equal the
surface area of Ω. There are two relevant methods for determining how this area is distributed
along the diagonal, corresponding to the so-called barycentric or Voronoi-mixed mass matrices.
Both schemes have been shown to have linear convergence, but the Voronoi-mixed approach
has, in general, much smaller error norms and less mesh dependence [Meyer et al. 2003]. This
is also considered later in the context of higher order PDEs (see Section 3.5).

In the case of irregular meshes, the distribution of area should correspond to the vertex density.
The barycentric mass matrix achieves this in the most straightforward way. For each triangle, its
area is split into three quadrilaterals by connecting the triangle’s barycenter to its edge midpoints
(see Figure 2.7 left). By definition these areas are equal regardless of the shape of the triangle.
We distribute A/3 to each incident vertex, and the entry Md

i is the one third the sum of the areas
of incident triangles on vertex i.

Another, also natural, choice is to use the Voronoi area around each vertex. Because we deal
with piecewise-linear domains, we may again consider each triangle individually (see Figure 2.7
right). First we find the circumcenter, the center of the circumscribing circle of the triangle,
equidistant to vertices on the triangle. Connect this point to the midpoints along the edges of
the triangle, again forming three quadrilaterals. The Voronoi mass matrix entry Md

i for vertex
i is the sum of its corresponding quadrilaterals from all incident triangles. For acute triangles,
each quadrilateral represents the portion of the triangle closest to one of the vertices. For obtuse

17

2 Mathematical foundation

triangles, the circumcenter lies outside of the triangle, resulting in negative signed areas entering
the summation. Thus, [Meyer et al. 2003] propose to use a mixed or hybrid approach. For acute
triangles, the Voronoi areas are computed according to the circumcenter. For obtuse triangles,
the circumcenter is snapped to the midpoint along the edge opposite the obtuse angle. Thus the
obtuse angled vertex receives A/2 and the others A/4.

We now have all necessary pieces for numerically solving Poisson equations subject to Dirichlet
or Neumann boundary conditions discretized using linear FEM over a triangle or tetrahedral
mesh. Despite the long derivations, the machinery necessary to manifest these pieces in code
is quite compact and efficient. In particular, we can compute all quantities and matrix elements
in a way that relies only on the intrinsic description of a given mesh. So instead of requiring
the geometry (i.e. vertex positions) and connectivity information of a mesh we need only the
simplex edge lengths. This will become important when considering tiled parameterizations
(see Section 3.8.1) or manifolds embedded in higher dimensions (see Section 4.8).

2.2 Constrained optimization

Many chapters in this thesis follow the scientific principle of variations. The desired behavior
for the particular problem will be described as the minimum of some cost or energy function.
The first challenge in each case will be to describe these energy functions in mathematical
terms. But even with a mathematical description, realizing optimal solutions on a computer
poses problems. In the previous Section 2.1 we discussed the machinery necessary to leverage
FEM to solve certain types of PDEs corresponding to solutions of energy functions. Many times
it suffices to describe a problem using fixed boundary conditions of these systems. But often
we will model our desired behavior not just as energy-minimizing but also subject to certain,
general constraints. This section reviews a few important notions in constrained optimization.
We will highlight a few special cases (e.g. quadratic and conic programming).

In the most general case we consider, the problem of discrete quadratic programming is to
optimize a quadratic function:

E(x) =
1

2
xTQx + xTl + c, (2.61)

subject to linear inequality constraints:

Aiex ≤ bie, (2.62)

where x is a vector of unknowns, Q is a matrix of quadratic coefficients (usually positive definite
and often sparse), l is a vector of linear coefficients, c is a constant scalar term, Aie is the linear
inequality constraints matrix, and bie is a vector of linear inequality constraints right-hand side
values.

Immediately notice that special constraints such as linear equalities or constant inequalities can
be expressed in the general form of Equation (2.62) by repeating constraints with opposite signs
or using rows of the identity matrix respectively.

18

2.2 Constrained optimization

2.2.1 Constant equality constraints

Constant equality constraints fix certain values in x:

xf = gf , (2.63)

where xf denotes the sliced vector of unique values in x we would like to constrain and gf
denotes the corresponding fixed values.

Imposing such constraints in Equation (2.61) is simple. We separate the x into known values
xf and unknown values xu and rearrange the quadratic, linear and constant terms with respect
to the unknowns:

E(xu) =
1

2

(
xu
xf

)T

Q

(
xu
xf

)
+

(
xu
xf

)T

l + c (2.64)

=
1

2

(
xu
xf

)T(
Quu Quf

Qfu Qff

)(
xu
xf

)
+

(
xu
xf

)T(
lu
lf

)
+ c (2.65)

=
1

2
xT
uQuuxu + xT

u

(
l +

1

2

(
Quf + QT

fu

)
xf

)
+

1

2
xT
fQffx + c (2.66)

=
1

2
xT
uQ̃xu + xT

u l̃ + c̃. (2.67)

If the resulting Q̃ is positive definite then we may solve this by taking partial derivatives with
respect to xT

u , setting each to zero and solving the system of linear equations. In practice this
may be achieved efficiently using Cholesky decomposition and triangular back-substitution.

2.2.2 Linear equality constraints

Optimizing Equation (2.61) subject to linear equality constraints is similarly straight forward.
These constraints are of the form:

Aeqx = beq. (2.68)

We may enforce these constraints using Lagrange multipliers and converting our minimization
problem into a saddle search of a Lagrangian:

Λ(x, λ) =
1

2
xTQx + xTl + c+ λT (Aeqx− beq) (2.69)

=
1

2

(
x
λ

)T(
Q Aeq

T

Aeq ∗

)(
x
λ

)
+

(
x
λ

)T(
l
−beq

)
+ c (2.70)

=
1

2

(
x
λ

)T

Q̃

(
x
λ

)
+

(
x
λ

)T

l̃ + c, (2.71)

where λ is a vector of unknown Lagrange multipliers. So long as A is full row rank then the
constraints are linearly independent. We can then find the saddle point of Λ by taking partial
derivatives with respect to both xT and λT, setting these to zero and solving the resulting system
of linear equations. In general we will not be able to use Cholesky decomposition because —

19

2 Mathematical foundation

even if Q is positive definite — Q̃ will not be. Thus we must resort to general LU decomposition
[Davis 2004], LDL decomposition [Duff 2004], or employ a trick to reduce LU decomposition
for this special case to two Cholesky decompositions (see Section 2.2.2).

The values of the Lagrange multipliers λ are often not needed, however, they have a very useful
interpretation. If we consider our unconstrained solution x as steady-state solution or equi-
librium w.r.t. the internal force ∂E

∂xT , then the Lagrange multipliers λ are intuitively the signed
magnitudes of the minimal external forces necessary to pull the unconstrained solution x to the
feasible region (set of solutions which satisfy the given constraints). Here we are careful to keep
track of the sign as this will become useful when dealing with inequalities (Section 2.2.3).

If x lives in Rn then each row in Equation (2.68) represents a hyperplane in Rn. The Lagrange
multiplier method limits our optimization to the intersection of those hyperplanes. Another
method is to use Equation (2.68) to build a parameterization description of that intersection.
Here we find a matrix Γ such that xproj = Γy where y parameterizes all values of x such that
Aeqx − beq = 0. That is, it parameterizes the null space of the constraints. The projection
matrix Γ can be found efficiently using QR decomposition. Then Γy is directly substituted into
Equation (2.61), where minimizing results in a linear system with a solution y∗. The primary
solution is recovered by computing x∗ = Γy∗. The null space method has the advantage that
it can robustly cope with linearly dependent constraints. The disadvantage is that substitution
may result in a dense problem even if the original matrices Q and Aeq are sparse. Nonetheless,
this has been employed successfully in graphics (e.g. [Bouaziz et al. 2012]).

The constant equality constraints in Section 2.2.1 are a special case of linear equality con-
straints. We could use the null space method or the Lagrange multiplier method to enforce
them. For constant constraints, the rows of Aeq are simply the rows of the identity matrix cor-
responding to xf . Thus the null space method would directly accomplish substitution resulting
in Equation (2.67). The Lagrangian method would introduce a set of multipliers λf , but since
the resulting set of linear equations will be simply these rows of the identity matrix, one may
easily invert them to solve for xf and substitute into the rows above. If we ignore the values of
λf we arrive again at Equation (2.67).

LU decomposition via two Cholesky decompositions

Minimizing quadratic energies with and without linear equality constraints results in a system
of linear equations:

Qx = l , x = Q−1l, (2.72)

where Q is the, typically sparse, system matrix (aka quadratic coefficients matrix or Hessian),
x is a vector of unknowns and l is the right-hand side (aka vector of linear coefficients). We
may solve this equation by inverting Q. We will rarely ever want to compute Q−1 explicitly: it
is usually dense even if Q is sparse, it is slow to compute, and it may be numerically unstable to
do so. Rather we find a factorization of Q = LU, where L and U are lower and upper triangular
(hopefully sparse) matrices respectively. If Q is positive definite then we may use a Cholesky
decomposition Q = LLT. However, in constrained optimization using Lagrange multipliers for

20

2.2 Constrained optimization

linear equality constraints, we typically have a system matrix that looks like:

Q =

(
A C
CT ∗

)
, (2.73)

where A are the quadratic coefficients of our primary quadratic energy, C is the linear equality
constraints matrix, and ∗ represents a block of zeros. The A and C blocks may be sparse and
as a whole the matrix is symmetric (so long as A is), but it is generally indefinite: the equation
identifies the critical point (saddle) of a quadratic Lagrangian, rather than the global minimum
of a convex quadratic function. In this case Cholesky decomposition cannot be used, so one
may resort to generic LU decomposition. However, if A is positive definite (as is often the case
in quadratic optimization), then we can design a special case LU decomposition for matrices Q
of the type described in Equation (2.73).2

Our problem is to find an LU decomposition of Q. Just like our matrix Q, we can divide our
LU decomposition into four blocks each:(

A C
CT ∗

)
=

(
? ∗
? ?

)(
? ?
∗ ?

)
, (2.74)

where ? represent the so far unknown blocks.

Because A is positive definite, we can compute a Cholesky decomposition A = LLT and insert
accordingly into the appropriate corners of the lower and upper triangular parts:(

A C
CT ∗

)
=

(
L ∗
? ?

)(
LT ?
∗ ?

)
. (2.75)

This now means that we need C = L?, but since L is lower triangular it is easy to compute
M = L−1C. It is important to note at this point that M will likely be dense, regardless of
whether A and C are sparse. Thus, we see immediately that this method is only going to be
useful when C has a small number of columns (i.e. for optimization problems with a small
number of linear equality constraints). We may place M into our factorization:(

A C
CT ∗

)
=

(
L ∗

MT ?

)(
LT M
∗ ?

)
. (2.76)

We are almost done. All that is left is to reproduce the zeros in the bottom right corner on the
left hand side of Q. This means we need the two missing pieces when multiplied to produce
−MTM. But again this is made easy via Cholesky factorization: MTM is clearly symmetric
and is positive semidefinite: xTMTMx =

(
xTMT

)
(Mx) ≥ 0, ∀x. We factorize MTM =

KKT where K is lower triangular. Finally this gives us:(
A C
CT ∗

)
=

(
L ∗

MT K

)(
LT M
∗ −KT

)
. (2.77)

The final LU decomposition almost has the property that U = LT. We may exploit this by
only storing L and flipping the sign on the bottom right K block as necessary during back
substitution.

2Ilya Baran brought this method to my attention, but the original source is unknown.

21

2 Mathematical foundation

In the end we only need one sparse Cholesky factorization, one sparse back substitution, one
dense (but small) matrix-matrix multiplication, and one dense (but small) Cholesky decompo-
sition. The sparse Cholesky factorization corresponding to the primary quadratic coefficients A
can be precomputed and constraints in C can be dynamically added, edited and removed at low
cost.

We are not quite done. It is well known that without reordering both Cholesky and LU de-
compositions for sparse matrices can result in effectively dense factors. When reordering we
compute Cholesky decompositions as STAS = LLT, where S is a permutation matrix. Com-
puting these factorizations with reordering is faster, stabler and results in much sparser factors
than typical decomposition. To take advantage of this in our trick above we will have to redefine
our LU decomposition to also include reordering. Thus our problem at the beginning is now:(

? ∗
∗ ?

)(
A C
CT ∗

)(
? ∗
∗ ?

)
=

(
? ∗
? ?

)(
? ?
∗ ?

)
. (2.78)

Now, we can go through similar steps as before. First utilize STAS = LLT:(
ST ∗
∗ ?

)(
A C
CT ∗

)(
S ∗
∗ ?

)
=

(
L ∗
? ?

)(
LT ?
∗ ?

)
. (2.79)

This means that we need L? = STC?, which again we can solve for using back subtitutition:
M?T = L−1STC. Because we used reordering, L will be very sparse. Computing M?T will
be a fast back substitution, but it will still, in general, end up dense. The missing ? block
comes from the permutation matrices on the other side, let us declare it T. Then we have
MTT = L−1STC:(

ST ∗
∗ TT

)(
A C
CT ∗

)(
S ∗
∗ T

)
=

(
L ∗

TMT ?

)(
LT MTT

∗ ?

)
. (2.80)

Finally we want to create the zeros in the lower right corner of the system. To do this, we again
use a reordering Cholesky factorization: TMTMTT = KKT.(

ST ∗
∗ TT

)(
A C
CT ∗

)(
S ∗
∗ T

)
=

(
L ∗

TMT K

)(
LT MTT

∗ −KT

)
. (2.81)

The result is a LU decomposition of our original system conjugated by a permutation matrix.
Again we have a lot of repeated blocks, so potential savings on storage is high.

In practice this trick is only useful when there are a small number of constraints that are chang-
ing dynamically. Otherwise, LDL decomposition is typically faster.

Weak constraints via quadratic penalty functions

Another way to impose linear equality constraints is to enforce them weakly by appending
quadratic penalty functions to original energy in 2.61. This results in new quadratic energy of

22

2.2 Constrained optimization

the form:

E(x) =
1

2
xTQx + xTl + c+ (Aeqx− beq)

TW(Aeqx− beq)
T (2.82)

=
1

2
xT
(
Q + 2AT

eqWAeq
)

x + xT
(
l− 2AT

eqWbeq
)

+ c+ bT
eqWbeq (2.83)

=
1

2
xTQ̃x + xTl̃ + c̃, (2.84)

where W is a diagonal matrix with positive diagonal entries Wi representing the weight on row
i in our linear equality constraints. Intuitively, these weights represent how badly we would like
to satisfy each constraint. Theoretically, setting these weights to∞ results in the strong or strict
equality constraints as discussed in Section 2.2.2. In practice, exceptionally large weights must
be used with care as they may introduce floating-point errors.

Determining the values for W is a problem-specific and domain-specific issue. When deal-
ing with discrete, mesh-based energies weak constraints are often used to impose constant
constraints on function values associated with mesh vertices. Simply using uniform weights
W = wI will result in uneven enforcement on irregular meshes. The mesh density should also
be taken into account when dealing with approximations to continuous properties. This ensures
discretization independence and facilitates convergence as resolution increases. A safe choice
then is to use a uniformly weighted lumped mass matrix W = wMd (see Section 2.1.3).

Weak constraints are more difficult to control, but admittedly easier to set up and employ. Lin-
early dependent constraints are simply enforced stronger, but do not cause algebraic singulari-
ties. Contradictory constraints are similarly handled. And if Q is positive semidefinite, then Q̃
will be, too, so Cholesky decomposition may be used.

2.2.3 Linear inequality constraints and the active set method

Having considered the special cases where only equality constraints exist, we now turn back
to the general case and deal with linear inequality constraints. Without loss of generality we
assume we are dealing with constraints of the form:

Aiex ≤ bie. (2.85)

There are many methods to solve such general QPs [Andersen and Andersen 2000,
Byrd et al. 2006, MATLAB 2012]. Instead of describing the inner workings of all these meth-
ods, we will instead explore a straightforward technique that exploits the now well-understood
Lagrangian method for quadratic optimization with linear equality constraints. This method
iteratively determines which inequality constraints should be enforced as hard equality con-
straints. At any given time these constraints are called the “active set”.

Before describing the algorithm, let us consider what inequality constraints mean intuitively.
Our quadratic function in Equation (2.61) measures any potential solution x ∈ Rn. Assuming
the energy is positive definite, if we viewed a plot of this function in Rn+1 we would see a
hyper-parabola. Viewed as a topographical map, we would we see concentric hyper-ellipses
centered around the global minimum x∗. When we have a linear equality constraint we are re-
stricting the feasible set of solutions to a hyperplane cutting throughRn. When we have a linear

23

2 Mathematical foundation

Constant Inequality Constraints Linear Inequality Constraints

Figure 2.8: Iterations of the active set method for constant (left) and linear (right) inequality constraints.

inequality constraint we restrict to a halfspace of Rn. The boundary of this space is determined
by the hyperplane described by treating the constraint as an equality. The important intuition
to draw on is that the intersection of the halfspaces corresponding to multiple linear inequality
constraints forms a convex subspace in Rn. There are two options: the global minimum of the
unconstrained energy in Equation (2.61) lies inside this convex subspace or it lies outside and
a unique minimum within the subspace lies on the boundary of the subspace. Corollarily there
are no other local minima inside this subspace.

The goal of the active set method is to determine which, if any, inequality constraints this unique
minimum is touching. These are the active set of constraints at the solution and at convergence
of this algorithm.

We begin the algorithm by assuming we have a current solution xi and current set of active
constraints Ai,bi. We now compute an updated solution xi+1 by minimizing Equation (2.61)
subject to:

Aixi+1 = bi. (2.86)

We enforce these as strict equality constraints using Lagrange multipliers λi+1. The signs of
λi+1 reveal whether each constraint is pulling xi+1 away from the energy minimum into or out of
the feasible region. Each negative entry in λi+1 means that if we resolve without that individual
constraint the inequality constraint will still hold (and the energy will be smaller). Thus we set
Ai+1,bi+1 to be a subset of the constraints with positive λi+1 entries. The updated solution xi+1

will in general violate some inactive constraints. Thus a subset of these violated constraints are
activated and appended to Ai+1,bi+1. This process is repeated until convergence.

In the special case of constant inequality or box constraints:

bl ≤ x ≤ bu, (2.87)

then substitution may be employed for faster linear solves at each iteration. The corresponding
Lagrange multipliers values may be recovered post facto. If our active constant constraints
are xf = bf then the after solving according to Equation (2.67) the corresponding Lagrange
multiplier values are λf = −Qufxu + Qffbf − lf .

A few iterations of two hypothetical optimization problems constraints are shown in Figure 2.8.

24

2.2 Constrained optimization

We visualize a quadratic function (e.g. 5x2−6y+5y2) as a topographical map (elliptic isolines)
with a global minimum (blue dot). In the left image we show the feasible region (white region
inside red overlay) defined by constant inequality or box constraints of the form bl ≤ [x; y] ≤
bu. Given a, generally infeasible, initial guess (yellow dot) we may optimize by first enforcing
the violated constraint as an equality constraint (black arrow). This generates a new, generally
infeasible point. The previous constraint is inactivated, a new constraint is activated, and we
resolve (blue arrow). Now the previous constraint cannot be inactivated so we only append a
new violated constraint and resolve, reaching convergence (green arrow). The unconstrained
global minimum is not feasible so the active set is identified at the unique feasible minimum. In
the right image, a similar step-through is shown for a problem with general linear constraints of
the form: Aie[x; y] ≤ bie. This time the global minimum is found to be feasible.

This method is robust and accurate, but not the fastest method for solving QPs in practice.
For large, sparse QPs, we have found that interior point solvers are faster, as implemented
by MOSEK [Andersen and Andersen 2000] or in recent versions of the quadprog routine of
[MATLAB 2012]. Often a QP can be converted to a different formalization like non-negative
least-squares or conic programming. If the reformatting can utilize extra geometric notions
(like the Laplacian being a sparse square root of the bi-Laplacian) then there may be a lot of
performance gains (see Section 2.2.4).

On the other hand, the active set method is simpler to implement and more accurate. In order to
provide high accuracy results at reasonable performance, the commercial KNITRO solver begins
optimizing with an interior point method similar to MOSEK to get a quick approximate initial
guess and finishes with an active set method to get a highly accurate solution [Byrd et al. 2006].
By construction the active set method terminates with a list of the inequality constraints which
are being exactly satisfied with equality. For certain problems analyzing these active constraints
provides useful geometric insights. For example in Chapter 4, analyzing the active set of the
constant bound constraints may be used to empirically verify the claim of local support.

2.2.4 Conic programming

Often, quadratic functions arise in the form of least-squares energies, where we may have a set
of linear formulas:

Fx− f , (2.88)

which measure some discrete quantities (one for each row in F, f) of x. For example, using the
stiffness and mass matrices of Sections 2.1.2 & 2.1.3 then M−1Lx− 0 measures the Laplacian
of some function x at each point on a mesh. If these all measure zero, then the function is called
harmonic. We can easily construct a quadratic energy which measures these quantity vectors

25

2 Mathematical foundation

with respect to a L2 norm or least-squares sense3:

ELS(x) =
1

2
‖Fx− f‖2. (2.89)

So if measuring zero meant the function was called something, then we say that minimizers
of these energies are as-something-as-possible. Thus minimizers of ‖M−1Lx − 0‖2 are as-
harmonic-as-possible.

When such energies appear in QPs then we can take advantage of their special formulation.
The matrix F in Equation (2.89) is a (generally rectangular) matrix square root of the quadratic
coefficients matrix Q in Equation (2.61). If we require that Q is positive semidefinite then
such a square root always exists, but it may not always be possible to derive it analytically or
efficiently for a given problem. For example, consider the discrete bi-Laplacian operator for a
triangle mesh Q = LTM−1L. This matrix has on average ≈ 18 nonzero entries per row. A
naive square root of this matrix using Cholesky decomposition Q = KKT produces a square
matrix K with hundreds of nonzeros per row. Reordering helps reduce this, but to perhaps
≈ 25 nonzeros per row. However, if we know where this bi-Laplacian comes from, then we
know the Laplacian operator is a square root of the bi-Laplacian Q = (M−1L)

T
M (M−1L) =(√

M−1L
)T (√

M−1L
)

. The Laplacian will have on average only seven nonzeros per row and
can be constructed procedurally without expensive decomposition or reordering.

If this square root matrix F is sparse then this information is especially useful for interior point
solvers like MOSEK [Andersen and Andersen 2000]. The MOSEK solver can optimize non-
negative least squares problems (i.e. constant bound constraints x ≥ 0) much faster than treating
it as a general QP.

Even more interesting is that, when this square root matrix F is available, we may transform any
QP with arbitrary linear inequality constraints into a second-order conic programming problem.
These problems minimize linear energies:

EL(x) = xTl, (2.90)

subject to linear equality constraints (see Equation (2.62) and cone constraints:

x ∈ C, (2.91)

where C is a convex cone.

Many derivations of the following conversion exist, notably in the documentation of MOSEK.
We illustrate here not only as a reference but to give intuition to how such cones arise from
least-squares QP optimization.

3 Often in the case of mesh-based quantities the L2 norm is replaced with a more mesh-sensitive norm. If we
have quantities living at each mesh vertex, then measuring ‖Fx−f‖2 = (Fx− f)

T
(Fx− f) treats each vertex

value as having equal weight regardless of its associated Voronoi area on the mesh. Instead we can integrate
according to the Voronoi-mixed mass matrix described in Section 2.1.3: (Fx− f)

T
M (Fx− f). This is less

mesh-dependent when approximating continuous functions. This relates analogously to the earlier discussion
of quadratic penalties for weak constraints (see Section 2.2.2).

26

2.2 Constrained optimization

Conversion from quadratic to conic program

To convert to a conic problem, let us separate the quadratic, linear and constant terms of Equa-
tion (2.89):

ELS(x) =
1

2
‖Fx− f‖2 (2.92)

=
1

2
‖Fx‖2 − xTFTf +

1

2
fTf (2.93)

=
1

2
‖Fx‖2 + xTl + c. (2.94)

Now, introduce a vector of auxiliary variables t and rewrite our energy and linear inequality
constraints in Equation (2.62):

minimize
x,t

1

2
‖t‖2 + xTl + c

subject to F x− t = 0,

AT
iex ≤ bie.

(2.95)

Using an auxiliary scalar variable v we convert into conic form:

minimize
x,t,v

v + xTl + c

subject to Fx− t = 0,

AT
iex ≤ bie,

2v ≥ tTt.

where the inequality constraint on v forces its value to be inside the cone described by the
coordinates of t.

Putting all variables in a column vector, we can write this in matrix form, as we supply it to the
MOSEK solver:

minimize[
xT tT v

] [
xT tT v

]  l
0
1

+ c

subject to
[

F −I ∗
AT

ie ∗ ∗

] x
t
v

 ≥ [0
−∞

]
,

[
F −I ∗

AT
ie ∗ ∗

] x
t
v

 ≤ [0
bie

]
,

2v ≥
∑
i

t2i .

Similar conversions also exist for treating general QPs as nonnegative least-squares problems,
which enjoy specialized solvers such as [Brand and Chen 2011]. However, this conversion via
the Lagrangian duality requires computing AieQ

−1AT
ie, which is likely dense even for sparse Q

and Aie.

27

2 Mathematical foundation

28

3
Mixed finite elements for variational
surface modeling

Many problems in geometric modeling can be described using variational formulations that
define the smoothness of the shape and its behavior w.r.t. the posed modeling constraints. For
example, high-quality C2 surfaces that obey boundary conditions on positions, tangents and
curvatures can be conveniently defined as solutions of high-order geometric PDEs. The advan-
tage of such a formulation is its conceptual representation-independence. In practice, solving
high-order problems efficiently and accurately for surfaces approximated by meshes is notori-
ously difficult. Classical FEM approaches require high-order elements which are complex to
construct and expensive to compute. Recent discrete geometric schemes are more efficient, but
their convergence properties are hard to analyze, and they often lack a systematic way to impose
boundary conditions. In this chapter, we present an approach for discretizing common PDEs
on meshes using mixed finite elements, where additional variables for derivatives in the prob-
lem are introduced. Such formulations use first-order derivatives only, allowing a discretization
with simple linear elements. Various boundary conditions can be naturally discretized in this
setting. We formalize continuous region constraints, and show that these seamlessly fit into the
mixed framework. We demonstrate mixed FEM in the context of diverse modeling tasks and
analyze its effectiveness and convergence behavior.

3.1 Introduction

A variety of geometric modeling problems are solved using energy minimization or geometric
PDEs: defining a smooth surface interpolating fixed points or curves, filling holes and connect-
ing pieces of geometry, deformations, and cut-and-paste operations. Such energies and PDEs

29

3 Mixed finite elements for variational surface modeling

Reflection Lines Total Curvature

∆2u = 0 ∆3u = 0 ∆2u = 0 ∆3u = 0

Figure 3.1: Blending two cylinders of different diameters using triharmonic and biharmonic equations.

are defined in terms of differential quantities such as tangents, curvatures and curvature deriva-
tives. Boundary conditions for these problems play an important role, for instance, ensuring
that surfaces are joined smoothly. Higher-order boundary conditions can only be imposed if the
variational problems are of high order: C1 and C2 conditions can be imposed for PDEs of order
at least four and six, respectively.

While the PDEs of interest have high order, they usually need to be solved for surfaces approxi-
mated by meshes, and numerical schemes that produce mesh-independent solutions in the limit
of fine meshes and remain efficient need to be devised. Many reliable finite element discretiza-
tions are available for fourth-order problems, yet all standard conforming and non-conforming
elements require additional degrees of freedom associated with derivatives at vertices and edge
midpoints, increasing the overall number of variables and complicating implementation. Fur-
thermore, sixth-order problems, which are highly important in geometric modeling applications,
rarely appear in finite-element literature.

A currently preferred alternative in many geometry processing applications is to formulate dis-
crete analogs of variational problems using discrete-geometric operators, such as discrete Lapla-
cians. These approaches are simple, robust and perform well in practice, but lack the mesh-
independence guarantees provided by the finite elements designed to be convergent, although
mesh-independent and convergent behavior was observed experimentally for biharmonic prob-
lems on a range of mesh types [Grinspun et al. 2006]. An additional important complication
is a systematic treatment of boundary conditions: while satisfactory heuristics were designed
for a number of cases (most importantly, for region conditions, see Section 3.3), other types
of conditions, such as direct specification of tangents or curvature along a boundary, are more
difficult and typically require ad hoc mesh extension.

In this chapter, we present a discretization for two common PDEs on meshes using mixed fi-
nite elements, a well-established finite-element technique. The main idea is to introduce ad-
ditional variables for the derivatives in the problem, along with additional constraint equa-
tions relating these variables to the original ones, thereby reducing a high-order equation to
a low-order system which can be discretized with linear elements. We show that the intu-
itive and commonly used discretization of biharmonic and triharmonic equations introduced in
[Botsch and Kobbelt 2004] can be viewed as a transformation of a mixed element discretiza-
tion, and is directly related to the Ciarlet-Raviart discretization of the biharmonic equation. For
the triharmonic equation, we show that a standard mixed FEM discretization may lead to a sin-
gular system, but an alternative formulation with region constraints does not suffer from this

30

3.2 Previous work

problem. We show how different types of boundary conditions commonly used for geometric
problems can be discretized with mixed elements. We formalize the notion of continuous region
constraints, which are common in geometric modeling but rarely considered in finite element
literature, and demonstrate that these also naturally fit into the mixed framework.

We explore the convergence behavior of mixed discretizations for a variety of mesh types and
evaluate the degree of mesh dependence of the discretization. framework in geometric model-
ing, such as interactive shape editing, hole filling, blending (see Figure 3.1), and surface patch
construction from boundary curves. To this end, this work is a direct continuation of that begun
in [Tosun 2008].

3.2 Previous work

Many works in graphics and geometric modeling have considered surface design based on
PDEs. In the following we briefly describe the most relevant literature, classifying it by the
type of PDEs addressed, the employed discretization and the possible boundary conditions.

In the special case of simple domains and analytically specified boundary conditions, PDEs can
be solved in closed form without any discretization [Bloor and Wilson 1990]. In more general
settings, the equations need to be discretized and solved numerically. Moreton and Séquin
[1992] model shapes that minimize the curvature variation energy, where positions, tangents
and normal curvatures are specified along curves, and Bézier patches are used to approximate
the surface. Welch and Witkin [1994] also use curvature variation to interpolate curve networks
and points, but on general triangular meshes; they compute the required differential quantities
with local quadratic fits and finite differences.

Local quadratic fits may suffer from instabilities, unless sufficiently large number of vertices
are used, which results in lower performance. To gain speed and accuracy (by using much
finer meshes) many recent approaches adopt discrete differential operators such as the discrete
Laplacians. Taubin [1995] used the uniform-weight discrete Laplacian for fair surface design
and proposed constraining point positions or discrete Laplacian values at vertices. Later works
use the more accurate, discrete cotangent Laplacian [Pinkall and Polthier 1993], closely related
to FEM discretization [Wardetzky et al. 2007a, Reuter et al. 2009].

Mixed finite elements are based on factoring a higher-order problem into a system of lower-
order problems. This idea is also used in the context of discrete differential operators when
boundary conditions allow this, e.g. Schneider and Kobbelt [2000, 2001] factor a PDE in-
volving the Laplacian of mean curvature ∆H = 0 into two second-order equations. In the
FIBERMESH system [Nealen et al. 2007], the same approach is used to construct fair sur-
faces that interpolate a set of arbitrary curves, with no tangents or curvatures fixed. Similarly,
[Joshi and Carr 2008] decompose ∆2x = 0 for curve inflation, fixing x and ∆x to boundary
curves with prescribed position and mean curvature normal values. A more complete survey
of discrete variational techniques can be found in [Botsch and Sorkine 2008]. A priori, these
approaches lack convergence guarantees for general meshes. In absence of convergence, the
degree of mesh dependence is hard to predict, and adaptive refinement techniques are hard to
apply. In [Grinspun et al. 2006], it is demonstrated that the discretization of the Laplacian en-

31

3 Mixed finite elements for variational surface modeling

ergy (equivalently, the biharmonic equation) based on the cotangent weights does not satisfy
a version of the patch test (a standard test used for verifying convergence of finite elements in
engineering), yet empirically it exhibits convergent behavior. The mixed FEM point of view
described in this thesis provides a different approach for analysis of this discretization.

The closest work to ours is the method of Clarenz et al. [2004] that applies the Willmore flow
(fourth-order geometric PDE) to fair surface design by using FEM with auxiliary variables
y = ∆x. Their formulation allows prescribing x values and co-normals on the boundary.
We demonstrate that this and other discrete approaches can be viewed as an application of the
mixed finite element discretization, and that a variety of discrete boundary conditions (region
conditions) used in [Botsch and Kobbelt 2004], [Clarenz et al. 2004] and [Xu et al. 2006] can
be derived from a continuous formulation.

Finite elements offer a consistent way of solving geometric PDEs and treating various bound-
ary conditions; however, relatively complex higher-order elements are required for conforming
discretization of higher-order PDEs. Non-conforming elements such as DKT, are widely used
in engineering for fourth-order problems but are difficult to extend to higher orders and require
many additional derivative-related degrees of freedom. Some of the early work applied standard
engineering elements to surface modeling [Celniker and Gossard 1991], yet most methods, es-
pecially for interactive applications, used simpler discretizations for reasons of efficiency and
implementation ease. Mixed finite elements for fourth-order problems offer an alternative ap-
proach that allows using piecewise linear basis functions. Although additional variables are in-
troduced, they have a natural interpretation and in most cases can be eliminated inexpensively.
A mixed formulation was introduced for the biharmonic equation in [Ciarlet and Raviart 1974]
and its variations are considered in [Falk 1978, Monk 1987, Amara and Dabaghi 2001] and
many other papers. Convergence of mixed discretization for linear elements was shown in
[Scholz 1978]. In contrast to biharmonic equations, sixth-order equations (especially trihar-
monic) did not receive much attention, as few physical problems result in such equations.
One exception is [Bramble and Falk 1985], deriving theoretical convergence estimates for a
mixed formulation of polyharmonic equations. While piecewise-linear discretizations ex-
tend naturally to the case of non-flat domains, convergence questions require special treat-
ment; the Laplace-Beltrami equation and Willmore flow discretizations were analyzed in
[Dziuk 1988, Dziuk 1990, Deckelnick and Dziuk 2006].

3.3 Model problems

We consider two important examples: Laplacian and Laplacian gradient energies, leading to
biharmonic and triharmonic equations (Figure 3.1). We use the notation 〈f, g〉X =

∫
X
fg dA

for the L2 inner product of two functions on a domain X (an area or a curve in the plane or on a
surface). When the subscript is omitted, the domain Ω is implied. For vector-valued functions,
denoted by bold letters, the product in the integral is replaced by dot product.

In the first problem we compute a deformation u of a planar sheet occupying an area Ω0 in the
plane so that the Laplacian energy is minimized:

EB = 1
2
〈∆u,∆u〉Ω0 → min, (3.1)

32

3.3 Model problems

where u : Ω0 → R3 is the deformation. The related Euler-Lagrange equation is the biharmonic
equation ∆2u = 0.

The second example is the Laplacian gradient energy

ET = 1
2
〈∇∆u,∇∆u〉Ω0 → min, (3.2)

with boundary conditions on second derivatives, important for modeling curvature-continuous
surfaces. The Euler-Lagrange equation for this problem is the sixth order triharmonic equation:
∆3u = 0.

To solve this problem numerically we need to answer three main questions:

• How do we discretize the functional involving second derivatives using a triangle mesh
which is only C0 continuous?

• How do we impose different types of boundary conditions?

• What guarantees do we have that the answer remains reasonably consistent for any mesh
we choose for Ω0?

For example, a common answer to the first question in the case of (3.1) is to use a discrete-
geometric analog of the Laplacian, such as the well-known cotangent formula. It is less clear
how to apply this formula near the boundary, and how to impose boundary conditions; most
commonly, constrained vertices are added outside the domain. The validity of such discretiza-
tion remains questionable if mesh-independence is desired at least for finer meshes: the cotan-
gent formula does not converge pointwise, so, strictly speaking, it yields only a mesh-dependent
analog of the Laplacian energy.

3.3.1 Low-order decomposition

A general systematic approach to discretization of problems involving high-order derivatives
is to convert an unconstrained optimization problem like (3.1) into a lower-order constrained
optimization problem with additional variables. Instead of the Euler-Lagrange equations for
(3.1), we solve the constrained problem

1
2
〈v,v〉Ω0 → min, s.t. ∆u = v. (3.3)

Similarly, instead of minimizing energy ET , we solve

1
2
〈∇v,∇v〉Ω0 → min, s.t. ∆u = v. (3.4)

For the Laplacian gradient energy, we no longer need to discretize third derivatives. Further-
more, in both cases one can also eliminate second derivatives by using Green’s identity:

LB =1
2
〈v,v〉Ω0 + 〈λ,∆u− v〉Ω0 (3.5)

=1
2
〈v,v〉Ω0 − 〈λ,v〉Ω0 + 〈λ, ∂u

∂n
〉∂Ω − 〈∇λ,∇u〉Ω0 . (3.6)

The partial derivative ∂/∂n is w.r.t. the normal of the boundary curve. A similar transformation
yields a formulation with first-order derivatives for the minimization of ET . Similar consid-
erations apply for weak formulations of high-order PDEs in general. However, in this case,

33

3 Mixed finite elements for variational surface modeling

∆2u = 0 ∆3u = 0

Figure 3.2: Region conditions: the blue areas (Ωf) are fixed and the yellow part (Ω) is solved for. The
circular region in the middle was lifted upwards. Solving ∆ku = 0 with region boundary
conditions. The triharmonic solution is smoother near the region boundaries.

Figure 3.3: Prescribing tangent control on boundary curves. The leftmost image shows a biharmonic
surface with ∂u/∂n = 0. Tangents can be explicitly manipulated by the user (see also
Figure 3.6).

one needs to consider a weak formulation, (e.g. 〈∆u, v〉 = 0 for any function v for which the
integral is defined, instead of ∆u = 0), and apply integration by parts to reduce the order of the
equation. For the transformed problems, piecewise-linear elements can be used for all quanti-
ties, as it is commonly done for second-order problems. This idea is the foundation of the mixed
finite element discretizations (Section 3.4). The constraint-based formulation has an additional
significant advantage: it allows us to treat region boundary conditions in a systematic way, as
explained below.

3.3.2 Boundary condition types

We define various boundary conditions in the continuous case. While for some applications (e.g.
deformations of a fixed mesh) the problem can be studied entirely in the discrete domain, we
are concerned with cases when a common reference point is needed for meshes with different
connectivity and resolution that approximate the same shape.

In geometric modeling literature, the boundary conditions for problems on meshes are often
formulated by assuming that a part of the mesh outside the solution domain is available or by
adding vertices on the boundaries of the mesh using a heuristic. In contrast, in FEM discretiza-
tions, it is typically assumed that the explicit conditions on boundary derivatives are given, and
the mesh does not extend beyond the boundary of the solution domain. Both types of conditions
are relevant for geometric problems.

A boundary condition can be associated with subsets of the domain Ω0 of different dimensions:

34

3.3 Model problems

Figure 3.4: Prescribing curvature control on boundary curves. A triharmonic surface with boundary
curvature manipulated via a Bézier control widget.

∆2u = 0 ∆3u = 0

Figure 3.5: Point boundary conditions: an isolated point is highlighted by the green dot. The triharmonic
surface is smoother around the boundary (C2).

• region boundary conditions on open domains Ωf ⊂ Ω0;

• curve boundary conditions on curves C ⊂ Ω0;

• point boundary conditions on isolated points P ∈ Ω0.

Fixed region boundary conditions require that, given a domain Ωf and a fixed function uf ,

u|Ωf = uf , and u is Ck on Ω, for some k ≤ 2.

These boundary conditions are illustrated in Figure 3.2. This type of conditions can be viewed
as the continuous analog of conditions defined directly for meshes in [Clarenz et al. 2004,
Xu et al. 2006].

Fixed curve boundary conditions are most commonly considered in the FEM setting. On a
curve C (typically a part of ∂Ω, but possibly in the interior of Ω0), we require that

∂iu

∂ni

∣∣∣∣
C

= bi, i ≤ k for k ≤ 2.

Figures 3.3 & 3.6 demonstrates the usage of this condition for explicit tangent control on a
biharmonic surface. For triharmonic surfaces, we may specify both tangents and curvature
(second derivatives) at the boundary, as shown in Figure 3.4.

Free (natural) curve boundary conditions are naturally obtained from energy-based problems;
they are needed at a boundary with no Dirichlet constraints in order for the energy to be minimal.

35

3 Mixed finite elements for variational surface modeling

meshed domain tangent constraints (see Figure 3.3)

Figure 3.6: The mesh domain used in our examples for region and curve boundary conditions. Tangent
vectors can be explicitly manipulated by the user (green vectors in the right two images).
The rest of the tangents along the boundary are automatically interpolated (light brown).

They can also be applied to PDEs not originating from an energy, yielding similar boundary
behavior.

For the Laplacian energy, integration by parts leads to free boundary conditions
∂u/∂n = ∂∆u/∂n = 0. For the Laplacian gradient energy, the condition ∂∆2u/∂n = 0 needs
to be added. However, no special effort is needed to enforce them when the discretization is
derived from the energy, hence we do not consider them in detail. Figure 3.3 (left) shows the
effect of these boundary conditions for the biharmonic solutions. These conditions are used
extensively in the following Chapters 4 & 5. In these chapters, we define functions which may
meet user given constraints only in the interior of the domain. Thus, the boundary of the do-
main (boundary curve in R2 or a solid’s surface in R3 is from the user’s point of view left
unconstrained. Effectively these natural boundary conditions (and their higher order cousins)
are enforced implicitly (see also Section 4.7).

One may also consider other combinations of conditions for curves. For a biharmonic surface
we may fix any pair of u, ∂u/∂n, ∆u, and ∂∆u/∂n = 0 [Helenbrook 2003]. These possibili-
ties should be obvious when examining the biharmonic equation in factored form: two Poisson
equations, one in u and one in v = ∆u. Thus we may fix either Dirichlet or Neumann con-
ditions for each. Note, however, that fixing only ∆u, and ∂∆u/∂n = 0 is not a possible
combination as it will not uniquely determine u. Other pairs, such as Dirichlet constraints and
∆u = v may be useful (e.g. [Joshi and Carr 2008]), however we focus on directly controlling
first derivatives (tangents), which we argue is a more intuitive interface.

Point boundary conditions are identical to region boundary conditions, except instead of a func-
tion defined on Ωf , we use a set of values defined at isolated points pi of Ω0. An example is
shown in Figure 3.5.1

1Point constraints remain a curiosity in the continuous case. For the harmonic equation, they result in discontinu-
ous indicator functions [Crane 2012]. In the discrete case, fixing isolated points is tantamount to fixing a mesh
dependent sub-discretization-level curve of Dirichlet conditions around the point. The situation becomes more
interesting for higher order systems, where discontinuous appear (only) in derivatives.

36

3.4 Mixed finite element discretization

IΩ

I

I

I

I

I

Ωf

Figure 3.7: Notation for different areas of the mesh. For fourth-order equations, we include I2 into Ie.

3.4 Mixed finite element discretization

In this section, we demonstrate, using the two model examples discussed in Section 3.3, how
low-order decomposition can be used to discretize such problems with piecewise-linear ele-
ments only, and how the different types of boundary conditions can be imposed.

Our main focus is on the region boundary conditions, which lack a systematic treatment in
finite element context. We demonstrate the relationship between the classical Ciarlet-Raviart
mixed-element discretization of the biharmonic equation [Ciarlet and Raviart 1974], discrete-
geometric discretization of [Botsch and Kobbelt 2004] and our region constraint formulation.

Notation. Please refer to Figure 3.7. We assume that the domain Ω0 has polygonal bound-
ary and is meshed (the discretizations we describe, with some restrictions, are applicable to
domains with curved boundaries approximated by polygonal domains Ωh

0 for each resolution).
The parameter h denotes the average edge length of the mesh. The domain Ω is defined as the
subset of Ω0 excluding the union of Ωf with constrained curves and points, and the complement
of Ω in Ω0 is denoted by Ωe.

The set of vertex indices in the interior of Ω is denoted by IΩ, the set of vertex indices on the
boundary of Ω is I0, the sets of indices in Ωe in two layers outside the boundary are I1 and I2.
The set of all vertex indices in Ω0 is I , and the set of vertices in Ωe is Ie. In a matrix S with
rows and columns corresponding to vertex indices, we use subscripts Ω, 0, 1, 2 and e, to define
sliced submatrices with rows and columns coming from corresponding index sets. We also use
subscripts like 01 to denote I1 ∪ I0, and Ω̄ for IΩ ∪ I0, i.e., Ω with its boundary included.

3.4.1 Laplacian energy & biharmonic equation

We start with the very well studied example of Laplacian energy (3.1), whose Euler-Lagrange
equation is the biharmonic equation. It reveals the essential relations between conventional
mixed finite element discretizations, the region constraint discretization that we propose, and
the discrete-geometric approach of [Botsch and Kobbelt 2004].

37

3 Mixed finite elements for variational surface modeling

Region conditions require an additional term in the Lagrangian, constraining the solution to
coincide with a given function on Ωf :

1
2
〈v,v〉Ω0 − 〈λ,v〉Ω0 + 〈λ, ∂u

∂n
〉∂Ω − 〈∇λ,∇u〉Ω0 + 〈µ,uf − u〉Ωf , (3.7)

where µ is the Lagrange multiplier function for the region constraint. It is important to note that
the first constraint, ∆u = v, is enforced over all of Ω0, which ensures C1 continuity across the
boundary of Ω.

A similar Lagrangian, with the first term replaced with 〈∇v,∇v〉Ω0 is obtained for the trihar-
monic problem (3.2):

1
2
〈∇v,∇v〉Ω0 − 〈λ,v〉Ω0 + 〈λ, ∂u

∂n
〉∂Ω − 〈∇λ,∇u〉Ω0 + 〈µ,uf − u〉Ωf . (3.8)

Discretization with piecewise linear elements. We use piecewise-linear approxima-
tions for u, v, λ and µ, all of the form

∑
i∈I aiϕi. For a quantity a, we denote the piecewise

linear approximation by ah.

Substituting these approximations into the Lagrangian (3.7), and differentiating w.r.t. all free
variables vi, ui, λi, µi, defined at vertices i ∈ I \ I∂Ω, we obtain the following system of
equations: ∑

j∈I

(vj − λj)〈ϕi, ϕj〉 = 0,∑
j∈I

−λj〈∇ϕi,∇ϕj〉 −
∑
j∈I

µj〈ϕj, ϕi〉Ωf = 0,∑
j∈I

−uj〈∇ϕi,∇ϕj〉+
∑
j

vj〈ϕj, ϕi〉 = 0,∑
j∈I

(uj − ufj)〈ϕj, ϕi〉Ωf = 0.

(3.9)

The first equation allows us to eliminate λi immediately as it has to coincide with vi, leaving
variables u, v and µ. One can observe that the coefficients of the system mostly come from
the discrete Laplacian matrix Lij = −〈∇ϕi,∇ϕj〉, and the mass matrix Mfull

ij = 〈ϕi, ϕj〉 (see
Sections 2.1.2 & 2.1.3 respectively).

Lumped mass matrices. The mass matrix Mfull is often replaced by a lumped mass
matrix, i.e. a diagonal matrix Md. The lumping step is mathematically sound: replacing
〈vh,vh〉 = vh

T
Mvh with vh

T
Mdvh does not affect the convergence rate for the solution,

if the quadrature rule has accuracy O(h), which is satisfied by using vertices as quadrature
points [Ciarlet 1978, Brezzi and Fortin 1991], leading to a diagonal mass matrix. From now on,
we assume that the mass matrix in (3.9) was replaced by a diagonal matrix Md whose diagonal
entries are denoted by Di. Two approaches to computing Di are discussed in Section 2.1.3
and briefly compared for our model problems in Section 3.5. With a diagonal mass matrix, the

38

3.4 Mixed finite element discretization

system reduces to: ∑
j∈I

vjLij + Diµi = 0 if i ∈ Ie,∑
j∈I

vjLij = 0 if i 6∈ Ie,∑
j∈I

Lijuj −Divi = 0,∑
j∈I

uj − ufj = 0 if i ∈ Ie.

(3.10)

As the values of the Lagrange multiplier µ are generally not of interest to us, we can eliminate
the first set of equations defining µi in terms of vi, since µi are not present in other equations.
The last set of equations indicates that for i on If , ui can be replaced by the known values ufi .
Finally, we can compute the values of vi for i ∈ Ie using

∑
j∈I Lijuj = Divi, as for entries

away from the boundary, all uj with nonzero Lij are fixed values ufj .

Eliminating values of uj and vj in fixed regions from the system after swapping equations and
moving known quantities to the right-hand side, yields in matrix form:[

−Md LΩ̄,Ω

LΩ,Ω̄ 0

] [
vΩ̄

uΩ

]
=

[
−LΩ̄,0u

f
0 − LΩ̄,1u

f
1

0

]
. (3.11)

The system can be simplified even further, if we observe that Md can be easily inverted, and vΩ̄

can be eliminated from the system, yielding

LΩ,Ω̄(Md)−1LΩ̄,ΩuΩ = −LΩ,Ω̄(Md)−1LΩ̄,01u
f
01, (3.12)

leaving only uΩ as the unknown.

Observe that point conditions are enforced using the same system of equations: for an isolated
point constraint, assuming it is at a mesh vertex, I1 is empty, so the second term of the right-hand
side is absent.

Fixed curve conditions. Fixed-curve boundary conditions of the form u = b0 and
∂u/∂n = b1 are commonly used in mixed discretizations of the biharmonic equation; we
refer to [Ciarlet and Raviart 1974, Amara and Dabaghi 2001] for details. An approach similar
to the one outlined above can be used, with the Lagrangian in (3.6) restricted to Ω̄. This yields
the system of equations[

−MΩ LΩ̄,Ω

LΩ,Ω̄ 0

] [
vΩ̄

uΩ

]
=

[−LΩ
Ω̄,0

b0 −N∂Ω
Ω̄,0

b1

0

]
, (3.13)

where the matrix N∂Ω
ij = 〈ϕj, ϕi〉∂Ω, and LΩ and MΩ are the discrete Laplacian and mass

matrices with integration performed over Ω only, as 〈·〉Ω = 〈·〉Ω0 − 〈·〉Ωe , LΩ = L − LΩe .
This is exactly the Ciarlet-Raviart discretization for piecewise-linear elements with convergence
established in [Scholz 1978].

39

3 Mixed finite elements for variational surface modeling

Comparing (3.13) and (3.11), we observe two differences: first, the right-hand side term LΩ̄,1u
f
1

is replaced with −LΩe
Ω̄,1

uf1 + N∂Ω
Ω̄,0

b1; second, the full mass matrix is retained (in this case,
lumped matrices are not required to eliminate variables). A more detailed analysis presented in
the Section 3.7 shows that the difference between the solutions of the two systems converges
to zero as h → 0. Replacing MΩ with diagonal MΩ,d yields a system matrix similar to (3.11),
except the integration is over Ω only; the same elimination procedure can be applied to obtain a
system for u alone.

Our observations are summarized in Proposition 1:

Proposition 1. The systems (3.11) and (3.12) are equivalent to the discretization presented
in [Botsch and Kobbelt 2004], and, up to a perturbation of the right-hand side and restricting
mass-matrix integration to Ω, to the Ciarlet-Raviart system (3.13).

We note that adjusting b1 offers a degree of control over how smoothly the surface approaches
the boundary, similar to the control offered by the λ parameter in [Botsch and Kobbelt 2004]
but without modifying the system matrix (which leads to more efficient computations) and with
more direct interpretation.

Convergence. As we discuss in more detail in the Section 3.7, this connection between
(3.11) and (3.13) can be used to apply available theory for (3.11) and establish conver-
gence. Note that the cotangent formula discretization of the Laplacian energy discussed in
[Grinspun et al. 2006] exactly matches (3.11). While it fails the consistency part of the version
of the patch test discussed there, this, by itself, does not preclude convergence, which in the
case of (3.11) is established by reduction to Ciarlet-Raviart system.

We emphasize that using a conforming FEM discretization in the case of constrained problems
like (3.11) does not guarantee convergence. In fact, the more general technique for analysis of
mixed elements based on the LBB condition [Brezzi and Fortin 1991] cannot be applied to any
discretization of the biharmonic equation. All known estimates are suboptimal, in a sense that
the rate of convergence of the solution is lower than O(h2) approxmiation power of piece-wise
linear finite elements. TheH1 norm estimates in [Scholz 1978] and [Amara and Dabaghi 2001],
combined with Poincare-Friedrichs inequality lead to L2 norm convergence rates h7/4(log h)3/2.

3.4.2 Laplacian gradient energy & triharmonic equation

The similarity between the Lagrangians (3.6) and (3.8) allows deriving a piecewise-linear
discretization of the triharmonic system in a similar way: the main steps remain the same,
namely (i) use piece-wise linear approximations for all functions; (ii) replace mass matrices
with lumped mass matrices; (iii) eliminate unneeded variables.

Starting with (3.8),

〈∇v,∇v〉Ω0 − 〈λ,v〉Ω0 + 〈λ, ∂u
∂n
〉∂Ω − 〈∇λ,∇u〉Ω0 + 〈µ,uf − u〉Ωf , (3.14)

40

3.4 Mixed finite element discretization

we obtain the following system, the analog of (3.10):∑
j∈I

Lijλj + Diµi = 0 if i ∈ Ie,∑
j∈I

Lijλj = 0 if i 6∈ Ie,∑
j∈I

Lijvj −Diλi = 0,∑
j∈I

Lijuj −Divi = 0,∑
j∈I

ui − ufi = 0 if i ∈ Ie.

(3.15)

An important distinction is that the Lagrange multiplier λ can no longer be eliminated, due to a
more complex form of the equation obtained by differentiating with respect to vi. From direct
examination of the system one observes that the Lagrange multiplier λ corresponds to w in the
low-order factorization of the triharmonic equation of the form ∆u = v, ∆v = w, ∆w = 0.

Because of the different form of the first equation, we no longer can eliminate all variables
corresponding to vertices outside the one-row neighborhood of Ω̄, and two rows are needed, as
expected from the discrete-geometric discretizations of triharmonic equations. We obtain the
following system in the end: LΩ̄Ω̄ 0 −Md

Ω̄Ω̄

0 0 LΩΩ̄

−Md
Ω̄Ω̄

LΩ̄Ω 0

vΩ̄

uΩ

λΩ̄

 =

 −LΩ̄,1v1

0

−LΩ̄,0u
f
0 − LΩ̄,1u

f
1 ,

 (3.16)

where
v1 = −L1,0u

f
0 − L1,1u

f
1 − L1,2u

f
2 . (3.17)

Again, as it was observed for the biharmonic equation, one can also eliminate v and λ entirely
by inverting the mass matrices, and obtaining a system in terms of u alone, which coincides
with the system of [Botsch and Kobbelt 2004].

Curve boundary conditions. For curve boundary conditions, the discretization can be
obtained in a similar way, however an important difference arises. In this case, the values vi are
fixed for boundary vertices, unlike in the case of the region boundary condition system (3.16),
where these remain as free variables. This results in the system matrix LΩΩ 0 −MΩ,d

ΩΩ̄

0 0 LΩΩ̄

−MΩ,d

Ω̄Ω
LΩ̄Ω 0

 . (3.18)

Somewhat surprisingly, although the discretization follows the same pattern as well-established
discretizations for biharmonic equations, the resulting systems are often overdetermined and
cannot be practically used. The following proposition describes simple local mesh configura-
tions leading to singularity, but one can observe more complex global dependencies, resulting
from the fact that there are “too many” degrees of freedom fixed on the boundary, while the
equations corresponding to boundary vertices are retained.

41

3 Mixed finite elements for variational surface modeling

Minimum Angle 30°

Minimum Angle 1°
Dart Radius: 0 h h = 1e-1 h = 1e-2

Figure 3.8: We generate irregular meshes by perturbing vertices of a regular grid by an amount less than
a specified “dart radius” (increasing from 0 to average edge length h, four columns far left
to right). We consider such meshes as resolutions increase (e.g. two right most columns).
We also run Delaunay triangulation with Steiner points to ensure minimal angle constraints
(compare top and bottom rows).

Proposition 2. The system (3.18) is singular if two vertices in I1 have exactly one edge-
adjacent vertex in IΩ.

4 5 6

2

1

3

Indeed, observe that the system with lumped mass contains the equa-
tions of the form L52u2 = D5v5 − L54u4 − L55u5 − L56u6 − L53u3,
and L52u2 = D3v3 − L55u5 − L56u6 − L53u3 + L51u1. Each equation
has exactly one variable u2; the remaining components of u and v are
on the boundary and are fixed. In general, these equations are not com-
patible. Similar observation holds for the full mass matrix, but a slightly
larger neighborhood needs to be considered.

Reduction of fixed curve boundary conditions. An alternative approach to discretiz-
ing curve boundary conditions is to reduce them to the discretization of the type (3.16). This is
achieved by inferring the values of ui for i ∈ I−1 where I−1 are the vertices in the interior of Ω,
edge-adjacent to the boundary, from the boundary values of ∂u/∂n = b1.

For each triangle in Ω with 2 vertices on the boundary, the value of the interior vertex can be
easily determined independently, as the ∂u/∂n and the boundary values completely specify the
gradient of u. If several such triangles have a common vertex v in the interior (the situation that
leads to overdetermined systems), we simply average all values obtained for v from these trian-
gles, since the difference in these values should decrease at least asO(h2) as the mesh is refined.
Algebraically, this procedure eliminates a part of the overdetermined system by exploiting the
fact that the values of u on I−1 can be solved for in least-squares sense, independently of the
rest of the variables.

As a result, we obtain a discrete system of equations with two rows of values of u fixed, and
values of v on the boundary. The rest of the derivation proceeds as before, by substituting

42

3.5 Evaluation and applications

 1.E−2.5 1.E−0.5
1.E−7

1.E−6

1.E−5

h

 1.E−2.5 1.E−0.5
1.E−7

1.E−6

1.E−5

h

 1.E−2.5 1.E−0.5
1.E−7

1.E−6

1.E−5

h

 1.E−2.5 1.E−0.5
1.E−7

1.E−6

1.E−5

h

 1.E−2.5 1.E−0.5
1.E−7

1.E−6

1.E−5

h

 1.E−2.5 1.E−0.5
1.E−7

1.E−6

1.E−5

h

m
in

 a
ng

le
 3

0
de

g
m

in
 a

ng
le

 1
 d

eg
area, reduced area, full curve, full

Figure 3.9: Dependence of the error on average edge length for the Laplacian energy, randomized
meshes.

piecewise linear expressions for u (with two rows fixed), v (with one row fixed) and λ (with no
rows fixed). The system matrix is identical to (3.16), if one row on the boundary is removed
from Ω, and renamed I0, and I0 is renamed I1. The right-hand side has the same form, but
instead of v1 given by (3.17), the boundary value of v1 appears directly.

Convergence. While many versions of theoretical analysis are available for the biharmonic
and other fourth-order problems, much less work was done on higher-order equations. Un-
fortunately, the triharmonic problem suffers from the same diffuculty as biharmonic: general
theorems based on the LBB (inf-sup) condition do not apply for similar reasons. Mixed ele-
ments for polyharmonic problems are considered in [Bramble and Falk 1985]; however, error
estimates are obtained under the assumption that the discretization in the domain Ω is asymp-
totically finer than the discretization on the boundary.

3.5 Evaluation and applications

Implementation. In our implementations, we solve the system using either UMFPACK’s
sparse LU factorization [Davis 2004] or MATLAB’s LDL decomposition [Duff 2004]. Though
our systems are symmetric, they are in general not positive definite. Therefore, we may use a
Cholesky factorization only when the system is reduced to a single variable. We observe that
the timings for solving the system with auxiliary variables do not differ much from timings for
solving the reduced system: while the number of variables is smaller, the system is much less
sparse. As only the right-hand side depends on the boundary conditions, the system can be

43

3 Mixed finite elements for variational surface modeling
m

in
 a

ng
le

 3
0

de
g

m
in

 a
ng

le
 1

 d
eg

area, reduced area, full curve, full

h 1.E−2 1.E−1
1.E−4

1.E−3

h 1.E−2 1.E−1
1.E−4

1.E−3

h 1.E−2 1.E−1
1.E−4

1.E−3

h 1.E−2 1.E−1
1.E−4

1.E−3

h 1.E−2 1.E−1
1.E−4

1.E−3

h 1.E−2 1.E−1
1.E−4

1.E−3

Figure 3.10: Dependence of the error on average edge length for the Laplacian gradient energy, random-
ized meshes.

prefactored when these conditions are manipulated.

Convergence and mesh dependence. We start with a study of the errors of the region
and curve boundary conditions. We characterize meshes by the average edge length h. We
have used several sequences of meshes from [Grinspun et al. 2006] (see Figure 3.11). We also
used several sets of randomized meshes, obtained by perturbing the positions of points on a
regular grid and running Delaunay triangulation on the resulting vertices, with Steiner points
added to satisfy a constraint on the minimal angle (see Figure 3.8). The errors are calculated
by comparing our solution with an analytic solution. We choose an arbitrary function ut as the
target analytic solution, sample boundary conditions from this function and use the right-hand
side g = ∆kut for k = 2 and k = 3. We have tried a number of test functions with similar
results.

Figures 3.9 and 3.10 show how the L2 error changes with average edge length for randomized
meshes with minimal angle of 30 and 1 degrees, and Figure 3.12 shows the same dependence
for the meshes from Figure 3.11. The plots read right to left as h decreases. We observe
that the convergence rate for the Laplacian energy (biharmonic equation) is consistent with
the error estimate of [Scholz 1978]. There is no significant difference between the behaviors
of region and curve boundary condition formulations, and there is good consistency between
different connectivities with the same average edge length. At the same time, more regular
mesh patterns result in greater dependence on connectivity (Figure 3.12, top). There is no
significant difference in numerical solutions obtained from the reduced formulation (3.12) and
the equivalent two-variable formulations (3.11) and (3.13).

The behavior for the Laplacian gradient is quite different (Figs. 3.10 and 3.12, bottom). The
observed average convergence rate is substantially slower for region conditions, and the devia-

44

3.5 Evaluation and applications

equilateral mixed half 4-8 aspect rat. 3 polar distort. half 3-12

Figure 3.11: Mesh connectivities used in tests, from [Grinspun et al. 2006].

bi
ha

rm
on

ic
tri

ha
rm

on
ic

area, reduced area, full curve, full

1.E-09

1.E-07

1.E-05

1.E-03

1.E-02 1.E-01h
1.E-09

1.E-07

1.E-05

1.E-03

1.E-02 1.E-01h
1.E-09

1.E-07

1.E-05

1.E-03

1.E-02 1.E-01h

1.E-09

1.E-07

1.E-05

1.E-03

1.E-02 1.E-01h
1.E-09

1.E-07

1.E-05

1.E-03

1.E-02 1.E-01h
1.E-09

1.E-07

1.E-05

1.E-03

1.E-02 1.E-01h

Figure 3.12: Dependence of the error on average edge length for the Laplacian energy (left), and Lapla-
cian gradient energy (right); test mesh connectivities shown in Figure 3.11.

barycentric

h

hybrid

h

hybrid

randomized meshes

barycentric

h

Figure 3.13: Comparison of barycentric and hybrid [Meyer et al. 2002] lumped mass matrices.

45

3 Mixed finite elements for variational surface modeling

original ∆2, fixed region ∆2, fixed tangents ∆3, fixed region ∆3, fixed ∂2/∂n2

Figure 3.14: Hole filling: the half-sphere mesh was completed to close the “hole”. The left images
show biharmonic reconstruction using region constraints and curve constraints with differ-
ent prescribed tangents. The two rightmost images show the triharmonic reconstruction
using region constraints and curve constraints with user-prescribed curvatures.

tion from the average error for a given mesh resolution is higher. The most significant observed
effect is that by using curve conditions with explicitly defined second derivative, we obtain sub-
stantially better results, both in terms of error magnitude and less mesh dependence. Reduced
single-variable systems of the type (3.12) produce stronger mesh dependence and in some cases
inferior convergence behavior compared to the full mixed element system.

Mass matrix lumping. While the convergence rate and mesh dependence are not strongly
affected by the choice of the mass matrix lumping strategy, there is a substantial difference in
error magnitudes, which is consistent with the observations in the literature. Figure 3.13 shows
a comparison of “barycentric” lumping, with each diagonal entry obtained as 1/3 of the sum
of areas of triangles incident at the vertex, and the “hybrid” approach, using Voronoi areas for
non-obtuse triangles [Meyer et al. 2002] (see Section 2.1.3 for details).

Applications. Figures 3.2, 3.5, 3.3, and 3.4 show examples of interactive editing of bihar-
monic and triharmonic surfaces, with different user-defined boundary conditions. The user is
free to manipulate single points, curves or regions in the edited shape. Tangents can be pre-
scribed along curve boundaries for biharmonic surfaces; triharmonic surfaces additionally ad-
mit second derivative control along the direction perpendicular to the boundary. Tangents are
explicitly specified by the user at a sparse set of points along the boundary curve using a simple
vector widget, and the tangents at the remaining points are computed by interpolation (see Fig-
ure 3.6). Second derivatives are set using the Bézier widget (see Figures 3.4 & 3.18): the control
triangle of a quadratic Bézier curve whose derivatives are used in the boundary conditions for
∂/∂n and ∂2/∂n2.

Smooth detail-preserving deformations (Figure 3.18) are achieved by solving the bi- or trihar-
monic equation for the displacement function u. The user can interactively manipulate the
boundary conditions for the displacement field, namely positions, first and second derivatives.
A more complex approach involving rotations [Botsch and Sorkine 2008] can also be formu-
lated in the mixed-element framework.

Another application of PDE-based surfaces is smooth hole filling and blending between shapes.
In hole filling, a surface with a boundary loop (a hole) is given, whereas blending implies two
or more loops that need to be connected by a surface. One can use the region constraints
to ensure C1 or C2 continuity with the rest of the surface, or curve boundary constraints to
specify tangents and/or curvatures at the hole-border directly (Figure 3.14). Blending between

46

3.6 Conclusions

Reflection Lines Total Curvature

∆2u = 0 ∆3u = 0 ∆2u = 0 ∆3u = 0

Figure 3.15: Blending between surfaces (cylinders with a square and circular cross-sections) using bi-
and triharmonic equations and region boundary conditions. Note the smoother behavior of
reflection lines in the triharmonic case.

Figure 3.16: Blending between two spherical caps, with controllable sharp features introduced using
tangent conditions.

two shapes using region boundary conditions is shown in Figure 3.15; the higher smoothness
of the triharmonic surface is evident from the reflection lines. Figure 3.17 shows two curves
interpolated with a variational patch, with the shape of the patch controlled by tangents and
second derivatives specified along the curves (we map both curves to two opposite boundaries of
a rectangular area in the plane, and periodic conditions are imposed at the other two boundaries).

3.6 Conclusions

The technique that we have presented allows one to discretize a broad variety of functionals
and PDEs with different types of boundary conditions using only piecewise linear elements.
The main components of the approach include (1) factorization of the original equations into
low-order equations by introducing additional variables; (2) using constraints to impose region
conditions; (3) lumping mass matrices to eliminate unneeded variables.

While experimental evidence shows that the method is converging for both forth- and sixth-
order problems, convergence is significantly slower for the latter, and mesh dependence is
stronger. We observe that using high-order interpolation to estimate the second-order boundary
condition somewhat improves the situation.

One potential direction for improvement is, instead of factoring this system into three second-

47

3 Mixed finite elements for variational surface modeling

initial curves

tangent control

curvature control

zero
tangent

zero tangent
+ zero curvature

biharmonic

triharmonic

Figure 3.17: Filling in a patch between surfaces. Tangents or tangents plus second derivatives can be
specified at curves to obtain the desired shape.

Figure 3.18: Controlling deformations using tangents and second derivatives. We solve the triharmonic
equation ∆3u = 0 for the displacement function (the edited surface is then x + u). The
Camel’s nose is lengthened and the mouth opened by manipulating both the first and the
second normal derivatives of the displacement field; the curvature of the Max Planck’s nose
is altered by interacting with the second derivatives via the Bézier widget.

48

3.7 Appendix: Ciarlet-Raviart discretization and region boundary conditions

order systems, to use a fourth- and a second-order system, with quadratic elements for the
former (e.g. the ones used in [Grinspun et al. 2006]).

In the simpler case (biharmonic equation) existing theory can be used to establish convergence
guarantees; much less is known for sixth-order systems, and the experimentally observed con-
vergence rates are significantly lower. Another important direction for exploration is the effect
of the non-flat metric. The discretizations we describe should still apply with no significant
changes.

3.7 Appendix: Ciarlet-Raviart discretization and region
boundary conditions

We outline the connection between solutions to the systems (3.13) and (3.11) here; a full rigor-
ous treatment would require detailing assumptions on the smoothness spaces for boundary data
and is beyond the scope of this thesis. To simplify consideration, we assume that the solutions
are classical solutions, i.e., u is four times differentiable in Ω. In this case, solutions of contin-
uous problems with curve boundary conditions and region boundary conditions are identical,
as long as the boundary conditions for the curve problem are sampled from uf for the region
problem.

We consider a simplified situation with homogeneous Dirichlet conditions, i.e., we assume that
for (3.11), uf = 0, and for (3.13), b0 = 0 (this is a standard reduction for Dirichlet conditions,
using substitution u = uorig − uD where uD satisfies the Dirichlet condition [Braess 2002]).
This reduction requires introducing a right-hand side for the second equation in the system:
∆u = v, ∆v = ∆2uD = g.

The Ciarlet-Raviart system (3.13) with lumped mass matrix with solution (v∗
Ω̄
,u∗Ω) can be

rewritten in the form

[
−Md LΩ̄,Ω

LΩ,Ω̄ 0

] [
vΩ̄

uΩ

]
=

[
−N∂Ω

Ω̄,0
b1 −Md,Ωe

Ω̄,0
v∗0

gΩ

]
, (3.19)

where we have subtracted Md,Ωe

Ω̄,0
v∗0 from both sides, to obtain the same left-hand side as in

(3.11), and gΩ
j = 〈g, ϕj〉Ω. In comparison, the right-hand side of (3.11) is [0,gΩ0], with gΩ0

j =

〈g, ϕj〉Ω0 . As shown in [Scholz 1978], (v∗)h converges to v in L2-norm, and v is at least con-
tinuous on Ω̄. It can be extended by zero to all of Ω0, consistently with ∆uf . On the other hand,
the j-th component of −N∂Ω

Ω̄,0
b1, −〈b1, ϕj〉∂Ω = 〈∇uf ,∇ϕj〉Ωe = −〈b, ϕj〉∂Ω = 〈v, ϕj〉Ωe .

Combining L2 convergence of solutions (v∗)h of (3.11) to v, and the fact that components of
Md,Ωe

Ω̄,0
v∗0 are quadrature approximations of 〈v∗, ϕj〉Ωe , we observe that the r.h.s. of (3.19) con-

verge in L2 norm to the the r.h.s. of the system obtained for the (3.13) formulation in L2 norm,
so the difference in the solutions also converges as shown in [Brezzi and Fortin 1991].

49

3 Mixed finite elements for variational surface modeling

∆x = 0 ∆2x = 0 ∆3x = 0

Figure 3.19: The famous Three Pipes. The original pipes from [Botsch and Kobbelt 2004] suggest a
favorable parameterization, perhaps the quarter torus itself.
Low resolution images used under fair use for criticism and commentary.

3.8 Appendix: Reproducing the Three Pipes

Fair surface design, curve completion and hole filling are instances of boundary constraint
modeling. As we have just read in this chapter, one paradigm to solve these problems is to
compute parametric surfaces which minimize an intrinsic energy approximating the aesthetic
notion of fairness. Botsch and his colleagues pioneered this field in the early 2000s, focus-
ing on three relevant energies. Minimizers of the Dirichlet energy are harmonic functions and
corresponding minimal surfaces are membrane, soap-film-like. Minimizers of the Laplacian
energy (or linearized thin-plate energy) are curvature minimizing, biharmonic functions. Fi-
nally, minimizers of the Laplacian-gradient energy (or linearized curvature-variation energy)
are triharmonic functions. Botsch et al. have often illustrated the difference between these func-
tions with a figure of such surfaces connecting two equal-radius, cylindrical pipes positioned at
right angles [Botsch and Kobbelt 2004, Botsch 2005, Botsch et al. 2006b, Botsch et al. 2007a,
Botsch et al. 2008, Botsch et al. 2010, Botsch 2011]. Figure 3.19 shows the sequence of in-
creasing smoothness where the interior meets the boundary conditions: C0, C1, then C2. The
triharmonic solution appears to approximate a quarter torus.

Reproducing these images proves difficult with no extra knowledge. We must carefully consider
the choices of surface parameterization and boundary conditions to the k-harmonic equations
responsible for these solutions. In this section, we will explore the space these choices span in
the context of this example as a case study. This is not just an exercise in scientific reproduction,
but also an exploration and examination of the care necessary when crafting surfaces from such
functions.

As noted in [Botsch 2005, Botsch and Sorkine 2008], the parameterization of the ∆k operators
has a large impact on the quality of the linearized solutions. Despite this strong dependence,
to the best of our knowledge in all reproductions of the Three Pipes image the respective pa-
rameterization has not been mentioned. Though most instances are accompanying linearized
solutions, implying that the pipes are a result of solving a single set of linear equations, a few
uses appear in the context of nonlinear solutions [Botsch et al. 2007a, Botsch et al. 2008]2. Here

2Although this is likely not the case at least in the minimal solution to ∆x = 0, which (depending on the exact
boundary conditions) would be a discontinuous, piecewise-planar surface as in Figure 3.20 (second left) and
as described in [Pinkall and Polthier 1993]

50

3.8 Appendix: Reproducing the Three Pipes

Figure 3.20: Problem input, incorrect topology solution, possible alternative boundary conditions, gold-
standard torus solution, glued to original input.

we will limit our discussion to linear solutions, recognizing that if the parameterization were
defined upon the unknown solution then the linear and nonlinear solutions would coincide.

Let us first back up and define the problem we are trying to solve as it might appear in the
practical application of surface completion. As input we have two disjoint regions of a cylin-
drical pipe. The topology of the input and the solution is assumed known: let the inputs be
“capped” so that they are disk topology. Then the solution should join the input into single
sphere-topology component. This immediately restricts the parameterizations we will use to
describe this unknown surface to those that are annulus topology (homeomorphic to a finite,
“uncapped” cylinder). We expect the solutions to be continuous so we are not interested in
solutions like the second-to-left column in Figure 3.20, whose discontinuity effectively allows
a non-sphere final topology.

3.8.1 Parametric domain

The surfaces in question are solutions to:

∆x = 0, (3.20)
∆2x = 0, (3.21)
∆3x = 0, (3.22)

which correspond to minimizers of the Dirichlet, Laplacian, Laplacian gradient energies:

ED(x) =

∫
Ω

‖∇x‖2dx, (3.23)

EL(x) =

∫
Ω

‖∆x‖2dx, (3.24)

ELG(x) =

∫
Ω

‖∇∆x‖2dx, (3.25)

respectively. We will assume that the boundary conditions are imposed as region conditions in
a mixed finite elements discretization (see Section 3.3.2). The precise choice of the boundary
values will be discussed later.

The gradient and Laplace operators here are defined with respect to the underlying parameteri-
zation. A perfectly isometric parameterization (e.g. the unknown surface itself) would be ideal
for some applications as it implies minimal surfaces, minimal curvature surfaces and minimal

51

3 Mixed finite elements for variational surface modeling

curvature-variation surfaces respectively. This is often not feasible in practice and we rely on a
known parameterization instead. Unless otherwise noted, these minimal notions and continuity
are always with respect to the chosen parameterization and its imposed metric.

We consider three reasonable choices for this parameterization. The simplest possible choice is
to lay out our parameterization on the unit square, with periodic tiling vertically (so we have a
topological annulus). This choice seems most practical in scenarios where no knowledge of the
unknown surface is known in advance beyond the topology or when the boundary conditions
are too complicated to imply any meaningful information. Such a parameterization was used
in Figure 3.17. Next we consider using a straight cylinder with radius equal to those of the
boundary loops and height equal to the length of a circular arc between the boundary regions3

This parameterization seems reasonable in the surface completion application when some prior
knowledge is available (e.g. connecting equal radius pipes). Finally we consider parameteriz-
ing using the quarter torus itself, which exactly matches the values and normals of the boundary
regions. The practicality of this parameterization seems unlikely as the quarter torus could be
subjectively seen as the gold-standard solution to the original problem. However this param-
eterization is useful for analyzing this functions in terms of their reconstruction capabilities
[Tosun 2008].

We compare these different parameterizations in the Figure 3.21. In this case we use region
boundary conditions sampled from the straight cylinders at a right angle (top three rows). All
solutions suffer shrinkage between the pipes and the outer silhouette tends to straightens out.
The cylinder and torus parameterizations are subjectively better as they appear to have less
unnecessary oscillation.

Other considerations of the parametric domain such as mesh density and quality are ignored
here, but examined closely in [Tosun 2008] (e.g. see her Figure 4.14).

3.8.2 Boundary conditions

As described in [Botsch and Kobbelt 2004] and also subsequently in the context of our mixed
FEM discretization, region conditions are a simply way to impose boundary conditions for
higher-order PDEs. For k-harmonic functions we simply provide function values for k rings of
boundary vertices. If the function values are sampled from some existing surface then this en-
sures Ck−1 continuity of the coordinate functions of the solution, and thus the solution surface
as a whole. However, we may still use region conditions to impose other functions values. For
Figure 3.17, we used a system to use interactive splines to control derivatives along boundary
curves. Instead, we could simply sample k-rings of values from any arbitrary function or sur-
face. Relevant to this example, we could sample values of the region handles from a different
surface, one other than the straight cylinders at a right angle. In particular, we could sample
boundary values as if the regions lay on a torus (see Figure 3.20 middle).

We compare using the straight cylinders as boundary conditions and using the torus as bound-
ary conditions (compare the top and bottom three rows in Figure 3.21). Here we show both
the cylinder and torus parameterization as described above. Notice that the straight cylinders

3The cylinder is developable, thus this parameterization is equivalent to using correspondingly stretched and tiled
rectangle on the plane.

52

3.8 Appendix: Reproducing the Three Pipes

∆x = 0 ∆2x = 0 ∆3x = 0
Straight Tube Boundary Conditions

Torus Boundary Conditions (but connected to straight tubes)

Parameter Domain

Figure 3.21: Difference choices of domain parameterization and boundary conditions span a wide space
of solutions.

53

3 Mixed finite elements for variational surface modeling

imply Neumann condition vectors aligned with the cylinder axes and scaled uniformly around
the boundary curves. For the sampled torus boundary conditions we visualize the result show-
ing the straight cylinder regions in place. Though a bit confusing, we do this on purpose to
highlight that such an operation is possible: different surfaces may be used to impose bound-
ary conditions than the input surface which is to be completed. It is also useful to analyze the
continuity and impact of the implied Neumann conditions in this case. We have chosen this
torus so that Dirichlet values agree on the immediate boundary of the unknown surface and
regions (this ensures C0 continuity). While the effective first derivative Neumann conditions
of the torus agree in direction with that of the straight cylinders, the scales vary around the
boundary curves. This ensures that the surface is G1, meaning geometrically continuous rather
than parametrically continuous. This looser condition implies that surface is C1 under some
parameterization or intuitively that first derivatives match up to scale [DeRose 1985]. In con-
trast, the effective higher-order Neumann conditions for the triharmonic surface vary around the
curve, not just in scale, but also direction. Further manipulations of boundary conditions are
considered [Tosun 2008] (see her Figures 4.16 & 4.17).

Combining these choices of boundary conditions with the best parameterizations above it is not
surprising to find that the best choice of boundary conditions is to sample the torus rather than
the straight tubes. Combining the torus parameterization and the torus boundary conditions also
seem to most closely match the images of Botsch et al.4 This seems to imply that continuity
(the tirharmonic solutions are only G1, rather than C2) is perhaps less important than other
higher-level notions of fairness such as roundness and volume preservation. These appear to
be incorporated in the parameterization and boundary conditions choices, though perhaps not
intuitively controllable outside simple examples such as this.

4Private correspondence with Mario Botsch reveals that the true parameterization in use was closest to the far
right image in Figure 3.20: a quarter torus in the interior and straight cylinders on either end, a surface which
is merely G1 to begin with.

54

4
Bounded biharmonic weights for
real-time deformation

Object deformation with linear blending dominates practical use as the fastest approach for
transforming raster images, vector graphics, geometric models and animated characters. Un-
fortunately, linear blending schemes for skeletons or cages are not always easy to use because
they may require manual weight painting or modeling closed polyhedral envelopes around ob-
jects. Our goal is to make the design and control of deformations simpler by allowing the
user to work freely with the most convenient combination of handle types. We develop linear
blending weights that produce smooth and intuitive deformations for points, bones and cages
of arbitrary topology. Our weights, called bounded biharmonic weights, minimize the Lapla-
cian energy subject to bound constraints. Doing so spreads the influences of the controls in
a shape-aware and localized manner, even for objects with complex and concave boundaries.
The variational weight optimization also makes it possible to customize the weights so that they
preserve the shape of specified essential object features. We demonstrate successful use of our
blending weights for real-time deformation of 2D and 3D shapes.

4.1 Introduction

Interactive space deformation is a powerful approach for editing raster images, vector graphics,
geometric models and animated characters. This breadth of possibilities has led to an abun-
dance of methods seeking to improve interactive deformation with real-time computation and
intuitive use. Real-time performance is critical for both interactive design, where tasks require
exploration, and interactive animation, where deformations need to be computed repeatedly,
often sixty or more times per second. Among all deformation methods, linear blending and its

55

4 Bounded biharmonic weights for real-time deformation

Figure 4.1: Bounded biharmonic blending supports points, bones, and cages arranged in an arbitrary
configuration. This versatility makes it possible to choose the right tool for each subtask:
bones to control rigid parts, cages to enlarge areas and exert precise control, and points to
transform flexible parts. The weight computation is done at bind time so that high-quality
deformations can be computed in real time with low CPU utilization. In this and other
figures, affine transformations specified at point handles are illustrated by colored frames.
They are omitted when the transformation is just a translation.

variants dominate practical usage thanks to their speed: each point on the object is transformed
by a linear combination of a small number of affine transformations.

In a typical workflow, the user constructs a number of handles and the deformation system
binds the object to these handles; this is termed the bind time. The user then manipulates the
handles (interactively or programmatically) and the system deforms the shape accordingly; this
is the pose time. Unfortunately, linear blending schemes are not always easy to use. The user
must choose the handle type a priori and different types have different advantages (Figure 4.2).
Free-form deformations rely on a lattice of handles, but the requirement for regular structure
complicates control of concave objects. Skeleton-based deformations offer natural control for
rigid limbs, but are less convenient for flexible regions. Generalized barycentric coordinates
provide smooth weights automatically, but require construction of closed or nearly closed cages
that fully encapsulate transformed objects and can be tedious to manipulate. In contrast, varia-
tional techniques support arbitrary handles at points or regions, but at a greater pose-time cost.

Real-time object deformations would be easier with support for all handle types above: points,
skeletons, and cages. Points are quick to place and easy to manipulate. They specify local
deformation properties (position, rotation and scaling) that smoothly propagate onto nearby
areas of the object. Bones make some directions stiffer than others. If a region between two
points appears too supple, bones can transform it into a rigid limb. Cages allow influencing
a significant portion of the object at once, making it easier to control bulging and thinning in
regions of interest.

Our goal is to supply weights for a linear blending scheme that produce smooth and intuitive

56

4.2 Previous work

Figure 4.2: Left to right: Although cages allow flexible control, setting up a closed cage can be both
tedious and unintuitive: the Pirahna’s jaws require weaving around the teeth. In the case of
the Vacuum, points can provide crude scaling effects, while cages provide precise scaling
articulation. Point handles can provide loose and smooth control, while achieving the same
effect with a skeleton results in an overly complex armature.

deformation for handles of arbitrary topology (Figure 4.1). We desire real-time interaction for
deforming high-resolution images and meshes. We want smooth deformation near points and
other handles, so that they can be placed directly on animated surfaces and warped textures.
And, we seek a local support region for each handle to ensure that its influence dominates
nearby regions and disappears in parts of the object controlled by other handles.

Our solution computes blending weights automatically by minimizing the Laplacian energy
subject to upper and lower bound constraints. Because the related Euler-Lagrange equations
are biharmonic, we call these weights bounded biharmonic weights and the resulting deforma-
tion bounded biharmonic blending. The weights are computed once at bind time. At pose time,
points on the object are transformed in real time by blending a small number of affine trans-
formations. Our examples demonstrate that bounded biharmonic blending produces smooth
deformations and that points, bones, and cages have intuitive local influences, even on objects
with complex and concave boundaries. Our weight computation requires space discretization
(see Chapter 8) and optimization (see Section 2.2), which could be a drawback in some applica-
tions. In any case, the generality of our formulation also makes it possible to provide additional
control over the energy minimization, for example to define weights that preserve the shape of
specified essential object features (see Section 4.3.3).

4.2 Previous work

Variational methods are known to compute high-quality shape-preserving deformations for ar-
bitrary handles on a surface [Igarashi et al. 2005, Botsch et al. 2006a, Sorkine and Alexa 2007,
Botsch and Sorkine 2008] and some variational methods work with bones [Weber et al. 2007]
or can be extended to other off-surface handles [Botsch et al. 2007b]. The primary drawback
of these techniques is that they rely on optimization at pose time. Although system matri-
ces can be prefactored and back-substitution can be implemented on a GPU [Naumov 2011,
Naumov 2012], it is not an embarrassingly parallel problem like linear blend skinning, and is
therefore much slower. Even with significant performance tuning [Shi et al. 2007] or model
reduction [Der et al. 2006, Sumner et al. 2007, Au et al. 2007], pose-time optimization is too

57

4 Bounded biharmonic weights for real-time deformation

Figure 4.3: Each handle specifies an affine transformation and these propagate smoothly throughout the
object via our blending weights.

slow to deform high-resolution objects at high framerate, as necessary, for example, for video
games. Variational harmonic maps [Ben-Chen et al. 2009] are faster (though not as fast as lin-
ear blending), but they restrict the degrees of freedom to harmonic deformations of a (usually
manually) specified cage.

Most methods that are fast at pose time compute the transformation at each object point by using
a weighted blend of handle transformations. To perform the blending, some methods use mov-
ing least squares [Schaefer et al. 2006], some use dual quaternions [Kavan et al. 2008], but most
use linear blend skinning (LBS) [Magnenat-Thalmann et al. 1988]. With LBS, the affine trans-
formations of the handles are linearly averaged with different weights to transform each vertex.
Although linearly blending rotations leads to well-known artifacts, LBS has been a popular
technique for skeletal animation for over two decades because it is simple, predictable, and the
pose-time computation can be implemented very efficiently on a GPU. In addition to skeletal an-
imation, most cage-based deformation methods [Floater 2003, Ju et al. 2005, Joshi et al. 2007,
Lipman et al. 2007, Hormann and Sukumar 2008] are effectively LBS, where the handle (cage
vertex) transformations are restricted to be translations and the focus is choosing the weights.
The so called higher order barycentric coordinate deformations of [Langer and Seidel 2008]
are equivalent to generic LBS (see Section 4.6). Additionally, the reduced-model variational
shape deformation methods mentioned above use LBS to go from the reduced model to the full
model.

The choice of weights for LBS determines whether the affine transformations of the handles
affect the shape intuitively. In some cases, weights that have a closed form in terms of the
handle structure have been used [Shepard 1968, Ju et al. 2005, Lipman et al. 2008], but more
often they rely on precomputation at bind time or they are painted by hand. In Section 4.3.1
we formulate the desirable properties of LBS weights and in Section 4.3.2, we discuss previous
weight choice schemes in the context of these properties.

4.3 Bounded biharmonic weights

Our goal is to define smooth deformations for 2D or 3D shapes by blending affine transforma-
tions at arbitrary handles. Let Ω ⊂ R2 or R3 denote the volumetric domain enclosed by the

58

4.3 Bounded biharmonic weights

Figure 4.4: Bounded biharmonic weights are smooth and local: the blending weight intensity for each
handle is shown in red with white isolines. Each handle has the maximum effect on its
immediate region and its influence disappears in distant parts of the object.

union of the given shape S and cage controls (if any). We denote the (disjoint) control handles
by Hj ⊂ Ω, j = 1, . . . ,m. A handle can be a single point, a region, a skeleton bone (such that
Hj consists of all the points on the bone line segment) or a vertex of a cage. The user defines an
affine transformation Tj for each handle Hj (see Figure 4.3), and all points p ∈ Ω are deformed
by their weighted combinations :

p′ =
m∑
j=1

wj(p)Tjp, (4.1)

where wj : Ω→ R is the weight function associated with handle Hj .

Note that cages are generally understood as closed polygons in 2D or polyhedra in 3D contain-
ing S or part of it, but our framework is agnostic to the cage topology and treats a cage simply as
a collection of simplices, with the requirement that these simplices transform linearly as the cage
vertices are translated. Hence, open cages are possible (see Figure 4.16). In contrast to so called
complex barycentric coordinates [Weber et al. 2009, Weber et al. 2011, Weber et al. 2012], we
do not consider cage facets (line segments in 2D or triangles in 3D) as handles; they receive
linear weights, as we will see in Section 4.3.1. Note also that for skeleton bones connected by
joints, we formally include each joint point in one single bone of those that share it (we assume
that the skeleton is never torn apart, i.e., that all bones sharing a joint transform the joint to the
same location). In practice, we constrain the weights at shared points to be equally distributed
between the overlapping bones to maximize the symmetry of our weights.

59

4 Bounded biharmonic weights for real-time deformation

4.3.1 Formulation

We propose to define the weights wj as minimizers of a higher-order shape-aware smoothness
functional, namely, the Laplacian energy (see Section 3.3), subject to constraints that enforce
interpolation of the handles and several other desirable properties:

arg min
wj , j=1,...,m

m∑
j=1

1

2

∫
Ω

(∆wj)
2 dV (4.2)

subject to: wj|Hk = δjk, (4.3)

wj|F is linear ∀F ∈ FC, (4.4)
m∑
j=1

wj(p) = 1 ∀p ∈ Ω, (4.5)

0 ≤ wj(p) ≤ 1, j = 1, . . . ,m, ∀p ∈ Ω, (4.6)

where FC is the set of all cage facets and δjk is Kronecker’s delta. Figure 4.4 shows an example
of wj computed for point handles.

Let us discuss several properties possessed by our weight functions wj that allow for intuitive
and high-quality deformations.

Smoothness: Lack of smoothness at the handles causes visible artifacts in 2D textured shapes
(Figure 4.13) and prevents placing handles directly on 3D shapes. Note that by calculus of
variations, minimizing the Laplacian energy (4.2) amounts to solving the Euler-Lagrange equa-
tions, which are the biharmonic PDEs in this case: ∆2wj = 0. Equivalently, we could formulate
our blending weights as minimizers of the linearized thin-plate energy, as it leads to the same
biharmonic PDE (see e.g. [Botsch and Sorkine 2008]). The bounded biharmonic weights are
C1 as they approach zero and one (i.e. near handles) and C∞ everywhere else, provided that the
posed boundary conditions are smooth. This is always the case, with the exception of skeletal
joints and cages vertices: for bones connected by joints, the weights must have a discontinuity
at the joints since wj on bone Hj is 1 and it must be zero on the adjacent bone. However, this
does not lead to smoothness problems for the actual deformations because the joints are always
transformed to the same location by all emanating bones.

For cages, explicit linear interpolation constraints (4.4) on cage facets are required to achieve
expected behavior, since otherwise the cage facets would not deform linearly when translating
cage vertices. These linear constraints on cage facets preclude smoothness of any weights at the
cage vertices. Therefore our deformations are not smooth at cage vertices, but they are smooth
everywhere else, including across cage facets.

Non-negativity: Negative weights lead to unintuitive handle influences, because regions of the
shape with negative weights move in the opposite direction to the prescribed transformation
(Figure 4.5). We explicitly enforce non-negativity in (4.6), since otherwise biharmonic func-
tions (as in [Botsch and Kobbelt 2004]) are often negative, even if all boundary conditions are
non-negative.

Shape-awareness: Informally, shape-awareness implies intuitive correspondence between the
handles and the domain Ω. The influence of the handles should conform to the features of the

60

4.3 Bounded biharmonic weights

Figure 4.5: Weights like unconstrained biharmonic functions that have negative weights (left) and extra-
neous local maxima (right) lead to undesirable and unintuitive behavior. Notice the shrinking
of the head on the right.

shape and diminish with geodesic (as opposed to Euclidean) distance. The best shape-aware
behavior one can hope for is when the weights wj depend on the metric of Ω alone and do not
change for any possible embedding of Ω. Our weights are shape-aware since the bi-Laplacian
operator is determined solely by the metric.

Partition of unity: This classical property (also seen in e.g. Bézier or NURBS) ensures that if
the same transformation T is applied to all handles, the entire object will be transformed by T .
We enforce this property explicitly in (4.5) since non-negative biharmonic weights do not sum
to 1, unlike unconstrained biharmonic weights.1

Locality and sparsity: Each handle should mainly control a shape feature in its vicinity, and
each point in Ω should be influenced only by a few closest handles. Specifically, if every locally
shortest path (in a shape-aware sense) from a point p to Hj passes near some other handle, then
Hj is “occluded” from p and wj(p) should be zero. We observed this property of our weights

1Unconstrained biharmonic weights partition unity because they are a linear function of the boundary conditions
in (4.3) & (4.4), which also partition unity. Why bounded biharmonic weights do not is made clear by consid-
ering them as solved by the active set method (see Section 2.2.3). If we drop the partition of unity constraints
then each weight function may be optimized independently. In general, each will find a different active set.
The final iteration of the active set method treats these active sets as Dirichlet values, hence the weights are
truly biharmonic functions in the region(s) bounded by the active set. Biharmonic functions are also unique. If
we consider the sum of our weights inside the union of all these active sets, there is no reason to expect these
values to sum to one. Hence, we may not expect the weights to sum to one elsewhere.

61

4 Bounded biharmonic weights for real-time deformation

Property Our method 1 2 3 4
Smoothness Y - Y Y -
Non-negativity Y Y - Y Y
Shape-awareness Y Y Y - -
Partition of unity Y Y Y Y Y
Locality and sparsity Y* - - - Y
No local maxima ∼ Y - - Y

1 = [Joshi et al. 2007, Baran and Popović 2007] 3 = [Shepard 1968]
2 = [Botsch and Kobbelt 2004] 4 = [Sibson 1981]
Y* only experimental confirmation ∼ often, but not always

Table 4.1: A summary of the properties of five methods for choosing blending weights. Our method
appears to satisfy all of the necessary properties. We have empirical evidence but no formal
proof for locality and sparsity or the lack of local maxima in our weights.

Approaching 0.5

[Shepard 1968]
[Schaefer et al. 2006] Extension of [Joshi et al. 2007] Our method

Figure 4.6: Fall-off effect: Inverse-distance (left) and harmonic weights (center) are not local. Weights
are reasonable if two control points are at either ends of this cigar (top). But placing them
closer together reveals non-locality (bottom). Our weights block one another (right).

in all our experiments.

No local maxima: Eachwj should attain its global maximum (i.e., value of 1) onHj and should
have no other local maxima. This property provides monotonic decay of a handle’s influence
and guarantees that no unexpected influences occur away from the handle. This property was
experimentally observed often in our tests. Likely, it is facilitated by imposing the bound con-
straints (4.6). Without these constraints, the biharmonic functions in general do not necessarily
achieve maxima at the handles and cause deformation artifacts (Figure 4.5). While it is true that
bounded biharmonic weights often do not have local extrema it is certainly not the case that
they are always monotonic. In fact, it is relatively easy to get local extrema to appear on shapes
with long appendages geodesically equidistant from handles (e.g. Figure 5.1). Dealing with this
non-monotonic behavior is complicated and requires a dedicated optimization strategy and thus
a dedicated chapter in this thesis (Chapter 5).

62

4.3 Bounded biharmonic weights

[Shepard 1968]
[Schaefer et al. 2006]

Extension of
[Joshi et al. 2007]

Our method

Original

Figure 4.7: Deformation reveals ill behavior of weights suffering from the fall-off effect.

4.3.2 Comparison to existing schemes

Existing schemes formulate and satisfy subsets of these properties, but not all. For exam-
ple, Shepard’s [1968] and similar weights (used in embedded deformation [Sumner et al. 2007]
and moving least squares image deformation [Schaefer et al. 2006]) are dense and not shape-
aware. Further, these methods (as well as [Joshi et al. 2007, Baran and Popović 2007]) are
not local (see Figures 4.6, 4.7, 6.12 and 6.13). Other schemes do not support arbitrary
handles: for example, extending harmonic coordinates [Joshi et al. 2007] to handles in the
cage interior results in a lack of smoothness and locality (see Figure 4.13). Heat diffu-
sion weights [Baran and Popović 2007] suffer from the same problem, albeit to a lesser de-
gree. Natural neighbor interpolation [Sibson 1981] is one of the few schemes that guaran-
tees locality, but it is also not smooth at handles. Biharmonic weights without constraints
(cf. [Botsch and Kobbelt 2004]) are smooth, but can be negative (or greater than one), fre-
quently have local maxima away from handles and result in non-local influences. Notably,
our weight functions coincidentally satisfy all the axioms formulated for higher order barycen-
tric coordinates [Langer and Seidel 2008]. Table 4.1 shows the properties satisfied by several
methods.

A number of recent methods focus on locally preserving or prescribing an-
gles [Lipman et al. 2008, Weber et al. 2009, Weber and Gotsman 2010]. While they have
elegant formulations in terms of complex analysis, the methods by Weber et al. are restricted to
2D, while Green Coordinates [Lipman et al. 2008] are only defined for polyhedral cages.

4.3.3 Shape preservation

The energy minimization framework supports incorporating additional energy terms and con-
straints to customize the weight functions. One example of a useful addition is making all points
of a specified region Π ⊂ Ω undergo the same transformation, i.e., have all the weight functions
be constant on Π (∇wj|Π = 0). Since typically, we only prescribe translations, rotations and
uniform scales at handles, this implies that Π will undergo a similarity transformation in 2D and

63

4 Bounded biharmonic weights for real-time deformation

Figure 4.8: The generality of our optimization framework makes it possible to compute weights that
respect salient object features. In this example, marking a region preserves the shape of
an eye (middle), which would otherwise be distorted (right). Interaction time remains fast
and fluid because deformations are still the result of a weighted combination of prescribed
transformations.

an affine transformation in 3D, so that the shape of Π will be preserved. Similar to the rigidity
brush in [Igarashi et al. 2005], the user can paint Π with a (possibly soft) brush, creating a mask
ρ : Π→ R+; we then add a least-squares term to our energy minimization:

m∑
j=1

1

2

∫
Π

ρ‖∇wj‖2dV. (4.7)

See Figure 4.8, where the shape-preservation brush helped retain the shape of the man’s eye
while deforming the nose. Note that this is different from placing a handle because no explicit
transformation needs to be prescribed by the user; the painted region just follows the transfor-
mation from other handles (cf. the free handles in Chapter 7).

4.3.4 Implementation

We discretize our constrained variational problem (4.2) using linear finite elements in order to
solve it numerically with quadratic programming (we use the flattened mixed FEM formulation
for fourth-order problems, see Equation (3.12). Assuming that the object S is given as a 2D
polyline or triangle mesh in 3D, we sample vertices on all provided skeleton bones and cage
facets, and mesh the domain Ω in a way compatible with all of the handles and the vertices of
S. The result is a triangle/tetrahedral mesh M whose vertices V = {v1, . . . ,vn} include all
discretized Hj’s and the object itself. The weights become piecewise-linear functions whose
vertex values we are seeking; we denote them by column vectors wj = (w1,j, w2,j, . . . , wn,j)

T .

The Laplacian energy (4.2) is discretized using the standard linear FEM Laplacian M−1L where
M is the lumped mass matrix (with Voronoi area/volume of vertex vi on each diagonal entry

64

4.3 Bounded biharmonic weights

Figure 4.9: This example uses a human skeleton embedded in the Armadillo. The skeleton does not
control the tail or the ears, but points are easily added to control them for additional expres-
siveness in each pose. Left: a cutaway of the Armadillo shows the graded tet mesh produced
by TetGen. The inner tetrahedra are much larger than the surface ones, which keeps the
discretization complexity reasonable.

Mi, see Section 2.1.3) and L is the symmetric stiffness matrix (i.e., the cotangent Laplacian in
2D and its equivalent in 3D, see Section 2.1.2):

m∑
j=1

1

2

∫
Ω

‖∆wj‖2dV ≈
m∑
j=1

1

2
(M−1Lwj)

TM(M−1Lwj)

=
1

2

m∑
j=1

wT
j

(
LM−1L

)
wj. (4.8)

We impose the constraints (4.3)-(4.6) using the discretized handles. To discretize the additional
shape-preservation energy term (4.7), we employ the linear FEM gradient operator G (see its
derivation in [Botsch et al. 2010]). Gwj is a vector of stacked gradients, one gradient per el-
ement (triangle in 2D and tetrahedron in 3D; since we deal with linear elements, the gradient
over an element is constant). Let R be a diagonal matrix containing the integrals of the user
brush ρ over each element (the brush value on an element is zero if the user did not paint on it)
and let D be the per-element diagonal mass matrix (i.e., for each triangle/tet i, Dii contains its
its area/volume repeated for each dimension). Then the energy term in (4.7) is discretized as

m∑
j=1

1

2

∫
Π

ρ‖∇wj‖2dV ≈
m∑
j=1

1

2
wT
j

(
GTRDG

)
wj. (4.9)

Note that the matrix GTRDG is a kind of weighted linear FEM Laplacian, and therefore its
sparsity pattern is a subset of the main energy matrix LM−1L, creating no new non-zeros.
Hence adding this energy term does not increase the optimization complexity.

We use Triangle [Shewchuk 1996] for 2D constrained Delaunay meshing and TetGen [Si 2003]
for constrained tetrahedral meshing to create the discretized domains. In 2D, we configure
Triangle to create triangles of near uniform size and shape. For all our 2D examples, Triangle
takes less than a second, even for detailed images which require pixel-size triangles. In 3D,
we configure TetGen to create rather graded tet meshes to reduce complexity (Figure 4.9); for
the Armadillo mesh of 43,234 vertices and 120 vertices sampled internally along bones, the
resulting tet mesh has 46,898 vertices. For the Armadillo and all our 3D examples, TetGen
takes a few seconds.

The energy terms in (4.8) and (4.9) are quadratic in the unknowns wj and convex, and (4.3)-(4.6)
are linear equality and inequality constraints. We use MOSEK [Andersen and Andersen 2000]

65

4 Bounded biharmonic weights for real-time deformation

0.015

0.000

0.010

0.005

original weights faster weights

Figure 4.10: Dropping the partition of unity constraint (4.5) greatly optimizes the precomputation of our
weights without losing quality. Left: the mean absolute difference (in pixels) between the
original and faster weights at each vertex, over all handle weights at that vertex. Defor-
mations with the same handle configuration using our original (middle) and faster (right)
weights are visually indistinguishable.

as a sparse quadratic programming solver to compute the weights for all of the handles simul-
taneously.

Since the time necessary to solve the quadratic program is superlinear in the number of un-
knowns, dividing it into several smaller subproblems allows for a significant speedup. Notice
that the optimization of each handle is independent from the rest if we drop the partition of unity
constraint (4.5). We have implemented this strategy, solving for each wj separately and then
normalizing the weights for each vertex in a postprocess. We have observed mostly negligible
average differences between this faster solution and the original one, often resulting in visu-
ally indistinguishable deformations (see Figure 4.10). Larger differences occasionally occur far
from handles, but the weights have the same qualitative behavior: smoothness and observed
local support/lack of spurious local maxima. For the Gargoyle, for example, computing the
weights for 7 handles separately is 50 times faster than simultaneously. We report the timings
as well as the difference between the original and these faster weights in Section 4.4.

Once the weights are computed, the deformation itself is real-time even for very large meshes,
since it is computed with a GPU implementation of linear blend skinning (4.1).

Specifying handle transforms. In the cage-based systems of the various barycentric co-
ordinates methods, the only inputs are the translations of the cage vertices. In our system, the
user provides a full affine transformation at each handle. Depending on the application the user
may choose to specify only translations, i.e., identity rotations and scales. However, non-trivial
rotations are often necessary to achieve a desired effect, and these could be tedious to specify
manually. We found it easier to have rotations inferred from the user-provided translations. To
do this, the user supplies a set of pseudo-edges between point handles (Figure 4.11). When the
user translates a handle, its rotation is computed automatically as the average of the smallest
rotations that take each pseudo-edge incident on the handle from its rest orientation to its pose
orientation. In 2D these rotations are averaged as signed angles, in 3D as quaternions. Note
that the pseudo-edges are in no way related to the computation of bounded biharmonic weights.

66

4.4 Results

θ

Figure 4.11: User-provided pseudo-edges between point handles (left) allow rotations to be inferred au-
tomatically from translations. When the user translates handles, these pseudo-edges define
rotations between their rest and pose orientations (right). Each handle receives the average
of rotations defined by incident pseudo-edges.

They are merely user interface devices that assist the specification of rotations for a set of point
handles. This method is simply and efficient, but like other forms of inverse kinematics it does
not choose transformations based on their effect on the quality of the shape’s deformation. This
idea of choosing subsets of the LBS degrees of freedom automatically is explored in more detail
in Chapter 7.

4.4 Results

Bounded biharmonic blending combines intuitive interaction with real-time performance. Its
controls unify three different interaction metaphors so that simple tasks remain simple and
complex tasks become easier to achieve.

Experiments. Points are a particularly elegant metaphor for manipulating flexible objects
[Igarashi et al. 2005]. Although similar transformations could be accomplished with bones,
Figures 4.12 and 4.18 illustrate the simplicity of direct point manipulation of supple regions
and highlight the inappropriateness of using rigid bones for the same task.

In contrast to previous techniques [Igarashi et al. 2005, Joshi et al. 2007], our approach deforms
shapes smoothly even when the handle transformations are large. Figure 4.13 illustrates the
importance of smoothness to minimize texture tearing.

We have observed our weights to be local in all examples tested. Figure 4.14 compares the sup-
port regions of our weights to the biharmonic functions of [Botsch and Kobbelt 2004], which
are globally supported and contain many local extrema.

Some tasks are more easily accomplished by controlling both points and lines. Figure 4.15
demonstrates our weights with smooth point-based warping while the external cage maintains or
resizes the image boundary. Cages are ideally suited for precise area control. In Figure 4.16, we
use an arbitrary collection of open and closed lines to manipulate the shape and orientation of the
tower. These deformations and fine adjustments, needed to account for perspective distortions,
are difficult to achieve with points or lines alone.

67

4 Bounded biharmonic weights for real-time deformation

Figure 4.12: Flexible objects could be deformed with bones, but points are quicker and easier to specify.
At best, supple deformation requires a skeleton with many bones, but these can be difficult
to control even with inverse kinematics and are often still too rigid.

Figure 4.13: Weights must be smooth everywhere, especially at internal handles, which are likely to cor-
respond to important features. Weights that have discontinuities at handles, like Harmonic
Coordinates (center), introduce tearing artifacts with even slight changes in the handles.
Our weights are smooth, as shown on the right.

68

4.4 Results

Figure 4.14: Fifty point handles (black and yellow) are randomly placed in a square domain. Left: the
sign for the black handle’s unbounded biharmonic weight (red for positive and blue for
negative regions). The local maxima and minima are shown as red and blue dots, respec-
tively. Right: the support regions for bounded biharmonic weights of the black handles. In
this and all other tested examples, the weights are local.

Figure 4.15: Points handles deform the image by blending the affine transformations specified at each
point. The cage on the boundary maintains the rectangular image shape or allows its resiz-
ing.

69

4 Bounded biharmonic weights for real-time deformation

Figure 4.16: Deformation of the leaning tower (original is shown left). Cages provide more exact control
over area than other handle types.

z z

Figure 4.17: We smoothly blend depth values given for each point handle (pseudocolor plot and 3D
rendering). We can interactively reorder these values (right).

When deforming cartoons in 2D, creating believable 2.5D by layering is essential
[Igarashi et al. 2005]. Bounded biharmonic weights may used to not only blend transforma-
tions but also depth values for layering 2D deformations (Figure 4.17).

Our approach generalizes naturally to 3D. At bind time, the optimization distributes the weights
over the volume so that linear blending delivers smooth deformation at run time. This scheme
ensures real-time performance and low CPU utilization even for high-resolution meshes. We
note that cages can be even more tedious to setup in 3D than in 2D, particularly when they are
required to envelop objects fully. For tasks such as hand manipulation shown in Figure 4.19
(left), skeletons are easier to embed and use to manipulate a 3D object. Skeletons still suffer
from joint-collapse problems and lack the precise volume control offered by cages and our ap-
proach supports and simplifies the combined use of bones and cages. In particular, our approach
supports partial cages that control parts of the object but are not required to surround it fully.
Figure 4.19 (right) shows a simple cage used to enlarge the belly of the Mouse. As always, par-
tial cages can be combined with points and bones, and this combined use of all three metaphors
is often the most powerful.

Figure 4.9 shows combined use of points and skeletons. We create a sequence of poses of
the Armadillo by embedding a human skeleton. The skeleton does not control the tail or the
ears so their deformations are adjusted by directly by attaching a few points. Direct surface
manipulation makes it easy to bend the tail into a more realistic pose and expressively curl
the ears. Likewise in Figure 4.21, point handles are a natural and simple choice of control for
stretching and bending the wings of the Gargoyle. Bounded biharmonic weights combine the
motion of the skeleton and configuration of these points to yield smooth deformations.

70

4.4 Results

Figure 4.18: Using point handles to manipulate the flexible Octopus. Pseudo-edges are shown in their
rest state on the left.

|S| |Ω| BT/h Emean Emax

Gingerman 5,040 0.1397 4.3e-3 5.8e-2
Frowny 5,442 0.0906 4.5e-3 9.0e-2
Alligator 7,019 0.1779 1.3e-3 5.5e-2
Pisa 12,422 0.3174 2.5e-3 6.0e-2
Mona Lisa 32,258 1.2417 5.0e-3 1.1e-1
Gargoyle 20,000 46,003 1.1939 4.3e-3 1.8e-1
Hand 28,692 51,263 3.1268 2.0e-3 3.7e-1
Mouse 26,294 112,355 8.4464 4.1e-3 1.1e-1
Armadillo 86,442 142,073 12.0870 4.1e-3 4.0e-1

Table 4.2: Statistics for the various examples in this chapter. |S| is the number of triangles of the input
3D model, |Ω| is the number of elements in the discretization of Ω, BT/h is the bind time per
handle in seconds. Emean and Emax are respectively the mean and max absolute difference
between our original weights with (4.5) enforced explicitly and our faster weights where each
handle’s weights are solved independently and then normalized. Mean and max values are
taken over both handles and vertices.

Discussion. We have tested our method on a MacPro Quad-Core Intel Xeon 2.66GHz
computer with 8GB memory. The bind time measurements of our unoptimized code are
reported in Table 4.2. One limitation of our solution is the optimization time needed
to compute the weights at bind time. We discretized the problem using linear FEM, al-
though other choices may be more efficient, such as the multiresolution framework used in
e.g. [Botsch et al. 2007b, Joshi et al. 2007]. Generating bounded biharmonic weights in 3D re-
quires a discretization of the volume (see Chapter 8). Note that once a volume is computed, an
arbitrary embedded object (e.g. polygon soup) may be deformed without regard for its topology.
The auxillary weights computed at internal volume vertices may be discarded.

Our bounded biharmonic weights do not have the linear precision property, i.e., they do not
necessarily reproduce linear functions. This property is necessary for cage-based deformations
(e.g. [Ju et al. 2005, Joshi et al. 2007]) that apply the deformation solely by interpolating the
positions of cage vertices because otherwise, they would distort the shape when the cage is

71

4 Bounded biharmonic weights for real-time deformation

Figure 4.19: Cages that fully envelop 3D objects such as the Hand are difficult to setup. Skeletons are
often easier to embed and manipulate. When cages are needed for precise volume control,
our scheme makes them easier to use by allowing partial cages that only overlap parts of
the object.

rotated. In contrast, our approach allows arbitrary transformations to be supplied at the handles
and blends them over the shape; we therefore do not have to rely on linear precision to be
able to work with rotations. A comparison for translational deformation between the linearly-
precise Harmonic Coordinates [Joshi et al. 2007] and our cages is shown in Figure 4.20 with a
rectangular image.

We have only experimented with linear blending deformations based on Equation (4.1) in this
chapter; however, our weights are also useful when combined more advanced methods of trans-
formation blending, such as dual quaternion skinning [Kavan et al. 2008]. When blending rigid
motions this way, the result remains a rigid motion for a fixed set of weights. Among other
advantages, this will cause the regions painted for shape-preservation (Section 4.3.3) to move
rigidly, while currently we only obtain similarity or affine transformation there. This combina-
tion and a new skinning technique are presented in Chapter 6.

4.5 Conclusion

We have shown how to unify all popular types of control armatures for intuitive design of
real-time blending-based deformations. This allows users to freely choose the most convenient
handles for every task and relieves them from the burden of manually painting blending weights.

In future work, we would like to optimize the efficiency of both bind- and pose-time of our de-
formations. Aside from looking at alternative discretizations and numerical approaches, further
analysis will help to reduce the dimensionality of the quadratic program: the observed local-
ity property implies that the weights vanish on significant portions of the domain, which could
thus be removed from the minimization. It would also be interesting to apply the weight reduc-
tion technique in [Landreneau and Schaefer 2010]. Though, given their similar optimization,
encoding sparsity into our original optimization would be more direct.

72

4.5 Conclusion

a

c1

b1

b2

c2

b3

c3

Figure 4.20: We show the trade-off between locality and linear precision within a cage. The rest pose of
an image of text (a) is stretched horizontally with a cage using Harmonic Coordinates (b1),
and our bounded biharmonic weights (c1). A closer look shows that Harmonic Coordinates’
deformation has a more global response to the handle translation (b2), whereas our weights
are more local (c2). On the other hand, Harmonic Coordinates maintain the vertical lines
in letter T near the deformed handles (b3), while our weights reveal their lack of linear
precision (c3).

Figure 4.21: The Gargoyle is deformed using an internal skeleton and point handles.

Skinning-based deformations are prone to foldovers and self-intersections, as the deformation
mapping is not always injective. Our method is no exception. Interestingly, we will soon see in
Section 4.9 that in the special case of barycentric coordinate deformation no choice of weight
functions exists which will create bijective deformations. It remains to show this for general
LBS, but our hypothesis is that a similar counter example exists. Building a reduced model
with our weights for simulation and contact handling is worth exploring in this context. We
also plan to study the mathematical properties of the bounded biharmonic weights to determine
the necessary conditions for which the observed locality and maximum principle hold.

73

4 Bounded biharmonic weights for real-time deformation

4.6 Appendix: Equivalence of higher order barycentric
coordinates and LBS

We quickly show that the higher order barycentric coordinate deformations of
[Langer and Seidel 2008] are equivalent to linear blend skinning. Recall, LBS deforma-
tion is written:

v′ =
m∑
i=1

wi(v)Tiv (4.10)

=
m∑
i=1

wi(v) (Liv + ti) , (4.11)

where the rest position of a point v is deformed to a new position v′ according to a sum of
affine transformations Ti (composed of linear and translation parts Li and ti) applied to v and
weighted by a spatially varying weight function wi(v). Barycentric coordinates may also be
used to create deformations:

v′ =
m∑
i=1

wi(v)c′i, (4.12)

where c′ are the deformed positions of the control polygon. These deformations may then be
described as a restricted form of LBS. Because wi are barycentric coordinates, we know by
definition that:

v =
m∑
i=1

wi(v)ci, (4.13)

where ci are the rest positions of the control polygon. Substituting this identity into Equa-
tion (4.12) and rewriting to match Equation (4.11) with Li = I and ti = c′i − ci, we have:

v′ =
m∑
i=1

wi(v)(c′i + ci − ci) (4.14)

= v +
m∑
i=1

wi(v)(c′i − ci) (4.15)

=
m∑
i=1

wi(v)(Iv + c′i − ci), (4.16)

assuming that
∑m

i=1wi(v) = 1 which is typically the case as otherwise affine invariance of the
barycentric coordinates is lost. In this way we see barycentric coordinates is an special case
of LBS. It is restricted in two ways: first, the transformations Ti are restricted to translations;
and second, the weight functions wi(v) have the unique property of being coordinates. This
second quality helps alleviate the first restriction in the sense that deformations retain affine
invariance, however, the restriction on the weight function prohibits other uses. We discuss
derivative control here, but locality and sparsity also become an issue.

Written as a special case of LBS, barycentric coordinate deformation clearly lacks control
of derivatives. Simply consider identity translations. With barycentric coordinates, by set-
ting translations to zero, all degrees of freedom are exhausted and the deformation is forced

74

4.7 Appendix: Relationship to precomputed bases

to be the identity transformation. With general LBS the linear part Li of each transforma-
tion remains allowing such control. Noticing and exploiting this was the contribution of
[Langer and Seidel 2008]. Their derivation is conducted outside the context of linear blend
skinning. We will now show that their “higher order barycentric coordinate” deformations are
in fact equivalent to LBS with an extra restriction that the first derivatives of the weight func-
tions vanish at each control point: ∇wi = 0.

In [Langer and Seidel 2008], an interpolatory function is introduced of the form:

v′ =
m∑
i=1

wi(v) (c′i + Di(v − ci)) , (4.17)

where Di “are the linear functions (usually represented as matrices) which specify the deriva-
tives at the” ci. We may rewrite our linear blend skinning formula in Equation (4.11) substitut-
ing ti = −Lici + ci:

v′ =
m∑
i=1

wi(v) (Liv − Lici + ci) (4.18)

=
m∑
i=1

wi(v) (c′i + Li(v − ci)) , (4.19)

or equivalently reading from right to left, v is first translated to the rest position of the control
point c, here the linear (derivative) terms are applied (often just a rotation) and then it is trans-
lated back to the deformed position. Written in this way it is clear that higher order barycentric
coordinate deformations are equivalent to the usual LBS deformations. What is interesting now,
is how do the weights proposed by [Langer and Seidel 2008] fair as skinning weights. Unfortu-
nately, they fair rather poorly. Their scheme is to apply a simple filter of to existing barycentric
coordinate methods which were not originally designed to be good skinning weights. The fil-
tered harmonic coordinates [Joshi et al. 2007] are promising, but we know these functions to be
too globally supported (see Figure 4.7). The “axioms” of [Langer and Seidel 2008] turn out to
be not quite all that we desire in skinning weights. Indeed we want interpolation, partition of
unity and zero-gradient at handles, but we also want shape-awareness, locality, non-negativity,
monotony, and smoothness. In addition, the notion of “coordinates” is lost after the filtering of
[Langer and Seidel 2008]. There is no apparent gain in having the input of the filter be coordi-
nate functions beyond the fact that they satisfy the interpolation property.

4.7 Appendix: Relationship to precomputed bases

By now we are familiar with how linear blend skinning weight functions can be computed us-
ing energy optimization. In the case that weights are minimizers of unconstrained quadratic
energies, then they are solutions to linear systems. That is to say they are a linear func-
tion of the boundary conditions (e.g. the ones or zeros at handle locations). This bears a
close resemblance to deformations computed directly as minimizers of quadratic energies
[Botsch and Sorkine 2008]. These deformations are also linear functions of their boundary
conditions (e.g. positional constraints on selected vertices). If these vertices are grouped

75

4 Bounded biharmonic weights for real-time deformation

into region handles, each deformed with an affine transformation, then we may precompute
a few basis functions which fully describe the linear deformation [Botsch and Kobbelt 2004,
Sorkine et al. 2005]. When the same energies are used for defining LBS weight functions and
linear variational deformation, it is tempting to declare that the resulting basis functions and
weight functions and the deformations they imply are equivalent [Jacobson et al. 2012b]. Inter-
estingly, this is not the case.

The biharmonic equation and corresponding Laplacian energy (a.k.a. as-harmonic-as-possible
energy [Finch et al. 2011], Hessian energy [Weber et al. 2012] or linearized thin-plate energy
[Botsch et al. 2010]) is at the heart of many linear (and some almost linear) variational tech-
niques [Botsch and Sorkine 2008]. The Laplacian energy is also the active ingredient in our
bounded biharmonic weights for LBS. For the sake of clarity we now forget the bounds, and
consider unconstrained biharmonic weights wj , which are unique minimizers of:

EB(wj) =
1

2

∫
Ω

(∆wj)
2dV (4.20)

subject to: wj|Hk = δjk, k = 1 . . .m, (4.21)

where here Hk are always isolated regions of the domain2.

Similarly for linear variational deformation we consider biharmonic displacement functions
d : Ω→ R3, such that the new positions of some point p are p′ = p + d. These displacements
are solutions to:

EB(d) =
1

2

∫
Ω

‖∆d‖2dV (4.22)

subject to: d|Hk = d̂, (4.23)

where d̂ are the (potentially arbitrary) displacements inside handle Hk. Notice that d is vector-
valued, and optimization treats each coordinate function dx, dy, and dz independently. Thus
each coordinate of d is a biharmonic function. These displacements are identical to those
used in [Sorkine et al. 2004] if linearized rotations are omitted. Ostensibly the formulas in
[Sorkine et al. 2004] are different: their derivations are fully discrete, but more noticeably, they
optimize for new positions p′ directly, minimizing:

ELSE(p′) =
1

2

∫
Ω

‖∆p′ −∆p‖2dV (4.24)

subject to: p′|Hk = p̂, (4.25)

where ∆p are dubbed the “differential coordinates” of the input mesh and p̂ are the new posi-
tions of Hk. This is easily shown to be equivalent to Equation (4.22) by linearity of the Laplace
operator:

∆p′ −∆p = ∆ (p′ − p) = ∆d −→ ELSE(p′) = EB(p′ − p) = EB(d). (4.26)

Analogous displacements were also defined in [Botsch and Kobbelt 2005] (though replacing
biharmonic with triharmonic, and defining quantities in space rather than on the surface).

2In all examples here the unconstrained biharmonic weights coincide with our bounded biharmonic weights.

76

4.7 Appendix: Relationship to precomputed bases

As noted in [Botsch and Sorkine 2008], energy minimizing displacements are closely related to
energy minimizing surfaces, such as biharmonic surfaces:

arg min
p′

1

2

∫
Ω

‖∆p′‖2dV (4.27)

subject to: p′|Hk = p̂. (4.28)

Such surfaces are not directly usable for deformation as they smooth away any high-frequency
detail. They are also heavily dependent on the parameterization of the Laplace(-Beltrami) oper-
ator ∆ employed [Botsch 2005, do Carmo 1976] (see Section 3.8). Nonetheless, these surfaces
are combined with a detail restoration technique to achieve deformation in [Kobbelt et al. 1998],
and — more interestingly for this conversation — by [Botsch and Kobbelt 2004], where
precomputed bases are also defined. Similar bases were applied by [Sorkine et al. 2005] for
point handles. Though designed for solutions to Equation (4.27), the construction of bases in
[Botsch and Kobbelt 2004] is also directly applicable to Equation (4.22). We restrict our con-
sideration to bases for biharmonic displacement, since it is most directly comparable to LBS
with biharmonic weights.

As in Section 3.3, we may discretize Equation (4.22) for a mesh with vertices V using the
mixed finite elements method for region constraints3. We substitute the known displacements at
selected vertices dH ∈ R|H|×3 and take partial derivatives with respect to the unknown displace-
ments dT

I ∈ R3×|V \H|. Setting the right-hand side to zero produces a set of linear equations,
whose solution is the minimum of Equation (4.22):

dEB
ddT

= 2QI,IdI + 2QI,Hd̂H = 0, (4.29)

where Q = LTM−1L is the reduced system matrix in the mixed FEM discretization composed
of the cotangent stiffness matrix L and (diagonal) mass matrix M, see Equation (3.12). Alter-
natively, one can forget one’s continuous roots and just view Q as a discrete bilaplace operator
[Botsch and Kobbelt 2004]. We use subscripts QX,Y to indicate matrix slicing according to
rows X and columns Y . Here H refers to selected vertices and I = V \ H interior vertices.
Moving the known terms to the right-hand side gives:

QI,IdI = −QI,Hd̂H , (4.30)

and the unknowns may be solved by computing:

dI = −Q−1
I,I

(
QI,Hd̂H

)
, (4.31)

where in practice we never compute Q−1
I,I explicitly but rather precompute a Cholesky decompo-

sition, QI,I = KTK, where K is lower triangular. To solve interactively at runtime, we change

3 Technically, any open boundaries will receive first and third order implicit Neumann conditions: ∂d/∂n = 0
and ∂∆d/∂n = 0 [Helenbrook 2003]. This behavior is seen in all three columns of Figures 4.22 and 4.23. If
any regions degenerate into curves then first-order implicit Neumann conditions apply. If any regions degen-
erate into points, then first-order implicit Neumann conditions should also apply. However, in practice this is
not observed, presumably due to discretization error (perhaps implicit third-order Neumann conditions are ac-
tivated instead). Point constraints are particularly disturbing as they imply discontinuous solutions/derivatives
in the smooth setting. Investigating point constraints properly is an interesting area of future work.

77

4 Bounded biharmonic weights for real-time deformation

d̂H , compute QI,Hd̂H using sparse matrix-vector multiplication and finally conduct 3 (number
of dimensions and columns in d) sparse back-substitutions [Lipman et al. 2004].

At this point, we may notice as [Botsch and Kobbelt 2004] that although d̂H represents many
mesh vertex displacements they are usually dependent on only a few region handles being trans-
formed by the user. If the transformation of each region Hj and thus all corresponding dis-
placements in d̂H are determined by a single affine transformation Tj ∈ R3×(3+1), then we may
follow the proposal in [Botsch and Kobbelt 2004] to maximize precomputation4 by writing d̂H
in terms of Tj:

d̂H =
m∑
j=1

δjk

(
Tj

(
p
1

)
− p

)
(4.32)

=
m∑
j=1

δjk (Tj − I)

(
p
1

)
(4.33)

= AT̃, (4.34)

where I ∈ R3×(3+1) is the identity transformation, T̃ ∈ R(3+1)m×3 stacks transposed matrices
(Tj − I)T, and A ∈ R|H|×3m contains stacked rest homogeneous positions of p|H , with column
blocks:

Aj =

 δj(p|H)⊗ (p|H 1)
δj(p|H)⊗ (p|H 1)
δj(p|H)⊗ (p|H 1)

 , (4.35)

where δj(p|H) is 1 for all p|H ∈ Hj and 0 otherwise and ⊗ indicates a row-wise, Hadamard-
like product5.

Substituting Equation (4.34) into Equation (4.31) produces:

dI = −Q−1
I,I

(
QI,HAT̃

)
(4.36)

= Q̃IT̃, (4.37)

where the columns of the dense matrix Q̃I ∈ R|I|×(3+1)m are called the precomputed basis
functions. By appending the necessary rows of the identity matrix above, we may write an
equation which also includes the known displacements on the left-hand side:

d = Q̃T̃. (4.38)

To deform interactively we simply updated T̃ and compute Q̃T̃ via dense matrix-vector
multiplication. Written in matrix form it is apparent that linear variational displacement
with affine transformations at region handles is an instance of Animation Space deformation
[Merry et al. 2006], itself a special case of [Wang and Phillips 2002]. Compared with LBS,

4 Whether the resulting dense matrix multiplication is actually faster than performing three sparse back substi-
tutions at runtime probably comes down to implementation. Both operations are in theory O(n), n being the
number of unknown mesh vertex coordinates. Indeed, sparse back substitution is more difficult to parallelize,
though not impossible [Naumov 2011, Naumov 2012].

5a ⊗ (b, c, d, . . .) = (a ◦ b, a ◦ c, a ◦ d, . . .), where ◦ is the usual Hadamard (element-wise) vector-vector
product.

78

4.7 Appendix: Relationship to precomputed bases

Original

Biharmonic LBS weights Biharmonic displacement
[Sorkine et al. 2004]

[Botsch & Kobbelt 2005]

Biharmonic surface
[Botsch & Kobbelt 2004]

Figure 4.22: Top: a plane is deformed with various biharmonic methods by applying a translation (top)
and a rotation (bottom) to a single handle.

Animation Space assigns a vector of four weights per vertex instead of a single scalar. These
weights multiply against the vertex’s rest position in homogeneous coordinates, meaning it ef-
fectively blends an arbitrary rest shape per handle. Every four columns in our Q̃ represents one
such rest shape. However, since the original rest positions are not explicitly taken into account,
one would need to divide these columns by

(
vT 1

)
to recover the Animation Space weights.

We are now in a position to directly compare the basis matrix Q̃ with our biharmonic weight
functions w. In particular, by the definition of A, every fourth column of Q̃ corresponds exactly
to a weight function wj . These columns correspond to the 1 from the homogeneous coordinates
representation and respond to the translation components in T. It is not surprising then that LBS
with biharmonic weight functions and biharmonic displacement deformations agree exactly
when handle transformations are limited to translations (see top rows in Figures 4.22 and 4.23).

However, if transformations contain rotations or any other non-trivial linear part, then the be-
havior can be drastically different (see bottom rows in Figures 4.22 and 4.23). Intuition for
this follows from noticing that LBS is trilinear in the weight functions, transformation matrix
elements, and the point’s rest position. Notice that biharmonic displacement is linear with re-
spect to the bases, the transformations, and the rest positions of only the selected vertices in
each handle. The rest positions of interior vertices are not involved in the basis functions except
implicitly in the energy coefficients.

Another way to gain intuition is to look at the individual coordinates of the biharmonic displace-
ments. Each of these are biharmonic functions and so are uniquely defined by their boundary
conditions, namely the displacements of the transformed handles. In particular, consider ro-

79

4 Bounded biharmonic weights for real-time deformation

Original

Harmonic LBS weights
 [Joshi et al. 2007]

Harmonic displacement
[Sorkine et al. 2004]

[Botsch & Kobbelt 2005]

Harmonic surface
[Botsch & Kobbelt 2004]

Figure 4.23: Top: a plane is deformed with various harmonic methods by applying a translation (top)
and a rotation (bottom) to a single handle.

−85◦

170◦

85◦

180◦

−180◦

Biharmonic LBS weights

Original

Biharmonic displacement
[Sorkine et al. 2004]

[Botsch & Kobbelt 2005]

Biharmonic surface
[Botsch & Kobbelt 2004]

Figure 4.24: Rotations applied to region handles controlling a cylinder, produce very different deforma-
tions using various biharmonic methods.

80

4.7 Appendix: Relationship to precomputed bases

tating one handle by 170 degrees in the middle column of Figure 4.24. The displacements of
this region are vectors pointing through the axis of rotation. The y-coordinate of the displace-
ments are a sine function going around the handle. If the other handle remains fixed then all its
displacement coordinates are zero. The y-coordinate of the displacement in the interior is thus
the biharmonic function which interpolates these boundary values (see Figure 4.25). Visual-
ized over a parameterization to the plane, we can clearly see that this function is not symmetric
along the x-axis. The boundary conditions are also not, so why should it be? Instead we see that
the influence of the zero boundary conditions on the left spread farther than the sine function
on the right. Combined with similar behavior of the z-coordinate, this results in a twist that
is asymmetrically placed along the cylinder. In contrast, blending these transformations with
biharmonic weights results in a symmetric deformation: the weights are symmetric so anything
they blend will also be (see left column in Figure 4.24).

The asymmetry of biharmonic displacements is exacerbated if we rotate each handle 85 degrees
in opposite directions instead. This produces two smaller twists with a bump in the middle. To
understand this, we again look at an individual coordinate function. Now our y-coordinate is the
biharmonic function which interpolates two phase-shifted sine functions (middle row, middle
column in Figure 4.24). The oscillations quickly die out creating a near-constant 0 function in
the middle (middle row, middle column in Figure 4.25, corresponding to the unrotated bump in
the middle of the deformed result. In contrast, LBS with biharmonic weights is affine invariant
so the resulting LBS deformation is just a rotated version of what we had before.

Rotating each handle even more exaggerates these effects. LBS is incapable of blending rota-
tions differing more than 180◦ so the result is just a global rotation. In each of the cases so far,
we see the candy-wrapper effect: collapsing shrinkage caused by blending rotations linearly.
This is a long well-known artifact of LBS [Weber 2000], but also a studied issue with linear
variational methods [Botsch and Sorkine 2008]. For the sake of comparison we show the corre-
sponding biharmonic surfaces for the cases discussed above (see third columns in Figures 4.24
and 4.25). Here the shrinkage due to linearity is amplified by the shrinkage inherent in minimal
curvature surfaces.

The C1 continuity of biharmonic displacements confuses this comparison a bit because, like
LBS with smooth weights, derivatives of each handle’s transformation are interpolated. But, this
does not promise equivalence (second row in Figure 4.22). Switching to C0 harmonic weights
and harmonic displacements (minimizers of Dirichlet energy) makes the difference clear (Fig-
ure 4.23). In neither case do we expect/see derivative continuity, but harmonic displacements
do not blend rotations of the rigid transformations at all and the deformation is equivalent to that
of applying translations. LBS with harmonic weights on the other hand produce very different
deformations depending on whether rotations or just translations are interpolated.

LBS with biharmonic weights is symmetric, detail-preserving, respectful of handle transforma-
tions and affine invariant. This seems to imply superiority over biharmonic displacements or
reintroducing details atop biharmonic surfaces. We need to be careful about our claims. If we
allow general affine transformations and not just translations then we cannot claim that the LBS
displacements or surface are “biharmonic” or “minimizing the Laplacian energy”. Instead, we
must grasp at the notion of the blending being biharmonic and energy minimizing. This has a
strong relationship to the local frame blending of [Lipman et al. 2005, Zayer et al. 2005], dis-
cussed in [Botsch and Sorkine 2008]. Its difficult to make claims about the smoothness or fair-

81

4 Bounded biharmonic weights for real-time deformation

Biharmonic LBS weights Biharmonic displacement
[Sorkine et al. 2004]

[Botsch & Kobbelt 2005]

Biharmonic surface
[Botsch & Kobbelt 2004]

y-coordinate of displacement y-coordinate of surface

85◦,−85◦

180◦,−180◦

170◦, 0◦

Figure 4.25: The y-coordinate of the displacements of the biharmonic deformations in Figure 4.24 visu-
alized as a height field over a planar parametric domain.

−85◦

170◦ 85◦
−180◦

180◦
−180◦

180
◦

−180◦

180
◦

100 x 100 cylinder 700 x 700 cylinder

Figure 4.26: A cylinder is deformed using biharmonic weights by rotating the region handles. Dual
quaternion skinning prevents collapse during twisting, but it is unstable. A small change in
the rotation and the shape takes on a bizarre form, ultimately shown with a finer tessellation.

ness of the surface beyond simple extrapolation from the smoothness or fairness of the weight
functions themselves. If the weights are smooth the deformation will be smooth. Once satisfied
with the notion of biharmonic blending, one may consider other, even nonlinear, blends such as
dual quaternion skinning [Kavan et al. 2008] (see Figure 4.26) or even blending with two sets
of biharmonic weights (see Chapter 6).

82

4.8 Appendix: A cotangent Laplacian for images as surfaces

4.8 Appendix: A cotangent Laplacian for images as
surfaces

By embedding images as surfaces in a high dimensional coordinate space defined by each
pixel’s Cartesian coordinates and color values, we directly define and employ cotangent-based,
discrete differential-geometry operators. These operators define discrete energies useful for
image segmentation and colorization.

Many image processing techniques rely on differential operators defined in terms of some metric
adapted to image content. For example, discrete Laplacians with stencils weighted by a function
of pixel locations and color values define energies whose minima intuitively propagate tone map
adjustments [Lischinski et al. 2006] or sparse color values [Levin et al. 2004]. Other techniques
have overlain triangle meshes atop images to reduce computation complexity (e.g. for image
warping [Karni et al. 2009]), while simultaneously manifesting the ability to employ discrete
differential-geometry operators common in computer graphics [Meyer et al. 2003].

The mesh-based Laplacians enjoy well-studied properties: convergence with respcet to mesh
resolution, positive semi-definiteness when defining Dirichlet energies, and symmetric, locally-
supported stencil weights [Wardetzky et al. 2007b]. Though the content-adaptive stencils used
by [Levin et al. 2004, Lischinski et al. 2006] imply discrete Laplacians, they are rarely labeled
as such. As a result they appear to be less studied in this regard and most likely only enjoy a
subset of these properties. However, they depend on the image color values, and are thus tanta-
mount to defining a Laplacian in terms of some content-adaptive metric. As of yet, the planar
triangle meshes previously used in image processing incorporate only the Cartesian coordinates
of mesh vertices and are thus defined solely by the Euclidean image-plane metric, ignorant of
image content.

We define an image surface by first overlaying a triangle mesh atop the image. We place ver-
tices at pixel centers and Delaunay-triangulate them. The mesh is then lifted into higher di-
mensional space by appending each pixel’s color values as coordinates to the corresponding
mesh vertex. Thus the pixel i at location (xi, yi) is lifted to (xi, yi, Ii), (xi, yi, Ri, Gi, Bi), or
(xi, yi, Li, Ai, Bi) in a grayscale, RGB, or LAB color model respectively.

Now our triangle mesh lives as a disk-topology surface embedded in a higher dimension. If
only a single color channel is used then the surface lives in R3, and typical discrete differen-
tial operators common in 3D mesh processing may be immediately applied. If we use more

Original +
scribbles

Image surface Single BBW
function

BBW colorization [Levin et al. 2004]

Figure 4.27: Left to right: an image with color scribbles is fit with a mesh and lifted into R3 according
to intensity values. Bounded Biharmonic Weights computed for each scribble (shown for
body) are used to colorize the image. Compare to colorization by [Levin et al. 2004].

83

4 Bounded biharmonic weights for real-time deformation

channels then our surface lives in R5 or possibly higher. At first glance it may seem difficult to
define the usual operators in higher dimensions. However, the building blocks of standard oper-
ators, e.g. the discrete Laplace-Beltrami operator, are the triangle areas and cotangents of each
triangle corner angle [Meyer et al. 2003], and these may be defined intrinsically based solely
on triangle edge lengths (rather than using cross products as one might in R3).

vi

jk

αij

h
ij

ki

vk vj

Consider a triangle with vertices vi,vj,vk ∈ Rd. The triangle
area Aijk is defined intrinisically by [Heron 60]:

Aijk =
√
r(r − `ij)(r − `jk)(r − `ki), (4.39)

where lij is the length of the edge between vi and vj , and r is the
semi-perimeter 1

2
(`ij + `jk + `ki).

We may similarly define the cotangent of the angle opposite each
edge. First we can derive the cosine and sine. Recall the law of
cosines:

`2
ij = `2

jk + `2
ki − 2`jk`ki cosαij → cosαij =

−`2
ij + `2

jk + `2
ki

2`jk`ki
. (4.40)

For sine, we employ the familiar area formula treating the vjvk as base:

Aijk =
1

2
`jk`ki sinαij → sinαij =

2Aijk
`jk`ki

.

Finally putting these together we have:

cotαij =
cosαij
sinαij

=
−`2

ij + `2
jk + `2

ki

2`jk`ki

`jk`ki
2Aijk

=
−`2

ij + `2
jk + `2

ki

4Aijk
.

Note that a similar intrinsic derivation is given in Equations (7) and (13) of [Meyer et al. 2003]
and may be extracted from our derivation of the planar Laplacian (Section 2.1.2). Derivation of
an equivalent intrinsic formulation of the discrete cotangent Laplacian for 3-manifolds lurks in
Section 2.1.2, but is left as an exercise to the reader.

With cotangents in hand, we may employ operators like the discrete Laplacian to solve Poisson
equations over an image surface. Consider the colorization problem. We wish to propogate the
colors of sparse user scribbles to the rest of the image in a localized, smooth and content-aware
manner. [Levin et al. 2004] pose this as a discrete Poisson equation. Despite their published
formulas, private discussion one of the authors and their published code agree that they solve a
second- (not fourth-) order system, whose system matrix is a content-dependent, nonsymmetric
Laplacian. Though similar to that of [Lischinski et al. 2006], it is not positive semi-definite.
Thus its solutions do not correspond to minimizers of a modified Dirichlet, (or Laplacian) en-
ergy.6

The resulting system of the colorization problem is linear: the final colors are just a weighted
linear combination of each scribble’s color. In this light, we may acknowledge the connec-
tion between the colorization problem and the handle-based linear shape deformation problem,

6This implies that [Wang et al. 2011] and possibly others are also solving a second-order PDE, but (accidentally)
writing otherwise.

84

4.8 Appendix: A cotangent Laplacian for images as surfaces

Color model f = 0 f = 0.01 f = 0.05 f = 0.1 f = 1 f = 10

Input +
scribbles

Figure 4.28: The original input image with colored user scribbles (left inset) defines an image surface in
R3 using intensity values (top row), or in R5 using RGB values (bottom row). Varying the
scale factors (columns) on the appended coordinates affects the discrete Laplace equation
used to produce these soft-segmentations.

where correspondence weights are computed for each handle and each point on the surface.
If we replace the Laplacian used by [Levin et al. 2004] with the cotangent Laplacian of the
image surface, the resulting system would then be analagous to the Harmonic Coordinates of
[Joshi et al. 2007]. The previously described bounded biharmonic weights show numerous ad-
vantages over Harmonic Coordinates in the realm of deformation. Because bounded biharmonic
weights also optimize an energy involving the cotangent Laplacian, we may similarly compute
them on image surfaces and use them for colorization (see Figure 4.27).

One missing element is the choice of scale relationship between the Cartesian coordinates of a
pixel and its appended color coordinates. For a pixel i at location xi, yi ∈ [0,max(w, h)] where
w and h are the width and height measured in pixels, let its color values be Ii, Ri, Gi, Bi, . . . ∈
[0, 1]. Then we parameterize the amount of content-adaptiveness desired in our operators by
scaling each color coordinate by a constant factor when we lift the image surface. For a pixel
i in a grayscale image, the embedded coordinates are (xi, yi, fIIi) and for an RGB image
(xi, yi, fRRi, fGGi, fBBi). The effect of tweaking these parameters is shown in Figure 4.28.
For this example we consider Harmonic Coordinates defined on the image surface as a soft
segmentation for three user scribbles. The top row shows the segmentation in pseudo-color
for various scale factors, considering only the intensity channel. The bottom row considers the
RGB channels (with fR = fG = fB).

This idea was successfully employed by [Yücer et al. 2012] for image registration. In future
work, we would like to explore different color models and the ideal weighting of each color
coordinate. It would also be interesting whether a similar embedding can be defined for cyclical
color spaces like HSV.

85

4 Bounded biharmonic weights for real-time deformation

c4=(0,1)

c3=(1,0)

c2=(0,-1)

c1=(-1,0) x=(0,0)

c'4

c'3

c'2

c'1 x' c3

Figure 4.29: Consider the center of a square. Moving an arbitrary corner toward its opposite corner, we
may show that a mapping produced by barycentric coordinates is either non-bijective or the
coordinate corresponding to this corner is 1/2. Because the choice of corner was arbitrary
and there are four corners, this contradicts the partition of unity property.

4.9 Appendix: Bijective mappings with barycentric
coordinates — a counterexample

Many recent works attempt to generalize barycentric coordinates to arbitrary polygons. We
construct a counterexample proving that no such generalization will produce purely bijective
mappings in the plane provided the coordinates meet the Lagrange, reproduction, and partition
of unity properties. The proof concerns generalized barycentric coordinates in a square, but
trivially generalizes to arbitrary polygons with degree greater than three.

Barycentric coordinates in a triangle boast a list of favorable properties making them useful in
a number of important tasks across fields (e.g. scattered data interpolation). A recent resur-
gence of work attempts to generalize barycentric coordinates to arbitrary polygons. Typically,
these works maintain the basic properties of coordinates (Lagrange, reproduction, and parti-
tion of unity) and vary in the degree to which they support other properties: closed form ex-
pression [Floater 2003, Manson and Schaefer 2010], smoothness [Joshi et al. 2007], positivity
[Lipman et al. 2007], and so on. However, triangular barycentric coordinates possess an elusive
property, so far unobtained by generalizations: the ability to produce bijective mappings in the
plane. When used to define a planar map, barycentric coordinates produce an affine mapping
which is trivially bijective so long as the map does not degenerate (the original triangle should
map to a non-degenerate triangle). In the rest of this document we show by counterexample how
such bijective mappings are unobtainable by any arbitrary generalized barycentric coordinates
in a square. The counterexample trivially extends to any polygon of degree greater than three.

Consider a square S with corners {c1, c2, c3, c4} at respective Cartesian coordinates
{(−1, 0), (0,−1), (1, 0), (0, 1)}. Define a barycentric coordinates mapping inside this square

86

4.9 Appendix: Bijective mappings with barycentric coordinates — a counterexample

as a map:

M(x) : S → R2 =
4∑
i=1

wi(x)c′i, (4.41)

where c′i are the new or deformed positions of ci and wi are scalar barycentric coordinate func-
tions defined for each point x in and on the square, obeying the following properties:

• Lagrange: wi(cj) = δij and thusM(ci) = c′i,

• Reproduction:
∑4

i=1wi(x)ci = x, and

• Partition of unity:
∑4

i=1 wi(x) = 1.

We call an arrangement of c′i non-degenerate if the quadrilateral {c′1, c′2, c′3, c′4} remains simple.

Theorem: For any such functions wi, there exists a non-degenerate arrangement of c′i such that
the mapping is not injective. That is, there always exists some x and y such that x 6= y but
M(x) =M(y).

Sketch: The idea of the proof is that as we bring c′3 toward c1, one of three things will happen:

1. M(0) will reach c1 before c′3 does,

2. c′3 will overrunM(0) before c′3 reaches c1, or

3. w3(0) = 1/2, contradicting partition of unity.

Proof: Applying the reproduction property, we may rewrite the mapping formula as:

M(x) =
4∑
i=1

wi(x)(c′i − ci + ci) (4.42)

= x +
4∑
i=1

wi(x)(c′i − ci). (4.43)

Consider the mapping of the origin M(0) as we move c′3 along the x-axis from c3 = (1, 0)
toward c1 = (−1, 0) while keeping c′i = ci for i 6= 3. Until c′3 finally reaches c1 then the
mapping is non-degenerate. Immediately we may write

M(0) =
4∑
i=1

wi(0)(c′i − ci) (4.44)

= w3(0)(c′3 − c3). (4.45)

By noticing that c3 = −c1 we may write

M(0) = w3(0)(c′3 + c1). (4.46)

The remainder of the proof will deal only with the x-coordinate of the relevant points. We will
use a nonbold font to refer to the scalar x-coordinate, so that c′3 is the x-coordinate of c′3.

Assume for any choice of c′3 between c1 and c3 we have an injective map. We now draw a
contradiction for every possible weight w3(0).

87

4 Bounded biharmonic weights for real-time deformation

Case 1: Consider the case when w3(0) > 1/2 and letM(0) = c1:

w3(0)(c′3 + c1) = c1 (4.47)

Because c′3 + c1 ≤ 0 and 1/2 < w3(0) we may solve for c′3:

1

2
(c′3 + c1) > w3(0)(c′3 + c1) = c1 (4.48)

c′3 + c1 > 2c1 (4.49)
c′3 > c1 (4.50)

which means thatM(0) = c1 =M(c1) before degeneracy. So if we want an injective mapping
then w3(0) ≤ 1/2.

Case 2: Consider w3(0) < 1/2, and letM(0) = c′3.

w3(0)(c′3 + c1) = c′3 (4.51)

and now since w3(0) < 1/2 we solve again for c′3:

c1 < c′3 (4.52)

So once again,M(0) = c′3 =M(c3) before degeneracy. Together with Case 1, if we want an
injective mapping, then w3(0) = 1/2.

Case 3: We now know that w3(0) = 1/2, but by rotational symmetry of our problem we may
repeat our logic above showing that wi(0) = 1/2 for i = 1, 2, 4. Thus

∑4
i=1wi(0) = 2 which is

a contradiction to the partition of unity property. �

Extending this counter example to other polygons simply involves considering a map from the
original polygon to the given square (e.g. by mapping four corners to the square’s corners and
the remaining corners to somewhere along the respective sides). Then one may follow the same
logic above.

This counterexample shows that no real-valued generalized barycentric coordinates induce
mappings that are always bijective. It would be interesting to consider whether so-called com-
plex barycentric coordinates [Weber et al. 2009] could provide such mappings. These coordi-
nates often relax the Lagrange property so it is not clear to what extent these may be considered
“coordinates”. Nonetheless, pursuit of an analogous counterexample is interesting and, we hy-
pothesize, fruitful7.

7I am grateful to Kai Hormann and Ofir Weber for illuminating discussions which lead to developing this coun-
terexample.

88

5
Smooth shape-aware functions with
controlled extrema

Functions that optimize Laplacian-based energies have become popular in geometry process-
ing, e.g. for shape deformation, smoothing, multiscale kernel construction and interpolation.
Minimizers of Dirichlet energies, or solutions to Laplace equations, are harmonic functions that
enjoy the maximum principle, ensuring no spurious local extrema in the interior of the solved
domain occur. However, these functions are only C0 at constrained values. For this reason,
many applications optimize higher-order Laplacian energies, resulting in biharmonic or trihar-
monic functions. Their minimizers exhibit increasing orders of continuity but lose the maximum
principle and show oscillations. In this work, we identify characteristic artifacts caused by
spurious local extrema, and provide a framework for minimizing quadratic energies on mani-
folds while constraining the solution to obey the maximum principle in the solved region. Our
framework allows the user to specify locations and values of desired local maxima and min-
ima, while preventing any other local extrema. We demonstrate our method on the smooth-
ness energies corresponding to popular polyharmonic functions and show its usefulness for fast
handle-based shape deformation, controllable color diffusion, and topologically-constrained
data smoothing.

5.1 Introduction

Smooth, shape-aware functions have become a cornerstone of geometry processing. They are
often obtained by minimizing discrete differential energies, and are used in a wide range of
applications, e.g. detail-preserving shape deformation, data interpolation on manifolds, multi-
scale shape analysis, mesh segmentation and even image processing. Some applications require

89

5 Smooth shape-aware functions with controlled extrema

Bounded
biharmonic

Bounded
triharmonic

Bounded
tetraharmonic

Our
tetraharmonic

Unconstrained
tetraharmonic

Original

Figure 5.1: Shape deformation: Recent works emphasize the importance of bounded control, but simply
adding constant bounds to shape-aware smoothness energies of increasing order encourages
more and more oscillation. Our framework efficiently optimizes such high-order energies as∫
M ‖∇4f‖2dA while ensuring against spurious local extrema.

Unconstrained Bounded Our

Figure 5.2: Various weight functions for the control point in the head of the cactus used in Figure 5.1,
with highlighted local minima (blue dots) and maxima (red dots). Our framework prohibits
local extrema during optimization, wrangling the oscillations.

functions with high-order smoothness or sophisticated control of the boundary conditions, in
which case energies involving high-order differential quantities are used.

Energies associated with polyharmonic partial differential equations are particularly popular,
since they are relatively easy to define on meshes using discrete gradient and Laplace opera-
tors [Meyer et al. 2003], whose properties are well-studied [Wardetzky et al. 2007b]. Solutions
of polyharmonic equations exhibit increasing smoothness at fixed values, but unfortunately also
show increasingly wild oscillations that are difficult or impossible to control with boundary val-
ues alone. The previous Chapter 4 investigated weight functions for propagating handle trans-
formations in real-time shape deformation; it was shown that minimizing the Laplacian energy
with constant bounds produces functions that capture the good qualities of biharmonic functions
while avoiding negative values that lead to unintuitive deformation results. The bounds effec-
tively dampen the natural oscillations of the biharmonic solution while maintaining smoothness.

Bounds by definition prevent function values outside the intuitive range, but do not prevent
all unintuitive oscillations. In Figure 5.1, the Cactus is deformed using bounded biharmonic
functions, but the top of his left arm unintuitively stays put when the control point in the head
is moved. This is due to a local minimum in the associated weight function (see Figure 5.2).
Increasing the order of the smoothness energy and keeping the constant bounds only makes the
oscillations worse to the detriment of the final deformation. We show how the local extrema
introduced by these oscillations occur frequently even if constant bounds are in place.

90

5.2 Background

Biharmonic

Bounded biharmonic

Ours

Figure 5.3: The Titanic (inset) is stretched with 3 control points. Biharmonic and bounded biharmonic
weights introduce extrema in the chimneys and flagpole, causing unintuitive response. Our
solution (right) is smooth and intuitively deforms the appendages as if rigidly attached to the
shape. The weight function for the middle control point is shown for each (left).

In this chapter, we formally define the ideal problem we would like to solve: minimize high-
order, shape-aware smoothness energies with guarantees on the locations and values of local
extrema. The resulting nonlinear optimization problem turns out to be impractically difficult
due to nonlinear, non-convex inequality constraints. Accordingly, we provide a framework to
simplify the constraints in a way that not only ensures we find a feasible solution, but converts
the problem into a computationally tractable one.

Our robust optimization allows us to consider smoothness energies associated with higher-order
PDEs. We demonstrate the usefulness of guarantees on the absence of new extrema in the
context of weight-based shape deformation, color diffusion and data smoothing.

5.2 Background

We survey a representative selection of works that utilize smooth, shape-aware functions. Espe-
cially relevant to us are works that comment on the oscillatory nature of polyharmonic functions
and/or impose topological constraints.

Shape deformation. Smooth, shape-aware influence functions are profusely used for shape
deformation. A basic way of deforming the geometry x of a 2D or 3D shapeM is by combining
the propagated influences of affine transformations Tj provided at user-controlled deformation

91

5 Smooth shape-aware functions with controlled extrema

handles (LBS):

x′i =
H∑
j=1

fj(xi)Tj xi, (5.1)

where xi are vertices of the meshM. An influence function fj should attain maximum value
of 1 in the shape region that is most affected by the handle j, and decay towards 0 away from
that region (reaching exactly 0 on points fully associated with other handles). If fj has negative
values, the deformed shape will unintuitively move in the “opposite direction” to the prescribed
Tj . Thus, fj should be bounded within [0, 1]. Moreover, as we illustrate in this work, if the
influence functions have additional local extrema (besides at the constrained handle regions),
the deformation behavior is unintuitive as well, causing parts of the shape to “lag behind” or
move too fast relative to neighboring parts. We colloquially refer to such behavior as non-
monotonic.

Equation (5.1) is common in real-time skinning deformations [Magnenat-Thalmann et al. 1988,
Kavan et al. 2008], its execution is parallel and extremely fast on the GPU. Several works pro-
posed automatic computation of skinning weights fj . [Weber et al. 2007] use harmonic func-
tions that are provably monotonic and bounded but have only C0 smoothness near constrained
boundary. [Baran and Popović 2007, Wareham and Lasenby 2008] solve a Poisson equation
whose right-hand side is not guaranteed to be monotonic and thus might produce non-monotonic
weight functions. The bounded biharmonic weights (BBW) of the previous chapter use bihar-
monic functions, which are smooth at the handles, and constrain them to be bounded within
[0, 1]. Although in [Jacobson et al. 2011] we claim to observe a lack of spurious maxima in our
weights, we now show a number of examples where this is not the case: especially in shapes
with appendages (e.g. Figures 5.1, 5.3).

As discussed in Section 4.7, linear variational surface-based deformation meth-
ods [Botsch and Sorkine 2008] can be expressed in form similar (but not equiva-
lent) to (5.1)1 When all mesh vertices belonging to one handle are assigned the
same affine transformation, the influence functions fj are then analogous to the
columns of the inverted system matrix stemming from the variational optimization (re-
ferred to as “bases” in [Botsch and Kobbelt 2004, Sorkine et al. 2005]). Specifically,
[Botsch and Kobbelt 2004, Sorkine et al. 2005] and others define families of bases that are the
solutions of polyharmonic PDEs ∆kf = 0, providing Ck−1 continuity at the constrained han-
dles. In Chapter 3, we refined this approach to allow direct control over boundary derivatives
for the biharmonic and the triharmonic cases. Alternatively, triharmonic radial basis functions
can be used [Botsch and Kobbelt 2005], replacing sparse large system solves by small and
dense ones. In all these cases, the functions are often not monotonic nor even bounded, as
discussed in Chapter 4.

Nonlinear deformation methods often employ model reduction based on skinning, such that the
transformations Tj become the degrees of freedom in the nonlinear optimization. The weight
functions play an important role in the design of the reduced model and greatly affect the final
deformation quality. For example, [Huang et al. 2006] uses generalized barycentric coordinates
and [Au et al. 2007] employs harmonic functions (using their isolines as reduced-space han-
dles). In Chapter 7, we will consider a similar reduction using LBS.

1In our corresponding publication [Jacobson et al. 2012b], we erroneously claimed equivalence.

92

5.2 Background

Biharmonic Ours

Figure 5.4: Colors (specified at the small circles) are diffused using the biharmonic functions of
[Finch et al. 2011], but these are unbounded and extrapolate colors not present in the con-
straints. Our interpolation explicitly prohibits local extrema and implicitly imposes bounds
(cf. Figure 3 in [Finch et al. 2011]).

When the control handles are vertices of a cage mesh enclosing the shape to be deformed,
and the transformations Tj are just translations, the weight functions fj are called generalized
barycentric coordinates (see e.g. [Ju et al. 2005, Joshi et al. 2007, Hormann and Sukumar 2008,
Manson and Schaefer 2010]). Significant attention has been devoted to the boundedness and
locality problems [Lipman et al. 2007, Joshi et al. 2007], but we argue the same problems of
unintuitive control arise with local extrema. While simple filters may be used to induce bound-
edness [Langer and Seidel 2008], such filters will at best downplay spurious local extrema, but
will not in general remove them.

A large class of weight functions are constructed to decay with the (geodesic) distance from
their handle [Schaefer et al. 2006, Zhu and Gortler 2007]. Deformations with such functions
suffer from the “fall-off” effect, characterized by extraneous minima away from the handles
(see Figures 4.7 & 6.11). These functions are unable to form large regions where one handle’s
weight function is significantly dominant. These effective plateaus in weight functions are
necessary for naturally-looking deformations. In contrast, our method allows dominant regions
and we demonstrate that through our choice of smoothness energy we may encourage such
behavior, leading to intuitive deformation control.

Boundary value interpolation. Replacing deformed vertex positions Tjx in Equation (5.1)
with general values, we obtain an interpolation problem, which has numerous uses in graphics:

v(x) =
H∑
j=1

fj(x) vj . (5.2)

Smoothness and monotonicity of the interpolation basis functions fj remains impor-

93

5 Smooth shape-aware functions with controlled extrema

tant. For example, if vj’s are RGB colors, one obtains color diffusion, useful in im-
age colorization [Levin et al. 2004], seamless cloning [Pérez et al. 2003] and vector graph-
ics design [Orzan et al. 2008]. The mentioned approaches employ harmonic functions fj;
[Georgiev 2004] cites possible use of triharmonic and tetraharmonic2 functions for seamless
image cloning, but settles on biharmonic functions. Finch et al. [2011] define biharmonic Dif-
fusion Curves to enable diverse control of the color gradients and in particular smoothness at the
provided user constraints. Their biharmonic functions can be negative and have prevalent local
extrema, leading to unexpected results (see Figure 5.4). Their proposal to use hard clamping
when final color values exceed the displayable range hurts smoothness and does not necessarily
avoid local extrema, which are present even when imposing explicit bounds (see Figure 5.10).

Data smoothing. Scalar data smoothing is often required for subsequent processing, effective
visualization and analysis. Polyharmonic RBFs are employed as low-pass filters for smoothing
and reconstruction of scattered data, such as range images [Carr et al. 2001, Carr et al. 2003];
however, no explicit control over the resulting topology, e.g. guarantees of monotonicity, lo-
cations and values of extrema, is provided. Carr et al. [2004] work with the contour tree
of the input data set, which enables them to remove small topological features. Gingold
and Zorin [2006] prevent the formation of new topological features by controlling the data
isocontours while using common iterative filtering methods, such as Laplacian smoothing or
anisotropic diffusion.

The two most related approaches to our method in the data smoothing context
are [Bremer et al. 2004] and [Weinkauf et al. 2010]. Bremer et al. iteratively simplify the
Morse-Smale complex of the data and produce a corresponding scalar function after each can-
cellation step by Laplacian smoothing of the data within each Morse-Smale cell, until no in-
terior critical points are left. Their iterative procedure is time-consuming and produces only
C0 continuity along separatrices. Weinkauf et al. first perform persistence-based simplification
of the input Morse-Smale complex, and then fit a C1 function that adheres to the complex by
constrained minimization of a weighted sum of the Laplacian energy and a data term. They
optimize each cell subject to nonlinear monotonicity constraints, extracted from a harmonic
function computed in the cell. Our use of the maximum principle of harmonic functions is
conceptually similar, but we devise a sparse set of linear inequality constraints and convert our
energy optimization to a conic programming problem. As a result, our optimization is roughly
1000× faster (see Section 5.4). Both methods [Bremer et al. 2004] and [Weinkauf et al. 2010]
fully constrain the entire Morse-Smale complex, which may be beneficial for visualization, but
could be too restrictive in cases where the precise locations or values of saddle points and sep-
aratrices are not relevant for the application. Our method constrains locations and values of the
extrema, the locations of the saddles, and the combinatorial connectivity between these points
in the Morse-Smale complex. The values of saddles and the locations of separatrices may be
enforced in our framework but we find it useful to leave these free, allowing for a wider range
of feasible solutions.

Mesh and image processing. Smooth, shape-aware (and in particular polyharmonic) func-
tions find many additional uses, such as mesh segmentation [Zheng and Tai 2010], design of

2 Functions satisfying the eighth-order equation ∆4f = 0 have been previously referred to as quatraharmonic,
quadraharmonic, quadriharmonic or quadharmonic, but tetraharmonic seems to be the prevailing terminology.
This agrees with the Greek roots of harmonic, but contradicts the Latin numerical prefix of the well established
biharmonic.

94

5.3 Method

fair Morse functions [Ni et al. 2004] or multiscale kernels [Rustamov 2011]. Chen et al. [2011]
used topological constraints to control the number of connected component in an image seg-
mentation. Our framework is general and applicable in any such contexts.

5.3 Method

Let our domain be the triangle meshM and let N (i) denote the 1-ring neighbors of vertex i.
Our goal is to find a piecewise linear function f : M → R, which interpolates values at
specified minima locations pi , i ∈ Kmin and maxima locations pi , i ∈ Kmax, with corresponding
fixed values gi ∈ R. We also want f to be monotonic, i.e., no other extrema inM.

Many functions fulfill those conditions. As often done in data interpolation, we intro-
duce an energy functional E(f) which measures the quality of f for a given applica-
tion. Laplacian-based energies are often employed as a smoothness regularization term (e.g.
[Botsch and Kobbelt 2004]) and are of the form3:

ELk(f) =

∫
M
‖∇kf‖2dA for k = 2, 3, . . . (5.3)

Details of discretization may be found in Section 2.1 and Chapter 3 or [Botsch et al. 2010].

For applications like data smoothing, we may also introduce a data energy term ED. In the
simplest form, ED measures in a least-squares sense the deviation from some data function
h :M→ R:

ED(f) =
∑
i∈M

‖fi − hi‖2. (5.4)

In general, we consider any energy functional E, but typically we are concerned with combina-
tions of a smoothness term and possibly a data term:

E(f) = γLEL(f) + γD ED(f). (5.5)

where γL and γD balance the influences of the energies.

3We write ‖ · ‖ to indicate the Euclidean norm operating on vectors if k is odd and scalars otherwise.

95

5 Smooth shape-aware functions with controlled extrema

5.3.1 Ideal optimization

We may formulate the ideal problem as an energy minimization with nonlinear, non-convex4,
non-differentiable inequality constraints:

arg min
f

E(f) (5.6)

subject to: fi = gi ∀i ∈ Kmin ∪ Kmax, (5.7)
fj > fi ∀j ∈ N (i), ∀i ∈ Kmin, (5.8)
fj < fi ∀j ∈ N (i), ∀i ∈ Kmax, (5.9)
fi > min

j∈N (i)
fj ∀i /∈ Kmin ∪ Kmax, (5.10)

fi < max
j∈N (i)

fj ∀i /∈ Kmin ∪ Kmax. (5.11)

The constant equality constraints (5.7) simply enforce that the values of the known extrema are
interpolated. The linear inequality constraints (5.8) and (5.9) ensure that the prescribed extremal
points are local minima and maxima, respectively. The nonlinear inequality constraints (5.10)
and (5.11) enforce that all unknown values are greater than their minimum neighbor and smaller
than their maximum neighbor.

We assume that the given set of extrema does not contradict the Morse inequalities. For exam-
ple, a non-constant function on a topological disk must have at least one minimum. We also
assume that prescribed extrema are not immediate neighbors and there exists one minimum
smaller than all maxima and vice-versa.

Given a quadratic energy E, this optimization problem would be practical to solve if not for
the nonlinear inequality constraints. The other constraints are linear and at worst produce a
quadratic programming problem. Trying to optimize the ideal problem directly with commer-
cial “black-box” nonlinear optimization software [MATLAB 2012] shows discouraging conver-
gence. Often feasible solutions are not found, and even if the solver does converge, the dismal
performance renders this option useless for most applications. For example, on a 16-vertex
mesh, the optimization takes 3 seconds to converge, and only does so when provided with a
generously near-optimal and feasible initial guess.

Many nonlinear optimization methods allow a “constraint violation tolerance” parameter. How-
ever, our topological constraints are highly sensitive. Even the slightest violation can allow
oscillations preferred by the unconstrained energy, producing potentially unbounded spurious
hills and valleys.

5.3.2 Constraint simplification

In light of our inability to solve the ideal optimization problem in (5.6) in a reasonable amount of
time, we propose a method for simplifying the nonlinear inequality constraints (5.10) and (5.11)

4It is straightforward to show that in general constraints (5.10 & 5.11) are not convex. Simply consider fixing all
variables but a small subset. Vary the values in this subset linearly. We know the feasible region is not convex
if the evaluation becomes feasible, then infeasible, then feasible again along this line.

96

5.3 Method

 u

...twice per vertex
...on every edge

Monotonic

Matches ∇u/‖∇u‖...

f

Satisfies and

Figure 5.5: We illustrate with the space of all solutions that satisfy the user’s constraints (white). Ideally
we would consider all monotonic solutions directly (green), but this problem is impractical.
Instead we find a monotonic representative u and optimize in the subspaces of solutions
whose gradients match a sufficient subset of directions of∇u/‖∇u‖ (red and blue).

into a larger set of linear inequality constraints. Suppose we have a representative function
u : M → R which satisfies constraints (5.8)-(5.11). We replace the nonlinear inequality
constraints (5.10) and (5.11) with linear inequality constraints requiring the direction (but not
magnitude) of ∇f be aligned with ∇u/‖∇u‖. In essence we enforce the monotonicity or,
loosely, the topology of u onto our optimized solution f . As long as we choose u intelligently
and construct our linear constraints from∇u/‖∇u‖ carefully, the optimization in (5.6) becomes
convex and thus efficiently solvable, and finds an acceptable solution (see Figure 5.5).

Given a monotonic representative function u as described above, we reduce the optimization to:

arg min
f

E(f) (5.12)

subject to: fi = gi ∀i ∈ Kmin ∪ Kmax, (5.13)
(fi − fj)(ui − uj) > 0 ∀(i, j) ∈ E , (5.14)

where E is a subset of the edges of the domainM. The constraints (5.14) require that the direc-
tion of decrease across every edge of E in our optimal solution f should match that of the known
function u. If E contains all edges, this is enforced everywhere and the choice of u greatly re-
stricts the shape of f . This is useful if we have high confidence in the representativeness of u
(e.g. when it is derived from existing input data). In other situations we only want to capture
the monotonicity of u, hence we would like the smallest possible edge set E . To guarantee that
our constraints prohibit local extrema, E must include for each vertex i ∈ M \ (Kmin ∪ Kmax)
at least one edge (i, j) where uj < ui and another where uj > ui. This guarantees that each
vertex value fi in our solution will have one neighbor fj < fi and another fj > fi.

5.3.3 Choice of representative function

We provide two methods for constructing a valid representative function u satisfying (5.8)-
(5.11). The first method shows that such a function always exists, ensuring a feasible solution.

97

5 Smooth shape-aware functions with controlled extrema

Initial function h Harmonic representative function u and ∆4 reconstruction

Topology-aware representative function u and ∆4 reconstruction

Figure 5.6: Two different representative functions are compared for the application of smoothing an ini-
tially given function. The harmonic function (middle) is visualized together with its Morse-
Smale complex, which is clearly different to the original topology. The constraints derived
from this fight against the data term during the reconstruction, which leads to a poor re-
sult. The topology-aware representative function (right) leads to good reconstruction results,
since it respects the original topology.

The second method takes advantage of situations when initial data is present.

No initial data. Consider a situation where no data is available besides the domainM and the
locations and values of extrema in Kmax and Kmin. This is useful, for example, in the context of
shape deformation and color interpolation. Taking advantage of the strong maximum principle
of harmonic functions, we can always construct a valid representative function u by solving the
following Dirichlet problem:

arg min
u

∫
M

‖∇u‖2dA (5.15)

subject to: u|Kmin
= 0, (5.16)

u|Kmax
= 1. (5.17)

Minimizers of the Dirichlet energy are harmonic functions. Their maximum principle guar-
antees that, when choosing the Dirichlet boundary conditions u|Kmin

= 0 and u|Kmax
= 1, the

locations in Kmin and Kmax become minima and maxima, respectively. Thanks to the unique-
ness of harmonic functions, u contains no other extrema insideM. This fulfills the necessary
conditions for u to be a valid representative function.

Initial data. In other situations, e.g. scalar field smoothing, our input will contain some ini-
tial data function h and the objective is to remove some of its extrema while keeping others.
This is useful in the context of topologically-constrained smoothing [Weinkauf et al. 2010],
where the Morse-Smale complex of h is simplified based on Forman’s discrete Morse
theory [Forman 1998] such that only the critical points above a user-defined persistence
[Edelsbrunner et al. 2002] threshold remain. To reconstruct a smooth function f based on the
remaining topology and as close as possible to the initial data function h, we set Kmin and Kmax

98

5.3 Method

|M| k Time/fj Total Time
Cactus 2403 2 0.1246 0.2493
Cactus 2403 3 1.3135 2.6271
Cactus 2403 4 0.2324 0.4649
Colored J 8229 2 0.2306 0.9225
Hummingbird 14636 3 86.393 259.18
Mouse 26294 2 6.1345 6.1345
Dino 28136 2 2.4564 7.3693
Combustor 29021 2 5.1707 5.1707
Beetle 38656 2 6.0263 6.0263

Table 5.1: Statistics for various examples in this chapter. |M| is the number of triangles in the discretized
domain, k is the order of the corresponding polyharmonic operator, Time/fj is the average
optimization time per function in seconds, and Total Time is the total optimization time.

to contain the minima/maxima of the simplified Morse-Smale complex and construct the repre-
sentative function u in the same fashion as [Weinkauf et al. 2010] builds its “preview” function:
the critical points are fixed to their original values u(pi) = h(pi), and all vertices on each
separatrix are fixed to a linearly interpolated value between its end points, i.e., a saddle and
an extremum. All fixed vertices serve as Dirichlet boundary conditions for solving ∆u = 0
on the domain. The solution u is a harmonic function that has no interior critical points in the
domain: since the boundary conditions are monotonic, we obtain a valid scalar field that obeys
the prescribed topology.

Note that the solver of [Weinkauf et al. 2010] required that the values along the separatrices
remain fixed. This mandated smoothing the locations and values of the separatrices before
building another harmonic function and finally optimizing the interiors of the Morse cells. Our
framework does not require fixing separatrix values and may optimize the entire domain at once.

Figure 5.6 compares this topology-aware representative function to the harmonic function cre-
ated by (5.15)–(5.17). The latter places the central saddle point in the middle between the two
peaks, thereby disregarding the size and shape of the peaks in the original function. In this
example, this creates areas where the gradients of the harmonic and the original function are
perpendicular to each other (visible in the isolines). This leads to a poor reconstruction. The
topology-aware representative function is built from the original topology, leading to a favorable
reconstruction.

Finally, with a valid representative function we may take a minimally sufficient edge set E . For
each vertex i inM, we include the edges {i, j} and {i, k} where uj and uk are the smallest and
greatest of the neighbors of i. To ensure the topological conditions of the user constraints are
met, we add all edges incident on any i in Kmin or Kmax.

5.3.4 Implementation

One could solve (5.12) with any sparse quadratic programming solver, but we saw major perfor-
mance improvements (≈100×) when converting our problem to conic programming and using
MOSEK [Andersen and Andersen 2000], a sparse, conic programming solver. See Section 5.7

99

5 Smooth shape-aware functions with controlled extrema

Original BBW Ours

Figure 5.7: The Propeller Worm in its rest pose (left) is deformed using bounded biharmonic weights
(BBW, middle). A local maximum leaves its propeller behind when its tail is bent, also
causing the rod to unintuitively squish. Our solution (right) attaches the propeller to the
body, giving it near constant weights (visualized below).

and Section 2.2.4 for details of this conversion. For 2D image deformation and color diffusion
we use Triangle [Shewchuk 1996] to triangulate the interior of the shape outline.

When solving for shape-deformation or interpolation weight functions in (5.1) and (5.2), we
may append additional linear equality constraints to ensure weights across handles sum to one
for every vertex in M. This would tether the optimizations of the weight functions together
into one larger problem. However, we observe the same behavior of our weight functions as
in the previous Chapter 4 (see Figure 4.10): dropping the partition of unity constraints and
normalizing post-hoc has little effect on the final weights and thus also the deformation. Thus,
in all our experiments, we compute each weight function independently and normalize post
facto. We report the average times for computing each function in Table 5.1.

It is worth noting that this normalization technically invalidates any guarantees of monotonicity
in the final functions, but we argue that the artifacts arising from non-monotonicity are involved
with low-frequency oscillations present in the original functions before normalization. In any
case, our contribution is a general framework which easily incorporates creating guaranteed
monotonic functions with partition of unity constraints if so desired, just at additional precom-
putation costs. One would simply add the appropriate linear equality constraints and compute
all functions simultaneously as also described in Equation 4.5.

100

5.3 Method

Original Biharmonic Ours

Figure 5.8: The Dino in its rest pose (left) is deformed using the biharmonic weights of
[Botsch and Kobbelt 2004] (middle). In this example the weights are between [0, 1] but a
local minimum (blue dot) leaves the tail connected to the feet, giving the impression that it
is glued to the ground when bending. Our solution finds more intuitive, monotonic weights.

Original BBW Ours

Figure 5.9: The Mouse in its rest pose (left) is deformed using the biharmonic weights (BBW, middle),
which each have an extrema in the tail causing it to wiggle when the handles are deformed.
Our weights have no spurious extrema and keep the tail stiff.

101

5 Smooth shape-aware functions with controlled extrema

Unconstrained Bounded Ours

Figure 5.10: Colors are diffused using the unconstrained biharmonic functions of [Finch et al. 2011],
resulting in extrapolated (purple) and clipped (black) regions. Placing constant bounds
helps, but oscillations with local extrema are still visible. Our solution provides a smooth
diffusion without wild oscillations.

5.4 Experiments and results

We experimented with quadratic energies corresponding to biharmonic, triharmonic and tetra-
harmonic equations with and without least-squares data energy terms. We tested our method on
an iMac Intel Core i7 3.4GHz computer with 16GB memory. The computation time measure-
ments of our code are reported in Table 5.1. The optimization time required depends heavily
on the order of the polyharmonic operator in play. For the Laplacian energy, k = 2, we show
timings on the same order of magnitude as Section 4.4, where solve a simpler quadratic pro-
gramming problem with only constant bounds. For k = 3, our conversion to conic programming
results in a rectangular coefficients matrix, which is in turn not as efficiently optimized. Some-
what surprisingly, increasing the order to the next even power, k = 4, returns to much faster
computation time: the square root of discrete tetraharmonic operator is again square.

We use dual quaternion skinning [Kavan et al. 2008] to deform the Cactus in Figure 5.1. This
avoids distracting shrinkage artifacts present in linear blend skinning. This example demon-
strates that increasing the smoothness operator under our framework does not result in wilder
oscillations.

We have found that unconstrained and bounded polyharmonic solutions often struggle with long
appendages, placing extrema in the propeller in Figure 5.7 and the chimneys in Figure 5.3. Dur-
ing exploration of the deformation, local extrema in these appendages are immediately apparent
and distracting during interaction. The tail of the Dino in Figure 5.8 feels as if it is glued to
the ground when the head is transformed. The tail of the Mouse in Figure 5.9 wiggles when
deforming the hands and feet, rather than staying stiff as one might expect. Applying scaling
exaggerates the unintuitive nature of local extrema in weight functions: the geodesically dis-
tant sousaphone bell is sheared when scaling the head in Figure 5.13. Whether the additional
local extrema are maxima or minima seems largely unpredictable; the oscillations may flip due
to slight changes in the boundary definition. In Figure 5.12, the unconstrained and bounded
weights of the Hummingbird’s beak introduce a local minimum in the tail, whereas ours stay
monotonic (top row, right). The bottom row shows the chaotic nature of the unconstrained
and bounded weights’ oscillations. Slightly larger wing handles reverse the oscillations, now
producing a local maximum in the tail. We constrain the solution to be monotonic and thus

102

5.4 Experiments and results

Exact geodesic Smoothed geodesic

Figure 5.11: Sharp cusps appear in exact geodesic distances (left) computed for a point on the top of
the Beetle (inset). Our framework smooths this field while guaranteeing that all maxima
maintain their location and value (right). No new extrema are created.

avoid such chaotic oscillations. In contrast, the monotonic weight functions resulting from our
method allow intuitive deformations in all these cases. Please refer to the supplemental video
of [Jacobson et al. 2012b] to get a better impression of the deformation behavior.

Long features are also difficult for previous methods when blending colors. Oscillations com-
mon to biharmonic functions used by [Finch et al. 2011] lead to interpolation weights outside
of [0, 1] and may extrapolate colors not present in the user’s constraints: red - grey = blue in
Figure 5.4. Placing bounds on these weight functions helps, but local extrema are still present,
having the effect that colors fade out and then suddenly reappear somewhere else in the domain
(see Figure 5.10).

In Figure 5.14, we smooth exchange rate data which contains a pronounced, sharp spike at
the global maximum. To ensure that the C0 nature of this spike is not smoothed away, we
take advantage of the fact that the parameterized blends of different polyharmonic operators
in [Botsch and Kobbelt 2004] may be reexpressed as discrete quadratic energies. We may then
optimize using our method, such that only specified extrema are present in the result. In this
example, we choose our blend parameters (λ in Section 3 of [Botsch and Kobbelt 2004]) such
that we create a C0 at the global maximum and C1 elsewhere.

Smoothing geodesic distance fields is often a tricky balance between achieving desired smooth-
ness and loosing control of the linear spacing of isolines and placement and values of maxima
(farthest points). Our framework reconstructs a smoothed geodesic distance field which has the
original maxima and no others (see Figure 5.11). Smoothing noisy data similarly requires care,
or original features may be lost while new ones are introduced during smoothing. In Figure 5.15,
we reproduce the topology-based smoothing results of [Weinkauf et al. 2010] (compare to Fig-
ure 10c in their paper) with an optimization time that, for this example, is 1000× faster.

103

5 Smooth shape-aware functions with controlled extrema

Unconstrained Δ3 Bounded Δ3 Our Δ3 Original

Figure 5.12: The Hummingbird in her rest pose is deformed using the unconstrained, bounded and our
triharmonic weights.

Original BBW Ours

Figure 5.13: The Sousaphonist in his rest pose (left) is deformed using bounded biharmonic weights
(BBW, middle). Due to local extrema the horn’s bell gets an uneven deformation, whereas
our local-extrema-free deformation maintains its shape.

104

5.5 Limitations and future work

Original

Direct extension of [Botsch & Kobbelt 2004]

[Botsch & Kobbelt 2004] + data term

Our method without data term

Our method with data term

Figure 5.14: Top to bottom: Currency exchange data with hundreds of extrema including a sharp, global
maximum (star). Blended polyharmonic energies of [Botsch and Kobbelt 2004] can repro-
duce the spike, constraining only the values of the global minimum, global maximum, and
endpoint values. But this produces new extrema, changing the global min (from yellow
dot). Adding a data term introduces even more extrema. Our formulation prohibits new
extrema, and with a data term provides a smooth, monotonic representation of the data.

5.5 Limitations and future work

Due to the large number of linear inequality constraints, computation can still be expensive,
compared to solving a linear system (e.g. [Botsch and Kobbelt 2004, Finch et al. 2011]), or to
optimizing a quadratic energy with constant bounds, as in Chapter 4. But it is important to
keep in mind that the ideal problem in Equation (5.6) is far more difficult. We would like
to investigate other optimization methods that could take advantage of a warm start or other
constraint simplification possibilities.

We take advantage of the maximum principle of harmonic functions, but it is well known
that obtuse angles may cause weights in a cotangent Laplacian to be negative, thus nullify-
ing the guarantee of the maximum principle [Wardetzky et al. 2007b]. We sometimes observe
this problem locally in construction of our representative functions u. While this could poten-
tially lead to actually enforcing local extrema in our final solution, we observe that globally u
captures the correct gradient information we need, and problems due to poor discretization can
often be safely ignored. Of course, another option is to use a discrete Laplacian with positive
weights, but this may come at the cost of other convenient properties [Wardetzky et al. 2007b].

105

5 Smooth shape-aware functions with controlled extrema

Original Smooth reconstruction

Figure 5.15: By adding a data energy term and using a topology-aware representative function, we may
use our framework to smooth noisy data. Left: vorticity magnitude derived from an opti-
cally measured flow at the outlet of a combustion chamber, with thousands of local extrema.
Using persistence-based simplification, we isolate the most important extrema: 9 minima,
4 maxima (blue and red dots). We then smooth the data guaranteeing that these and only
these extrema occur in the solution (right). Data courtesy of A. Lacarelle (TU Berlin)
[Lacarelle et al. 2009].

Crane et al. [2012] use the normalized gradients of solutions to a Poisson equation to define
smooth geodesic distances. It would be interesting to relate this new method to our approach.

Finally, our per-edge, linear inequality constraints are inherently discrete. For data smoothing
this means, an asymmetric meshing combined with a strong data term may produce unintuitively
asymmetric reconstructions. Without a data term (e.g. for deformation or color interpolation)
this appears to be a non-issue: the constrained optimization subspace is still quite large.

5.6 Conclusion

We have shown a framework for constructing smooth, shape-aware functions on 2D and 3D
surfaces with guarantees on the placement and values of extrema. We also highlight the typical
problematic situations for which our method succeeds over previous work. We believe our work
will help promote the continued study of topological constraints in connection with geometry
processing applications like deformation and interpolation on manifolds.

5.7 Appendix: Conversion to conic programming

We use MOSEK [Andersen and Andersen 2000] to efficiently solve sparse, quadratic progam-
ming problems. Its documentation strongly recommends converting convex quadratic energy

106

5.8 Appendix: Iterative convexifiction

minimization with linear inequality constraints, like Equation (5.12), into linear energy mini-
mization with conic constraints. We found this to be especially advantageous for our problem.
Without loss of generality we assume our energy is of the form: E(f) =

∫
M(∇kf)2dA, which

can be discretized as
E(f) =

1

2
fT
(
LM−1

)k−1
L f , (5.18)

where L and M are the familiar cotangent Laplacian and normalized, diagonalized mass ma-
trix, respectively [Meyer et al. 2003]. We may write L = GTAG where G is the per-element
gradient operator and A has triangle areas repeated along the diagonal [Botsch et al. 2010]. For
odd k, Equation (5.18) becomes:

E(f) =
1

2
‖
√

AG
(
M−1L

) k−1
2 f‖2, (5.19)

and for even k:
E(f) =

1

2
‖
√

M
−1 (

LM−1
) k

2
−1

Lf‖2. (5.20)

This allows us to write E(f) = 1
2
‖F f‖2 and Equation (5.12) becomes convertible to conic form

via Section 2.2.4.

5.8 Appendix: Iterative convexifiction

In the previously described method, we computed a single feasible representative function u by
exploiting the maximum principle of harmonic functions. Then, like [Weinkauf et al. 2010], we
optimize Equation 5.12 and return a solution f . We may now notice that this solution f is again
a valid representative function. Treating this f as u, we repeat the process of convexifying the
ideal, nonlinear constraints around u with linear constraints, optimizing the resulting QP for f
and setting u to f .

We may repeat this process until convergence, which is guaranteed because the energy of our
iterative solutions E(fi) is monotonically decreasing. Given an initial solution fi, we linearize
our constraints around fi. Because the constraints are constructed according to fi, we know
the feasible set they describe is nonempty: it at least contains fi. Optimizing the resulting QP
for the next solution fi+1 guarantees that E(fi+1) ≤ E(fi) because fi+1 is the unique global
minimum in the feasible set.

Figure 5.16 illustrates a few steps of this process. In the upper-left image we visualize a
quadratic function, x2+4y2, with a topographical map (concentric, elliptic isolines) and a global
minimum (blue dot). We define a feasible region (white region inside red overlay). Given an
initial guess (yellow dot) we can use our heuristic to determine a convex subset of the feasible
region around this point (formed by intersecting halfspaces shown in green overlays). Within
this region the global minimum is found by solving a QP. The process is then repeated around
this point: the heuristic is applied again, defining a new convex subset, etc. Our heuristic in
general will be a poor approximation of the complex, non-convex feasible region. Still for a
given problem this moving convex window shows improvements at each iteration, making it of
course superior to running just one convexification and solving one QP.

107

5 Smooth shape-aware functions with controlled extrema

Figure 5.16: Illustration of the nonlinear optimization problem Equation (5.6) and our scheme to itera-
tively decrease the energy of the solution by repeated convexification of the feasible region
using the linear constraint Equation (5.14).

0 5 10 15 20

0.8

0.85

0.9

0.95

1

Iterative convexification convergence
Relative Energy

Iterations

Figure 5.17: Convergence with respect to relative error on the Combustor data set (cf. Figure 5.15).

108

5.8 Appendix: Iterative convexifiction

While we are not guaranteed to converge to the global minimum, or even a local minimum, of
the ideal problem in Equation 5.6, we see enormous energy reduction in the first few iterations
with diminishing returns Figure 5.17.

Our process of iteratively redefining the convex feasible set and solving QPs is related to Se-
quential Quadratic Programming (SQP). However, generic SQP assumes all nonlinear inequal-
ity constraints are at least twice continuously differentiable [Nocedal and Wright 2006].

109

5 Smooth shape-aware functions with controlled extrema

110

6
Stretchable and twistable bones for
skeletal shape deformation

Skeleton-based linear blend skinning (LBS) remains the most popular method for real-time
character deformation and animation. The key to its success is its simple implementation and
fast execution. However, in addition to the well-studied elbow-collapse and candy-wrapper ar-
tifacts, the space of deformations possible with LBS is inherently limited. In particular, blending
with only a scalar weight function per bone prohibits properly handling stretching, where bones
change length, and twisting, where the shape rotates along the length of the bone. We present a
simple modification of the LBS formulation that enables stretching and twisting without chang-
ing the existing skeleton rig or bone weights. Our method needs only an extra scalar weight
function per bone, which can be painted manually or computed automatically. The resulting for-
mulation significantly enriches the space of possible deformations while only increasing storage
and computation costs by constant factors.

6.1 Introduction

Skinning and skeletal deformation remain standard for character animation because the as-
sociated deformation metaphor is directly intuitive for many situations: most characters are
creatures or humans who ought to behave as if a skeleton was moving underneath their skin.
The motion capture pipeline, for example, explicitly relies on this metaphor to build a sub-
space representation of human motion [Anguelov et al. 2005]. At the cost of performance,
some applications demand physical accuracy, ensuring preservation of volume or simulating
muscles [Teran et al. 2005]. Other applications, such as video games, crowd simulation and in-
teractive animation editing, cannot afford to compromise real-time performance, so they trade

111

6 Stretchable and twistable bones for skeletal shape deformation

Original LBS DQS STBS

Figure 6.1: Left to right: the Beast model is rigged to a skeleton in its rest pose. The neck is stretched
and the arms are twisted and stretched using linear blend skinning. LBS relies solely on per-
bone scalar weight functions, resulting in the explosion of the head and hands. The candy-
wrapper artifact of LBS is also noticeable at the elbows. The dual quaternion skinning (DQS)
solution [Kavan et al. 2008] correctly blends rotations, avoiding the candy-wrapper artifact,
but reliance on bone weights alone unnaturally concentrates the twisting near the elbows.
DQS also does not alleviate the stretching artifacts. Our solution, stretchable, twistable
bones skinning (STBS), uses an extra set of weights per bone, allowing stretching without
explosions and smooth twisting along the entire length of each arm.

accuracy for speed and often adopt the simplest and most efficient implementation of skeletal
deformation.

The time-tested standard for real-time skeletal deformation method is linear
blend skinning (LBS), also known as skeletal subspace deformation or envelop-
ing [Magnenat-Thalmann et al. 1988, Lewis et al. 2000]. In a typical workflow, a trained
rigging artist manually constructs and fits a skeleton of rigid bones within the target shape.
The skeleton is bound to the shape by assigning a set of correspondence weights for each
bone, a process which can be tedious and labor-intensive. To deform the shape, animators
assign transformations to each skeleton bone, either directly or with the assistance of an inverse
kinematics engine or motion capture data. These transformations are propagated to the shape
by blending them linearly as matrix operations according to the bone weights.

Linearly blending matrix transformations with scalar weight functions has a number of lim-
itations. Many improvements of LBS focus on the problems arising from linearly blending
rotations as matrices, which results in shape collapses near joints. Multi-weight enveloping
(MWE) [Wang and Phillips 2002, Merry et al. 2006] and Dual Quaternions [Kavan et al. 2008]
have been proposed as alternative rotation blending methods. However, a different set of lim-
itations arises from the fact that using only a single scalar weight function per bone limits the
space of possible deformations. We show that neither LBS nor its improvements properly han-
dle stretching, where bones change length, nor twisting, where the skin twists along the length
of a bone, as in the human forearm (see Figure 6.1).

Our goal is to expand the space of deformations possible with skinning to include stretching and
twisting. Incorporating these two actions into real-time skinning greatly increases the space of
deformations. For example, stretching helps facilitate exaggerated actions (see Figure 6.2). Ex-
aggeration has long been held as a cornerstone principle of traditional and computer animation
[Thomas and Johnston 1987, Lasseter 1987].

We achieve stretching and twisting by using an additional set of weights for each bone. We

112

6.1 Introduction

Figure 6.2: Examples of stretching used to exaggerate animations in cartoons and feature films.
Low resolution images used under fair use for criticism and commentary.

call them endpoint weights as they reveal correspondences between the shape and the endpoints
of each bone1. These additional weights allow us to modify standard skinning formulas —
in particular, LBS and dual quaternion skinning (DQS) — to explicitly expose stretching and
twisting of bones. We hence term our method “stretchable, twistable bones skinning” (STBS).
Deformation computation remains embarrassingly parallel, and the involved extra storage and
computation costs are minimal. Unlike other methods that employ additional weights, our end-
point weights have a clear and intuitive geometric meaning and thus may be painted manually.
Capitalizing on recent methods like [Baran and Popović 2007] that build skeletons and compute
bone weights automatically, our endpoint weights may similarly be computed automatically,
keeping pipelines fully automatic if desired.

Many artists will be hesitant to change to a new skinning scheme. Our solution complements
the typical skinning environment without changing the rigid skeleton metaphor or interfering
with existing controls: if bones are not stretched or twisted, the deformation remains the same
as defined by the underlying skinning method. We also take advantage of existing skinning rigs,
allowing users to opt in without modifying their existing skeletons or bone weights.

Problem context. Skeletal skinning with bone weights works well because bones as de-
formation handles properly capture the natural rigidity of body parts. Linearly blending
bone transformations via bone weight functions efficiently expresses rigidity along bones
during bending, packing smooth transitions near joints, where the weights briefly over-
lap [Magnenat-Thalmann et al. 1988]. Unfortunately, bone weights that produce natural bend-
ing are insufficient for producing plausible stretching and twisting, because they are poor at
controlling the subspace along the bone.

Works like [Wang and Phillips 2002, Merry et al. 2006] improve LBS by supplying additional
weights per bone. These extra weights are additional degrees of freedom which can alleviate
joint collapse, and perform twisting better. However, these additional weights do not retain
an immediate or intuitive geometric meaning, since they essentially correspond to individual
transformation matrix entries. As a result, they cannot be easily painted or adjusted manually,
but only computed automatically via fitting example poses of the target shape. Often such

1Alternatively, consider these weights as a parameterization of the shape along each bone segment.

113

6 Stretchable and twistable bones for skeletal shape deformation

Original

LBS/DQS/MWE

STBS

Figure 6.3: A single bone controls a cigar shape (top). With only one bone, the weights of LBS and
[Wang and Phillips 2002, Merry et al. 2006] must equal 1 everywhere. When the bone is
stretched, these methods must scale the entire shape, resulting in explosion past the bone’s
endpoints (center). While the bone weights in our method must also be 1 everywhere, the
endpoint weights are allowed to vary, such that proper stretching is achievable (bottom).

example poses do not exist or are difficult to design, making these improvements challenging
to apply in practice.

Even with the reliance on example poses aside, the deformation formulations of multi-weight
enveloping methods do not sufficiently expand the space of deformations to capture stretch-
ing. Consider for example a single bone within a cigar-like shape, as in Figure 6.3. In or-
der to maintain good properties such as reproduction of the identity transformation and trans-
lational and rotational invariance, the bone’s LBS weights and any of the extra weights of
[Wang and Phillips 2002, Merry et al. 2006] must equal 1 everywhere on the shape. This means
that if the bone changes its length, the only choice is to scale the whole shape by the same trans-
formation, resulting in “explosion” past either endpoint.

To overcome LBS artifacts, riggers often manually subdivide bones or add special anatomi-
cally incorrect bones. Painting weights for these special bones is difficult because their intuitive
meaning is less clear. The method of [Mohr and Gleicher 2003] uses example poses to deter-
mine such extra bones and their weights automatically. With enough extra bones with proper
weights, twisting and stretching can be achieved, but at the sacrifice of an anatomically mean-
ingful skeleton.

Other works such as [Forstmann and Ohya 2006, Yang et al. 2006, Forstmann et al. 2007] use
curve or spline skeletons to cope with LBS artifacts. These methods share a similar foundation
as our method, but focus on fixing joint collapse and do not explicitly treat stretching. To define
correspondences between their curved skeleton “bones” and points on the shape, they rely on
inverse Euclidean distance schemes which ignore the geometry of the shape being animated.
The new rigging tools and controls needed for curved skeletons are inconsistent with the existing
rigging pipeline [Kavan et al. 2008].

114

6.1 Introduction

Original LBS/DQS/MWE STBS

Figure 6.4: A single bone controls a box in 3D. The bone’s weights in LBS, DQS, and MWE must equal
1 everywhere. If the bone twists about its axis by 315◦, these methods must twist the entire
shape uniformly, i.e. simply rigidly rotate it. The bone weights in our method must also be
1 everywhere, but the endpoint weights are allowed to vary, so interesting twisting may be

Original LBS STBS (1)DQS STBS (2)

Figure 6.5: Two bones control a box in 3D. In order to bend properly, the bone weights in an LBS or DQS
rig must only overlap close to the joints. As a result these methods must pack interesting
twisting near joints. LBS linearly blends rotation matrices, resulting in the candy-wrapper
effect. DQS corrects this artifact by blending rotations as quaternions, but twisting is still
concentrated near the joint. Our method keeps the same bone weights, but our extra endpoint
weights enable twisting to be spread across the length of one bone or both bones.

Instead of relying on additional weights or alternative rigging metaphors, Kavan et al. [2008]
directly solve the joint collapse and candy-wrapper artifacts by blending rigid bone transforma-
tions as dual quaternions rather than matrices, leaving the skeleton and bone weights metaphor
untouched. However, DQS still relies on a single set of bone weights, so stretching remains
unsolved and twisting must still be concentrated near joints (see Figures 6.4 & 6.5).

Recent works in 2D and 3D have successfully demonstrated the flexibility of point handles
with associated weight functions (see e.g. [Langer and Seidel 2008] and Chapters 4 & 5). Point
weights by construction vary over the shape more than bone weights, and typically, much of
the shape is significantly affected by two or more points. This means they are unsuitable for
bending limbs rigidly, but properly capture stretching (see Figure 6.6). Many works on shape
editing and deformation advocate the point handle metaphor (see e.g. [Igarashi et al. 2005] or
the survey in [Botsch and Sorkine 2008]), albeit at much higher computational costs of surface
deformation due to the involved global optimizations.

Contributions. Our contribution is to combine the notions of point weights and bone
weights, allocating each to the tasks they do well, while maintaining the standard skeleton
skinning framework. In our technique, bone weights continue to enforce rigidity and control

115

6 Stretchable and twistable bones for skeletal shape deformation

Original

Bone weights Point weights STBS

Figure 6.6: Bones properly capture rigidity necessary to bend a leg (upper left), but stretching with bone
weights explodes the foot and knee unintuitively (lower left). Point-handles properly treat
stretching as blended translations (lower center), but blending rotations causes limbs to lose
their rigidity (upper center). Our stretchable bones solution uses bone weights and point
weights, allocating each to the tasks they do well. Our bones bend smoothly at joints (upper
right) and stretch intuitively (lower right).

116

6.2 Stretchable, twistable bones

smooth bending. In addition, we introduce point weights at bone endpoints to enable proper
stretching and twisting. Since our goal is orthogonal to fixing the rotation blending artifacts of
LBS, our method complements techniques like DQS and works with any underlying skinning
method. We show that our method extends the space of deformations available for skinning in
a useful way, demonstrate 2D and 3D examples of bending, stretching and twisting, and discuss
several options for obtaining the required endpoint weight functions.

6.2 Stretchable, twistable bones

Our goal is to derive a simple skinning equation, capable of deforming 2D and 3D shapes by
a skeleton whose bones may stretch and (in 3D) twist. Let S ⊂ Rd denote our target shape
in dimension d = 2, 3. We denote the set of (possibly disjoint and unordered) bones in the
skeleton by the line segments Bi = {(1− t)ai + tbi | t ∈ [0, 1]}, i = 1, ...,m. We derive our
skinning equation by first decomposing the basic linear blend skinning equation. Here, the user
defines affine transformations Ti for each bone Bi. The new positions for all points p ∈ S are
computed as the weighted combinations:

p′ =
m∑
i=1

wi(p)Tip, (6.1)

where wi : S → R is the scalar bone weight function associated with bone Bi. If the bone
transformations Ti are rigid, they can be intuitively decomposed into translation and rotation
parts, yielding:

p′ =
m∑
i=1

wi(p) {a′i +Ri (−ai + p)} , (6.2)

where Ri is the user-defined rotation that takes the bone Bi’s rest vector (bi − ai) to its pose
vector (b′i−a′i). If the bones are allowed to change length then a scaling term is needed to make
sure that the bone endpoints reach their pose positions. The decomposition becomes:

p′ =
m∑
i=1

wi(p) {a′i +Ri (Si (−ai + p))} , (6.3)

where Si performs anisotropic scaling in the reference frame of Bi, namely, Si = X−1
i AiXi,

where Xi rotates (bi − ai) to the x-axis and Ai scales anisotropically along the x-axis by a
factor of ‖b′i − a′i‖/‖bi − ai‖.
Notice that for each bone Bi, Si and Ri are constant over S, so that there is no choice for each
bone but to rotate and stretch all points uniformly. For stretching this means that if p lies beyond
an endpoint of a bone, it will get overly stretched, as shown in Figure 6.3. This effect is not
removed even when multiple bones deform an area (e.g. around a joint), resulting in unwanted
bulging (see Figure 6.6). As for twisting, a bone twists all attached points around its axis rigidly
(see Figures 6.4 & 6.5), relying on the weighted average to blend twists from different bones.
This effectively packs any interesting twisting near the joints where bone weights overlap.

The above problems are due to missing information: a point p ∈ S does not “know” where
on each bone Bi it is attached, i.e., it does not know its position relative to either of the bone’s

117

6 Stretchable and twistable bones for skeletal shape deformation

STBS with LBSOriginal STBS with DQS

Figure 6.7: A human model is rigged to a skeleton using bounded biharmonic bone and endpoint
weights. Its arm is twisted by 180◦ spreading the twist along the length of the upper and
lower arm. In its twisted state, the arm is bent at the elbow. Joint collapse artifacts are cor-
rected by switching to DQS as the underlying skinning formulation. Finally, the neck and
arm are stretched.

endpoints. This causes the excessive stretching (instead of localizing it to the bone area) and
prevents gradual twisting along the bone.

We now insert this missing information in the form of endpoint weight functions ei(p) for
each bone. These functions vary from 0 to 1 as p’s correspondence shifts from endpoint ai
to bi. With these extra weight functions we have enough information to fix Equation (6.3) to
handle stretching and twisting correctly. First, we replace the scaling term Si with a weighted
translation along the bone direction:

p′ =
m∑
i=1

wi(p) {a′i +Ri (ei(p) si + (−ai + p))} , (6.4)

where si = (
‖b′i−a′i‖
‖bi−ai‖ − 1)(bi − ai), the full stretch vector at bi.

To allow twisting along bones, we insert an additional rotation term:

p′ =
m∑
i=1

wi(p){a′i + (6.5)

RiKi (ei(p)) (ei(p) si + (−ai + p))},

whereKi(t) is the twisting rotation about the axis (bi−ai) by angle (1−t)θai+tθbi . The angles
θai and θbi are the user-defined twists at the endpoints ai and bi, respectively. The new rotation
Ki(ei(p)) is a function of p and thus is not constant over S, enabling interesting twisting along
each bone. Notice that if bone Bi is not stretched or twisted at its endpoints, its contribution is
the same as in the original skinning equation (6.1).

6.2.1 Dual-quaternion skinning

Since we are blending rigid transformations, by applying the distributive property, Equa-
tion (6.5) may be simplified into a deformation equation that consists of a single rotation and
translation per bone:

118

6.2 Stretchable, twistable bones

STBS with DQS LBS DQS

Figure 6.8: Our final deformation from the sequence in Figure 6.7 prevents explosions in the head and
hand. In contrast, using LBS results in joint collapse, isolated twisting and shape explosion.
DQS prevents joint collapse, but twisting is still packed near joints and proper stretching is
not achieved.

p′ =
m∑
i=1

wi(p) {Ti (ei(p)) +Ri (ei(p)) p} . (6.6)

Both the translations Ti and the rotations Ri are functions of the endpoint weight functions ei,
evaluated at p, but they are constant w.r.t. the bone weight functions wi. Thus far our skin-
ning equation, like LBS, treats these translations and rotations as matrix operators and linearly
combines them across bones as a sum of each matrix element weighted by the respective bone
weights wi.

Instead, we may blend Ti and Ri in their dual quaternion forms [Kavan et al. 2008]. As ex-
pected, DQS eliminates collapses near joints when bones are rotated. Combining DQS with our
stretchable, twistable bones makes for a powerful and expressive skinning equation, as can be
seen in Figures 6.7 & 6.8.

6.2.2 Properties of good endpoint weights

For the stretchable, twistable bones deformation Equation (6.5) to produce visually good de-
formations, care must be taken in defining both the bone weight functions wi and the endpoint
weight functions ei. The desirable properties for a bone weight wi are the same as in standard
skinning (see Section 4.3.1 for a detailed discussion): the weight function should be shape-
aware (i.e., dependent on the distance measured in the shape, as opposed to the ambient Eu-
clidean space), should equal 1 on the rigid region corresponding to the bone and smoothly tend
toward 0, reaching exactly 0 on rigid parts corresponding to other bones; the weights should
be bounded between 0 and 1, since negative weights lead to unintuitive “opposite” deformation

119

6 Stretchable and twistable bones for skeletal shape deformation

Figure 6.9: A typical skinning rig must break the spine into many smaller bones in order to capture
twisting. Here, a human model is twisted along the spine by applying twists at the top
endpoint of a single bone. The endpoint weights smoothly blend the twist along the torso.
They may be filtered through a spline curve to adjust their effect interactively. Filtered
endpoint weights concentrate the twist in the abdomen, keeping the chest more rigid (right).
Insets visualize the identity and user-defined spline filters, respectively.

effects and weights greater than 1 exaggerate the prescribed transformations; the bone weights
should partition unity at all points on the shape.

The list of desirable properties for endpoint weights is similar to that of bone weights, namely
they should vary smoothly on S, be shape-aware, and bounded between 0 and 1. In addition,
the Lagrange (interpolation) property must be fulfilled, to ensure that user-defined positions
and twists applied at endpoints are met: ei(ai) = 0 and ei(bi) = 1. Furthermore, in 2D, since
bones lie directly on the shape they control, the endpoint weight functions should provide linear
interpolation along their bone segments, i.e., ei(p(t)) = t for p(t) = (1− t)ai + tbi, t ∈ [0, 1].
In 3D, bones are typically inside the volume enclosed by the shape, so this requirement becomes
a “convergence” requirement: endpoint weight functions should approach linear interpolation
as the shape approaches the bones. Notice that (in 2D) linear interpolation combined with the
boundedness property contradicts smoothness exactly at the bone endpoints, where ei will only
be C0. The importance of linear interpolation over smoothness depends on the application.
Note also in Equation (6.5) that ei is completely independent of the other endpoint and bone
weights. Therefore, endpoint weights do not need to partition unity between themselves or with
any of the bone weights2.

2Actually, by definition each endpoint weight ei partitions unity with another, unused endpoint weight associated
with Bi’s other endpoint: êi := 1− ei. This other endpoint weight is naturally factored out of Equation 6.5.

120

6.2 Stretchable, twistable bones

Figure 6.10: The left image visualizes bone weights for a skeleton in a human model. Each bone is
assigned a color. The color at a point on the shape is the weighted average of each bone’s
color according to the bone weights. The series of images on the right visualizes the end-
point weights of each bone. Red and white correspond to weights of 1 and 0 respectively.
Both the bone weights and endpoint here were automatically computed using BBW.

6.2.3 Defining endpoint weights

Endpoint weights, like bone weights, may be painted manually. This is feasible because, unlike
the extra weights of [Wang and Phillips 2002] and [Merry et al. 2006], our extra weights have a
clear geometric meaning: for each bone they tell each point in the domain how much it should
stretch and twist. The desired weight properties are intuitive and conceivably specifiable by a
user assisted with sufficient 2D and 3D weight painting tools (e.g. AUTODESK MAYA). As with
LBS, both the bone weights wi and the point weights ei may be edited interactively, so a user
can make changes to the weights and see the results immediately (see Figure 6.9).

Strictly speaking, the endpoint weights of different bones are unrelated. However, we have
found that it is sufficient to supply traditional point-based weight functions for each joint in
the skeleton. Then the endpoint weights for each bone become a combination of that bone’s
incident joint weights:

ei =
1

2
((1− jai) + jbi) , (6.7)

where jai and jbi are the weight functions at the joints incident on bone Bi at its respective
endpoints ai and bi.

Still, painting weights manually can be tedious and time-consuming. In the case that bone
weights were assigned automatically, manually painting endpoint weights would disrupt a fully
automatic rigging pipeline. Thus, we would like the option to define endpoint weights automat-
ically.

121

6 Stretchable and twistable bones for skeletal shape deformation

Original eproj eIDW eBH eBBW

Figure 6.11: Left to right: A single bone controls the Giraffe’s head and neck in 2D. Projecting onto
the bone to obtain endpoint weights eproj results in a nonsmooth and shape-unaware defor-
mation. Endpoint weights eIDW derived from inverse Euclidean distance joint weights are
smooth, but shape-unaware and suffer from the fall-off effect (the top of the head sags too
low). In this 2D example, BH endpoint weights eBH and BBW endpoint weights eBBW are
virtually indistinguishable, producing appealing deformations.

There are many existing automatic methods for computing such weights. One simple method is
to project each point p onto the nearest point of each bone, taking the fraction of where it falls
between the bone’s endpoints as its weight:

eproji(p) =
‖proji(p)− ai‖
‖bi − ai‖

, (6.8)

where proji(p) is the projection of point p onto Bi. These weights satisfy the boundedness and
linear interpolation properties, but they largely ignore the shape of S and are onlyC0 where they
reach the values of 1 and 0. Variants of this type of weight function were used for the curved
skeletons in [Forstmann and Ohya 2006, Yang et al. 2006, Forstmann et al. 2007] to associate a
frame with each point p that corresponds to the curve’s local frame.

Another immediate method would be to use inverse Euclidean distance weighting to define
weights for the set of joint points:

jIEDWi(p) =
1

di(p)α
, (6.9)

where di(p) is the Euclidean distance from p to the rest position of joint i. While endpoint
weights derived from these joint weights may be smooth (for α ≥ 2) and bounded, they again
ignore the shape of S, and their locality diminishes beyond the endpoints as the ratio of distances
to the two endpoints regresses to 0.5.

The above methods are easy to implement and computationally lightweight. They are unsatis-
factory to be used directly but serve well as initial guesses for manually painting the endpoint
weights.

The automatic bone weights method presented in Section 4 of [Baran and Popović 2007], also
known as Bone Heat (BH), may be trivially adapted to define joint weights (by considering a

122

6.2 Stretchable, twistable bones

wBH, eBH wBH, eBBW wBBW, eBH wBBW, eBBW

Original

Figure 6.12: Left to right: The Ogre (inset) is deformed with BH bone weights wBH and BH endpoint
weights eBH. Switching to BBW endpoint weights eBBW improves the deformation only
slightly (e.g. see the shoulder). Changing endpoint weights cannot fix problems arising
from insufficient bone weights. Instead, switching to BBW bone weights wBBW noticeably
improves the deformation around the head, shoulder and belly. With same bone weights,
the endpoint weights of these methods produce visually similar results (comparing the first
and final pairs).

bone shrunk to a point). These weights require visibility computation and solving of large sparse
linear systems of equations, but we have found that the quality of these weights in many cases
justifies the computation costs. The methods of [Weber et al. 2007] and [Wang et al. 2007] may
similarly be adapted to define joint weights. However, they only consider the surface of the
shape rather than its volume, so the shape-awareness property is not fully achieved. Further-
more, these methods also require example poses, which often do not exist.

Our bounded biharmonic weights wBBW of Chapter 4 (BBW) minimize the Laplacian energy
subject to the constraint wBBW ∈ [0, 1] (and additional interpolation constraints, as required).
This method may be used to compute joint weights or endpoint weights directly. Earlier we
showed that these weights are smooth, localized and shape-aware. The Lagrange and linear in-
terpolation properties are satisfied by imposing appropriate boundary conditions. These weights
are the solution to a quadratic programming problem, which means they are somewhat slower
to compute than the previous methods. Another limitation of this method is that it requires a
volume discretization, which is often difficult to obtain for surfaces in 3D (see Chapter 8). The
auxiliary interior vertices of the volume discretization increase the complexity of the precom-
putation. Nevertheless, we have found that when a volume discretization is available, these
weights produce the highest quality results.

When computing both bone weights and endpoint weights from scratch, BBW is preferred
since the same implementation produces high quality weights for both bones and endpoints
(see Figure 6.10). When bone weights already exist, the additional endpoint weights obtained
by BBW and by extending BH are both high quality. In many cases deformations using the
endpoint weights obtained with these methods and the same bone weights are virtually identical
(see Figure 6.11 and Figure 6.12). However, the extension of BH may suffer from the fall-off
effect in regions beyond endpoints (see Figure 6.13).

123

6 Stretchable and twistable bones for skeletal shape deformation

e
BH

e
BBW

Original

Figure 6.13: A single bone controls a box in 3D (left). A 360 degree twist is applied to an endpoint
using BH endpoint weights eBH (middle). Notice the fall-off effect in the regions beyond
each handle: the full twist is not reached. The same twist is applied using BBW endpoint
weights eBBW (right). These weights have proper locality, so the full twist is achieved.

Figure 6.14: With our method, bone joints may be freely dragged about by the user without worry that
changes in bone length will cause explosion artifacts. Here an old photograph of Max
Schmeling is brought to life.

6.3 Implementation and results

We implemented stretchable, twistable bones skinning (STBS) using LBS and DQS as the un-
derlying transformation blending mechanisms. Our implementation supports manually painting
bone and endpoint weights or automatically computes them using [Baran and Popović 2007]
(BH) or bounded biharmonic weights (BBW). Our timings for computing endpoint weight func-
tions are similar or faster than the bone weight computation times originally reported in those
works. When using BH our precomputation time per endpoint weight function is on the order of
milliseconds in 2D and seconds in 3D. When using BBW our precomputation time per endpoint
weight function is less than a second in 2D and on the order of tens of seconds in 3D, where
we use heavily graded tetrahedral meshes for the volume discretization. Endpoint weights can
be computed faster than bone weights by taking advantage of the fact that we only care about
a bone’s endpoint weights in regions of the domain where the bone’s bone weight function is
greater than zero. In our examples, we limit the optimization to the portion of the domain with
corresponding bone weights greater than 1e-7.

A vertex shader implementation of STBS does not differ much from that of LBS or DQS. It
requires loading the additional endpoint weights into constant memory once per deformation
session, and in 3D transferring the new per-endpoint twist parameters along with the usual bone
transformations. Finally, the skinning equation is replaced with either Equation (6.5) or the dual
quaternion form of Equation (6.6).

The automatic weights are precomputed before the user begins applying transformations to the
bones. In terms of efficiency at deformation time, our method requires twice as many weights
as LBS or DQS: it stores the same bone weights and the extra endpoint weights per bone.
The original LBS or DQS require respective 8 or 12 shader operations per shape vertex per
bone [Kavan et al. 2008]. Because the transformations in Equation (6.6) are not constant over

124

6.4 Conclusion

Figure 6.15: A dog’s yawn is exaggerated with stretchable bones.

the shape, using STBS with LBS or DQS as the underlying blending method requires extra
operations to build the transformation at each shape vertex. In our implementation we count
this as an extra 12 operations per shape vertex per bone.

Twisting and stretching bones richly expands the space of possible deformations without for-
feiting the rigid skeleton metaphor or modifying existing bones and bone weights. In Figure 6.7,
a skeleton rigged to a human properly twists, stretches and bends its arm using STBS. Blending
transformations between bones as dual quaternions corrects rotational artifacts when bending at
joints. Compare to the resulting deformation produced by LBS or DQS along in Figure 6.8.

In 2D, the ability to stretch bones without worrying about “explosions” near endpoints enables
real-time creation and playback of animated of images. Such stretching is necessary for creating
foreshortening effects. Figure 6.14 shows stretchable bones deforming a single image into a
life-like series of poses.

Endpoint weights allow interesting twisting in 3D to occur over large regions of a shape con-
trolled by a single bone. In Figure 6.9, a human’s entire torso is twisted smoothly using a single
twistable bone. The endpoint weights in our system may be filtered interactively to alter their
effect. The original weights, automatically computed using BBW, twist the human’s chest too
much. Using a spline filter, the endpoint weights are interactively adjusted so that the twist is
concentrated in the abdomen.

Exaggeration is a cornerstone principle in animation. Stretchable bones facilitate stylized and
exaggerated actions. In Figure 6.15, stretching the bones in a dog’s mouth emphasizes a yawn-
ing action, avoiding distracting shape explosion artifacts.

6.4 Conclusion

We have shown that with only slight modifications to existing skinning equations, we are able to
expand the space of deformations possible with standard rigid skeleton rigs. Our method does
not change the rigid skeleton metaphor, nor does it modify existing skeletons or bone weights.

125

6 Stretchable and twistable bones for skeletal shape deformation

The additional endpoint weights required by our technique are feasibly painted by the user or
computed using automatic point weight methods.

Though our skinning formula and extra weights expand the space of possible deformations, our
method is still inherently limited by its simplicity. Like all skinning methods, STBS cannot
prevent self-collisions, maintain global properties (e.g. total volume), minimize nonlinear de-
formation energies, or respond to physically based forces. An obvious extension would be to
use STBS as a reduced deformable model for more complicated methods (e.g. as an extension
of the next Chapter 7).

In future work, we would like to explore further the role of extra weight functions. For ex-
ample, the weights used to control stretching and twisting do not have to be the same. It
would be interesting to expose these as separate parameters. We would also like to consider
the orthogonal problem of specifying stretchable, twistable bone transformations with inverse
kinematics or procedural animation. Our endpoint weights have a clear geometric meaning,
such that their computation does not require example poses, but fitting to example poses could
allow more accurate weights and enable skinning animations with stretchable, twisting bones
as in, e.g. [James and Twigg 2005, Kavan et al. 2010]. Finally, it would be interesting to con-
trol advanced effects such as muscle bulging by applying simple filters to existing endpoint
weights.

126

7
Fast automatic skinning
transformations

Skinning transformations are a popular way to articulate shapes and characters. However,
traditional animation interfaces require all of the skinning transformations to be specified ex-
plicitly, typically using a control structure (a rig). We propose a system where the user specifies
only a subset of the degrees of freedom and the rest are automatically inferred using nonlin-
ear, rigidity energies. By utilizing a low-order model and reformulating our energy functions
accordingly, our algorithm runs orders of magnitude faster than previous methods without com-
promising quality. In addition to the immediate boosts in performance for existing modeling and
real-time animation tools, our approach also opens the door to new modes of control: discon-
nected skeletons combined with shape-aware inverse kinematics. With automatically generated
skinning weights, our method can also be used for fast variational shape modeling.

7.1 Introduction

Articulation adds life to geometric shapes in two steps. The rigging stage establishes parame-
ters that provide intuitive control of shape geometry. Once these parameters are specified, the
deformation stage computes the actual shape to generate poses. One popular choice of these pa-
rameters are joint angles for hierarchies of rigid transformations because they match the skeletal
structure of humans, animals, and other characters. However, the best set of articulation param-
eters depends on the task so free-form deformations, blend shapes, cages, and others are also
used, often at the expense of tedious manual tuning.

As shape deformation needs to be computed at every animation frame for every character, this

127

7 Fast automatic skinning transformations

Figure 7.1: We achieve high quality deformations by minimizing a nonlinear energy function, while
keeping our algorithm extremely fast: skinning transformations for 100 individually ani-
mated armadillos (86k triangles each) are computed at 30fps on a single CPU core.

process must be extremely fast, especially in applications such as computer games and haptics.
The most common method is linear blend skinning (LBS), whose articulation parameters are
affine transformations, each associated with a handle. Originally, handles were just bones, but
previous work has explored the use of point handles, region handles, cage vertices, and even
abstract handles not associated with any well-defined shape and perhaps not directly controlled
by the user.

Handle transformations that drive LBS are typically obtained from motion capture, physical
simulation, or manual posing and keyframing. In many cases, however, it is desirable to only
specify a subset of their degrees of freedom. For example, a motion capture sequence may not
have enough data to fully define the spine configuration, or an artist may want to specify only a
subset of controls and have the rest inferred in a reasonable way. In some cases, it is useful to
specify only the translational component of a handle transformation.

This chapter presents a method for deforming a shape as naturally as possible when only a
subset of the degrees of freedom are specified. Our method computes the unspecified degrees
of freedom by minimizing an elastic energy over the shape [Chao et al. 2010]. Our method is
extremely efficient, allowing it to be integrated into the skinning pipeline, with computational
complexity often dominated by LBS. Using a single CPU thread, our approach can compute
missing degrees of freedom for one hundred armadillos each with 17 handles and 86k triangles
at 30 frames per second (see Figure 7.1).

To attain our high performance, we speed up the energy minimization in two ways. First, we
express the energy only in terms of handle transformations. Second, we use the input skinning
weights to determine parts of the shape that are likely to be transformed similarly and simplify
the deformation energy accordingly. These two optimizations complement each other: the
error incurred by simplifying the energy function tends to be orthogonal to the subspace of a
good LBS rig. In fact, we show this reduction often visually improves the deformations by
regularizing the energy function. Moreover, our method guarantees deformations as smooth as
the input skinning weights.

128

7.2 Related work

Figure 7.2: Our method enables shape-aware inverse kinematics, even when skeletons are disconnected.

The ability to leave some handle transformations unspecified opens up new possibilities for
both posing and rigging. For posing, computing missing degrees of freedom results in behavior
that is similar to inverse kinematics, but shape-aware. For rigging, the user can deliberately
specify extra handles in areas that require additional flexibility without having to worry about
their transformations. Additionally, extra handles can offset some undesirable behavior of lin-
ear blend skinning and allow our method to be applied to general shape deformation. Given
manipulation handles, weights automatically generated by previous works can be augmented
with additional extra weights attached to abstract handles. These additional weights are gener-
ated with a simple algorithm. With them our method produces results on par with high-quality
nonlinear shape deformation methods [Botsch et al. 2007b], but running orders of magnitude
faster.

7.2 Related work

Inverse kinematics. IK infers missing degrees of freedom for deformation under some
constraints. Traditionally, IK is performed on the skeleton of the character, irrespective of
the shape itself, and cannot handle disconnected skeletons or surface handles. MeshIK meth-
ods [Sumner et al. 2005, Fröhlich and Botsch 2011] use deformation examples to navigate in
the space of plausible poses while interpolating prescribed surface region handles. To speed up
the MeshIK optimization, a reduced model similar to ours has been presented [Der et al. 2006].
Unlike our model, it requires examples to infer a reduced model and the energy objective. At
runtime, they must factor a dense matrix at every iteration, whereas in our method this can be
pre-computed, since the system matrix remains unchanged.

Improving skinning quality. Our weights enrichment strategy is related to previous work
aimed at improving skinning quality. Several works used example shapes for this pur-
pose [Lewis et al. 2000, Wang et al. 2007]; similarly to us, Mohr and Gleicher [2003] en-
riched the space of the original weights, but using shape examples. Nonlinear skinning
techniques improve skinning deformations quality without additional data [Kavan et al. 2008],
but the nonlinear nature makes such skinning inconvenient as a reduced model. Weights
defined for abstract handles can be used to automatically approximate nonlinear skin-
ning methods expressed in closed-form with LBS [Kavan et al. 2009]. Spline skeletons

129

7 Fast automatic skinning transformations

Figure 7.3: Elephant controlled by 7 points. The user-provided pseudo-edges (see Section 4.3.4) fail to
produce the expected buckling (bottom, our method).

[Forstmann and Ohya 2006, Forstmann et al. 2007, Yang et al. 2006] often produce better skin-
ning deformations, but again, they make skinning nonlinear. Others, [Wang and Phillips 2002,
Merry et al. 2006, Kavan and Sorkine 2012], generalize the weight functions to matrix-valued
or vector-valued forms, modifying the basic LBS formulation (see also Chapter 6). Contrary
to these approaches, our method is easier to use and fits into the existing animation pipeline
since we only rely on the standard LBS, which is of practical importance due to the number of
optimized platform-specific LBS implementations.

Deformation. Recent shape deformation research has concentrated on two main fronts:
modeling physically plausible deformations (typically by means of variational optimization),
and exploring very fast and parallelizable closed-form deformations.

Many works deal with the question of how a shape should deform given arbitrary (user-defined)
modeling constraints, typically prescribed locations for some points or regions on the sur-
face. Several energy functionals that the deformed shape should minimize (under the mod-
eling constraints) were proposed; these energies typically measure a form of elastic shape
distortion. Quadratic energies that lead to linear optimization problems are discussed in the
survey of Botsch and Sorkine [2008]. They are robust and can be optimized at interactive
framerates for moderately sized meshes, but suffer from linearization artifacts. Nonlinear ener-
gies, e.g. [Botsch et al. 2006a, Au et al. 2006, Sorkine and Alexa 2007, Chao et al. 2010] pro-
vide higher-quality deformations but are slower to optimize, and their complexity grows non-
linearly with the size of the mesh. In this work, we take advantage of the special structure
of some recently proposed “as-rigid-as-possible” (ARAP) elastic energies [Igarashi et al. 2005,
Sorkine and Alexa 2007, Liu et al. 2008, Chao et al. 2010] and modify their formulation so that
it can be extremely efficiently minimized in the subspace of skinning deformations.

The second stream of shape deformation research dates back to the FFD frame-
work [Sederberg and Parry 1986] that avoids global variational optimization. Given a set of
control objects (handles), such as cages or points on the shape or skeletons, the question

130

7.2 Related work

Figure 7.4: Traditional animators sometimes sketch bones only in limbs, using them to infer the remain-
ing shape [Blair 1994].

is how to define the influence of each handle on each point of the shape. Then, the user-
defined transformations at the handles are propagated to each point on the shape by simple
local weighted combination, using the influence values. In the case of cages, the influences
are defined as generalized barycentric coordinates (see e.g. [Ju et al. 2005, Joshi et al. 2007,
Lipman et al. 2008, Weber et al. 2009]) and only translations need to be provided for the cage
vertices. Higher-order barycentric coordinates [Langer and Seidel 2008] allow (and require)
full affine transformations per cage vertex, offering more flexible deformations: they are equiv-
alent to LBS (see Section 4.6). For skeletal bones several methods exist to define auto-
matic weights [Baran and Popović 2007, Wareham and Lasenby 2008]; full affine transforma-
tions need to be provided per bone, and these are linearly combined using the LBS formula.
Bounded biharmonic weights can be computed for all common handle types above (see Chap-
ter 4). MLS deformations [Schaefer et al. 2006] use simple inverse-distance based weights but
combine the handle influences in a nonlinear manner by local least-squares optimization.

The above approaches enjoy much better performance than variational methods due to their
local, parallelizable nature. However, as mentioned, they either require the user to provide full
affine transformations per handle, or manipulate cages, which may be difficult for some desired
shapes and deformations. Simple heuristic solutions, such as “pseudo-edges” (Section 4.3.4) do
not consider their effect on the resulting shape, leading to unintuitive response (see Figure 7.3).

Reduced models. Methods based on reduced models attempt to combine the bene-
fits of variational and closed-form deformation methods. They minimize some shape en-
ergy, but instead of doing so on the shape itself, they employ a much smaller number of
degrees of freedom and a simpler (faster) deformation subspace, such as cage-based de-
formations [Huang et al. 2006, Ben-Chen et al. 2009, Weber et al. 2009, Borosán et al. 2010],
LBS with skeletons [Shi et al. 2007], LBS with point/region handles [Au et al. 2007,
Sumner et al. 2007], or linear subspace of dominant modes of the deformation en-
ergy [Hildebrandt et al. 2011]. Such approaches achieve significant improvements in shape ar-
ticulation, but struggle to reach rates required by time-critical applications while retaining high
quality, flexible deformation, and artistic freedom. Many model-reduction schemes do not guar-
antee interpolation of the user-specified constraints, e.g. because the degrees of freedom are not
sufficient to do so. With the exception of [Au et al. 2007], the reduced models are constructed
per shape, irrespective of the user constraints (handles), and the deformations generally have a
global nature as a result (when manipulating a handle, shape parts far away from it may move
even if nearby handles are constrained). This also ignores any semantic information embedded
in the handle description [Au et al. 2007] (see also Figure 7.19). Also note that even heavily
parallelized GPU implementations such as [Weber et al. 2009] are still an order of magnitude
slower than our method running on a single CPU core.

131

7 Fast automatic skinning transformations

Among the above-mentioned techniques, [Au et al. 2007, Shi et al. 2007] are closest to ours
in terms of the technical setup. Au et al. [2007] take user-provided surface-region handles
and construct a reduced model by creating additional handles that are isolines of a harmonic
propagation field sourced at the input handles. They then minimize a nonlinear Laplacian en-
ergy [Au et al. 2006] on the LBS subspace created by those handles. Contrary to our method,
their optimization still requires updates of the entire unreduced mesh in each iteration, making
it slow in comparison. MeshMuppetry [Shi et al. 2007] uses a skeletal LBS reduced model to
optimize a similar nonlinear Laplacian energy and additional constraints such as the balance of
the character. They optimize both the skinning weights and the skeleton transformations simul-
taneously, which again results in time complexity dependent on the number of primitives. In
contrast, we assume fixed skinning weights provided by the user and design deformations that
respect the artistic intention encapsulated in the weights. This allows us to formulate an algo-
rithm with time complexity independent of the number of primitives of the input model. We
also explore new modes of control, such as combination of skeletal and point controls, as well
as disconnected skeletons (see Figure 7.2). Disconnected skeletons are especially interesting as
traditional animators often employ them as a starting point for creating lifelike characters (see
Figure 7.4).

Decimating the input mesh, Manson and Schaefer [2011] optimize an ARAP energy
[Sorkine and Alexa 2007] at a coarse resolution. They then reintroduce fine details by con-
strained local optimization. While faster than full-scale optimization, the nonlinear upsampling
step is still orders of magnitude slower than our skinning model.

Our use of skinning weights to cluster vertices and further simplify optimization is related to
previous works that assume rigid patches during example-driven deformation. Pekelny and
Gotsman [2008] find clusters to track the motion of piecewise rigid shapes. Huang et al. [2008]
optimize the assignment of overlapping rigid clusters to define a locally as-rigid-as-possible
deformation for shape registration. Most similar to our method, Der et al. [2006] cluster surface
vertices to simplify a nonlinear optimization over a reduced, skinning model. Their method
uses example poses to define skinning weights and then clusters vertices according to their
k-greatest skinning weights. Simple clustering was also used for physically based, shape-
matching deformations in the opposite sense of our method: to increase degrees of freedom
[Müller et al. 2005].

Reduced models are also common in physical, elastic simulation, typically employing dense
subspace models [Barbič and James 2005, An et al. 2008], where they are used to efficiently
integrate the equations of motion. As discussed above, skinning provides the advantage of local
control and is starting to be used in physical simulation [Gilles et al. 2011, Faure et al. 2011].

7.3 Method

Denote by v1, . . . ,vn ∈ Rd (d = 2 or 3) the rest-pose vertex positions of the input meshM.
The user specifies a set of control handles H = {h1, . . . ,hm}, which could be bones of a
skeleton, points or regions on the shape. To deform the shape, the user must to specify affine
transformations Tj ∈ Rd×(d+1) for each handle hj . We denote the deformed vertex positions
by v′1, . . . ,v

′
n. The handle transformations lead to modeling constraints h′j = Tjhj .

132

7.3 Method

(a) (b) (c) (d)
Figure 7.5: Typical edge sets: triangle (a), tetrahedron (b), spokes (c), spokes and rims (d).

There are many methods to compute a deformed shape based on the given modeling constraints.
The fastest method is linear blend skinning (LBS), which in addition to the inputs above also
requires skinning weight functions wj : M → R. For each point p on the shape, wj(p)
specifies the amount of influence of Tj on p. The skinning weights are often painted manually
by specialized rigging artists, but may also be computed automatically using recent methods
(see Chapters 4 & 5). The LBS deformation ofM’s vertices is then given by

v′i =
m∑
j=1

wj(vi) Tj

(
vi
1

)
. (7.1)

This formula can be equivalently expressed in matrix form:

V′ = MT, (7.2)

where V′ ∈ Rn×d is the matrix whose rows are the deformed vertex positions, M ∈ Rn×((d+1)m)

is the matrix combining rest-pose vertex positions vi with vertex weights wj(vi), and T ∈
R((d+1)m)×d stacks transposed transformation matrices Tj (see e.g. [Kavan et al. 2010] for de-
tails).

7.3.1 Automatic degrees of freedom

Specifying all the degrees of freedom for all affine transformations T1, . . . ,Tm could be bur-
densome. It is often easier and more intuitive for the user to specify translations only, dragging
the control handles around. However, if the Tj’s consist of translations alone, Equation (7.1)
leads to unnatural, sheared deformations. Many other linear deformation formulations suffer
from the same problem of “translation-insensitivity” [Botsch and Sorkine 2008]: when speci-
fying translations at handles, no local rotations are generated by the deformation, and the shape
and its details are distorted as a result. We can also leave some transformations Tj entirely
unconstrained, which corresponds to shape-aware inverse kinematics.

We propose optimizing the remaining degrees of freedom of the handle transformations Tj

that the user did not specify explicitly. We wish to find such Tj’s that the deformed shape
minimizes a deformation energyE under the imposed modeling constraints and the LBS setting,
Equation (7.2). We can write the user-specified modeling constraints as:[

Ifull

Mpos

]
︸ ︷︷ ︸

Meq

T =

[
Tfull

Ppos

]
︸ ︷︷ ︸

Peq

, (7.3)

133

7 Fast automatic skinning transformations

where Ifull are identity blocks corresponding to the fully constrained transformations and Tfull

are their user-provided values (as in traditional skinning) and Mpos are rows of M correspond-
ing to positional constraints on M’s vertices and Ppos their values. All constraints together
can be concisely written as MeqT = Peq, where Meq ∈ Rc×((d+1)m) and Peq ∈ Rc×d and our
construction guarantees they are feasible and full rank.

To obtain the remaining, unconstrained degrees of freedom of Tj’s (i.e., linear components
of positionally constrained handles and all components of unconstrained handles), we propose
minimizing a shape deformation energy E : Rn×d → R+. E(V′) measures the deformation
between the rest-pose shapeM and the deformed shapeM′. We focus on energiesE measuring
local deviation from rigidity, advantageous for good detail preservation and intuitive elastic
behavior [Sorkine and Alexa 2007, Liu et al. 2008, Chao et al. 2010]. This family of energy
functions can be expressed as:

E(V′,R) =
1

2

r∑
k=1

∑
(i,j)∈Ek

cijk‖(v′i − v′j)−Rk(vi − vj)‖2, (7.4)

where R1, . . . ,Rr ∈ SO(d) are local rotations, E1, . . . , Er are their corresponding sets of edges
(see Figure 7.5), and cijk ∈ R are weighting coefficients, typically the familiar cotangent
weights [Chao et al. 2010]. It is convenient to rewrite Equation (7.4) in matrix notation. We
start by separating terms quadratic and linear in V′:

E(V′,R) =
1

2
E2(V′)− E1(V′,R) + const, (7.5)

E2(V′) =
r∑

k=1

∑
(i,j)∈Ek

cijk(v
′
i − v′j)

T(v′i − v′j), (7.6)

E1(V′,R) =
r∑

k=1

∑
(i,j)∈Ek

cijk(v
′
i − v′j)

TRk(vi − vj), (7.7)

The quadratic term can be written in matrix form as:

E2(V′) =
r∑

k=1

tr(CkA
T
kV′V′TAk), (7.8)

where Ak ∈ Rn×|Ek| is directed incidence matrix corresponding to (arbitrarily oriented) edges
Ek and Ck ∈ R|Ek|×|Ek| is a diagonal matrix with weights cijk. Due to the properties of the trace,
we can rewrite this as:

E2(V′) = tr

(
V′

T

(
r∑

k=1

AkCkA
T
k

)
V′

)
(7.9)

= tr(V′
T
LV′), (7.10)

where we denoted the middle sum as L ∈ Rn×n, which for all energies discussed in the lit-
erature [Sorkine and Alexa 2007, Liu et al. 2008, Chao et al. 2010] is the standard symmetric,
cotangent Laplacian matrix (up to a constant scale factor). Similarly, the linear term can be

134

7.3 Method

written as:

E1(V′,R) =
r∑

k=1

tr(CkA
T
kV′RkV

TAk) (7.11)

= tr

((
r∑

k=1

RkV
TAkCkA

T
k

)
V′

)
(7.12)

= tr(RKV′), (7.13)

where R = (R1, . . . ,Rr) and K ∈ Rdr×n stacks differential rest pose coordinates
VTAkCkA

T
k . We therefore obtain:

E(V′,R) =
1

2
tr(V′TLV′)− tr(RKV′) + const. (7.14)

In this form, it is easy to formulate our reduced-order optimization by plugging in the linear
blend skinning formula V′ = MT:

argmin
T,R

1

2
tr(TTL̃T)− tr(RK̃T)

subject to MeqT = Peq, R ∈ SO(d)r,

(7.15)

where L̃ = MTLM and K̃ = KM.

To solve this optimization problem, we follow the local-global approach of Sorkine and Alexa
[2007]. First we fix T and solve for R (local step). Then we fix R and solve for T (global step).

Local step. For fixed T, we are left maximizing tr(RS), where S = K̃T is constant.
This amounts to maximizing each d × d block tr(RiSi) individually. It is well known
[Sorkine and Alexa 2007] that the rotation maximizing the trace is Ri = QT

i UT
i , where

Si = UiΣiQi is the singular value decomposition. For d = 3 we employ the optimized SVD
routines by McAdams and colleagues [2011] that avoid reflections, i.e., guarantee det(Ri) > 0.

Global step. For fixed R, Equation (7.15) turns into a quadratic minimization problem with
linear equality constraints. The constraints can be handled by introducing a matrix Λ ∈ Rc×d

of Lagrange multipliers (see Section 2.2.2), arriving at the Lagrangian:

L =
1

2
tr(TTL̃T)− tr(RK̃T) + tr(ΛT(MeqT−Peq)). (7.16)

Recalling standard matrix calculus identities, we differentiate:

∂L

∂T
= L̃T− K̃TRT + MT

eqΛ (7.17)

∂L

∂Λ
= MeqT−Peq, (7.18)

where we exploit the symmetry of L̃. Setting these derivatives to zero, we obtain:[
L̃ MT

eq

Meq 0

] [
T
Λ

]
=

[
K̃TRT

Peq

]
. (7.19)

135

7 Fast automatic skinning transformations

r = 2 r = 3

r = 4 r = 64

Original

Figure 7.6: 2D deformation with various numbers of rotation clusters, r. Notice that even if only two
rotation clusters are used the deformation is smooth and finds a reasonable shape. Increasing
the number of rotation clusters improves this shape with diminishing returns.

With enough constraints to determine all translational degrees of freedom of L̃, the system
matrix is non-singular. We can thus precompute its inverse Π and express the solution as:

T = [Π1 Π2]

[
K̃TRT

Peq

]
= ΓsolveR

T + Φsolve,

where Γsolve ∈ R(d+1)m×dr and Φsolve ∈ R(d+1)m×d can be precomputed1.

Final algorithm. One iteration of the reduced alternating optimization can be summarized as
follows:

1. S = K̃T,

2. Turn S into R using SVDs,

3. T = ΓsolveR
T + Φsolve.

The only nonlinear step is 2, consisting of r SVDs of d × d matrices. While the linear steps
3 and 1 could be combined together, it is typically more efficient to use two dr × (d + 1)m
and (d+ 1)m× dr matrices rather than one dr × dr matrix. The complexity is independent of
the number of vertices n, however, with r on the order of number of primitives, we still cannot
guarantee real-time framerates. In the following section we discuss how to select representative
rotations so that we need only r = O(m) while obtaining results similar to much higher r.

1In Chapter 2 we repeated wrote that we never compute system inverses, however in this case we really do.
This allows the subsequent, further precomputation. We observe robust inversions using both LU and SV
decomposition using the EIGEN [Guennebaud et al. 2010] or MATLAB [MATLAB 2012] libraries.

136

7.3 Method

π/2

-π/2
ARAP (no clusters) ARAP, r = 4 ARAP, r = 100

Ours, r = 4 Ours, r = 4,
15 extra weights

a) b) c)

d) e)

Figure 7.7: Top: unreduced per-triangle ARAP introduces a singularity in the rotation field (visualized
below). Per-triangle ARAP energy with r = 4 prevents this singularity; the non-smooth
transitions are no longer noticeable with r = 100. Bottom: our method (using smooth
weights) is always smooth, even with r = 4. After enriching our deformation subspace with
15 additional weights we obtain the desired result.

7.3.2 Rotation clusters

Linear blend skinning constrains the resulting deformations to a small linear subspace, where
the motions of neighboring vertices are typically highly correlated. Therefore, it seems un-
necessary to estimate local rotations at each edge set. Instead, we propose clustering vertices
undergoing similar deformations. Instead, we cluster the vertices into V1, . . . ,Vr ⊆ {1, . . . , n}
so that their best-fit rotations can stand in for rotation of each edge set.

Linear blend skinning deformations are governed by vertex weights wi and vertices with sim-
ilar weights undergo similar rotations (regardless of spatial proximity). Therefore, we cluster
vertices into r clusters based on their Euclidean distance in weight space, where for each vertex
vi we assign a vector of weights (w1(vi), . . . , wm(vi)). In this representation rigid components
comprised of vertices with identical weights collapse to a single point and performing k-means
clustering achieves the desired grouping.

The number of clusters r can be used to trade off quality for speed. However, we observed
that typically r = O(m) is sufficient (we often simply set r = 2m), and higher numbers do
not result in further visual improvements (see Figure 7.6). Interestingly, rotation clusters often
improve deformation quality even with a unreduced formulation where each vertex position is
an unknown. The clusters act as a regularization term that helps avoid singularities, though
with small r the unreduced optimization suffers from lack of smoothness (see Figure 7.7b).
Let us consider smoothness of discrete weight functions or deformation fields in an informal
perceptual sense (as is often the case for manually painted weights) or in terms of convergence to

137

7 Fast automatic skinning transformations

Figure 7.8: The cigar shape (top) is stretched using unreduced per-triangle ARAP which introduces a C1

discontinuity at each point handle (middle). Our subspace is restricted to smooth deforma-
tions, so our result is also smooth (bottom).

a C1 function (see Chapter 3). Then, because our final deformation is dictated by linear blend
skinning, it is always as smooth as the input skinning weights wi. This smoothness is thus
guaranteed at cluster boundaries and also near handle boundaries, where unreduced variational
methods typically produce sharp discontinuities (see Figures 7.7 and 7.8)2

7.3.3 Additional weight functions

Linearly blending handle transformations can be insufficient to create natural deformations. To
enrich the space of attainable deformations, we can automatically create a set of abstract han-
dles whose transformations are entirely determined by our optimization. For example, bending
a cigar using two handles at its ends will tend to introduce a pinch (see Figure 7.7d). By gen-
erating additional weights functions along the cigar, we allow our optimization to find a more
pleasing deformation (see Figure 7.7e).

In theory, an arbitrary weight function, appended as additional four columns of matrix M,
cannot increase the deformation energy because the original deformation subspace is con-
tained in the new one. Still, constructing additional weights that keep the deformation fair
is not straightforward. Simply adding additional bounded biharmonic weights (see Chapter 4)
tends to introduce interpolation artifacts similar to Shepard interpolation (see the illustration
in [Lewis et al. 2000]). Using low-frequency Laplacian eigenvectors is tempting, but their
global support can hurt local control and LBS performance. Suitable additional weights should
be smooth, localized, and preserve the nature of the original weights (especially if manually
painted).

Partition of unity is usually required of skinning weights to ensure translation invariance. Due to
our translation invariant energies, our method (somewhat surprisingly) requires only the original
weights to partition unity, the additional weights can be arbitrary. This is because a global trans-

2These discontinues show up in two ways. First, as is evident by the local-global optimization method, the ARAP
solutions are finally solutions to a Poisson equation which will be at best C0 at fixed values (see Chapter 4).
This happens with any type of handle: bone, region, point. The fact that isolated fixed point values are result
in discontinuous indicator functions for continuous Laplace equations, exacerbates this problem. Second, the
discrete ARAP energies assign finite energy to what amounts to a rotational singularity (see Figure 7.7a), which
should receive infinite energy and thus be avoided. Thanks to Peter Schröder for clarifying this.

138

7.3 Method

Original

15 extra weightsNo extra weights

3 of the 15 extra weights

r = 40

Figure 7.9: With five fully constrained region handles, our method reduces to LBS with its volume loss
issues. Enriching our subspace with 15 additional weight functions (shown in red) allows
our method to find more natural deformations.

lation by vector t ∈ Rd is in our skinning subspace (shifting all of the original transformations
by t and keeping the additional constraints unchanged shifts all vertices by t), and therefore
if the user translates all constraints by t, the resulting optimized transformations exactly re-
produce this translation. This is a consequence of the fact the value of our energy functions
(Equation 7.4) remains unchanged when translating all vertices by t.

Also, the scale of the additional weights does not matter because the optimization considers all
linear combinations. However, we do require them to be zero at handles, i.e., where one of the
original weights has value one. This way we ensure that our constraints are trivially feasible.

To preserve the deformation properties of the original weights, we propose embedding our
meshM in weight space, the same as when computing rotation clusters. To this end we create
smooth isotropic cubic B-spline basis functions in weight space, centered at some seed locations
s1, . . . , sp ∈ Rm. Let e1, . . . , em ∈ Rm be unit m-simplex vertices, ei,j = δi,j . To obtain a good
distribution of the seed locations, we employ a discrete multi-dimensional version of optimized
farthest points [Schlömer et al. 2011]. In each iteration, we choose a new location for seed si:

si = argmax
x∈M

di(x), (7.20)

di(x) = min(min
j 6=i
‖x− sj‖, 1

2
min
k
‖x− ek‖), (7.21)

i.e., moving si as far as possible from the other seeds and corners. We push si from the corners

139

7 Fast automatic skinning transformations

Spokes+rims on surface Elements in volume

Figure 7.10: Our reduced model preserves the nature of different energy functions: spokes and rims
(left) behave like thin shells, while tetrahedra (right) correspond to volumetric elasticity.

Original Ours ARAP Spokes+Rims PriMoARAP Spokes

Figure 7.11: Left: unreduced spokes-only ARAP energy [Sorkine and Alexa 2007] produces artifacts
due to indefinite terms in the energy function. Right: our method utilizing the spokes
and rims energy [Chao et al. 2010] fixes these issues and surprisingly accurately models
behavior of bumpy rubber, similar to the unreduced solution and to behavior observed
in silicone ice cube trays. Meanwhile, PriMo [Botsch et al. 2006a] produces a fair wave
corresponding to a thin metal sheet, but seems to ignore the bumps.

twice as far to facilitate the requirement of vanishing additional weights at all ei. Because
Delaunay triangulation in higher dimensions is prohibitively expensive, we estimate the argmax
in Equation (7.20) by random sampling onM in weight space. The algorithm is guaranteed to
converge because the distance between two closest points cannot decrease. For the final si, we
define the additional weight function simply as B(‖x − si‖/(2di(si))), where B(t) : [0, 1] →
[0, 1] is a cubic B-spline basis function.

This way of generating additional weights is only one of many possible, but we enjoy its sim-
plicity and speed. Variational methods are much slower (see Chapter 4). In our experiments,
subspaces enriched with these additional weights support natural deformations with respect to
our energy functions. Especially in situations with a small number of original weights we ob-
serve significant improvement of the deformation quality (see Figure 7.9).

7.4 Results

We experimented with a number of previously discussed ARAP energies. For 2D images,
we use the per-triangle energy [Liu et al. 2008]. For 3D shapes, the user’s choice of energy
controls the desired behavior (see Figure 7.10). The surface-based spokes and rims energy
[Chao et al. 2010] treats models as thin shells while eliminating the artifacts of the spokes
energy [Sorkine and Alexa 2007] (see Figure 7.11). Alternatively, the per-tetrahedron energy
[Chao et al. 2010] treats shapes as enclosed volumes. Note that thanks to our reduced-order for-

140

7.4 Results

Original OursPriMoLBS

Figure 7.12: Our method achieves visually equivalent quality as full nonlinear optimization (PriMo)
[Botsch et al. 2006a] and runs much faster.

141

7 Fast automatic skinning transformations

Input model Model reduction Runtime Precomputation
Model d n Triangles Type morig mextra r 1 Iter. Full Switch Add. Weights

Gingerbread man 2 2899 5543 Tri 9 0 18 11µs 0.227s 14ms 0s
Bubble man 2 6383 11804 Tri 5 0 10 7µs 0.266s 3ms 0s

Female 3 45659 91314 Sp+rim 17 0 34 19µs 3.359s 16ms 0s
Armadillo 3 47162 86482 Tet 17 0 34 20µs 8.365s 15ms 0s
Octopus 3 149666 299328 Tet 9 0 18 10µs 9.957s 9ms 0s

Cylinder 3 4802 9600 Sp+rim 2 30 64 40µs 0.471s 29ms 4.4s
Cactus 3 5261 10518 Sp+rim 2 30 64 40µs 0.586s 35ms 4.882s
Bar 3 6084 12106 Sp+rim 2 30 64 42µs 0.582s 32ms 4.266s
Ogre 3 28837 52306 Tet 5 15 40 22µs 2.717s 6ms 12.166s
Cross 3 29090 58176 Sp+rim 2 30 64 41µs 3.738s 49ms 10.09s
Bumpy plane 3 40401 80000 Sp+rim 2 30 64 41µs 4.328s 33ms 7.812s
Wiener dog 3 48187 85672 Tet 18 15 66 43µs 12.708s 77ms 11.123s

Table 7.1: Model statistics and performance. d denotes the dimension, n the number of vertices, Ele-
ments refers to the type of elements used in the energy formulation (triangles (Tri, Sp+rim)
or tetrahedra Tet); Sp+rim refers to spokes and rims energy. morig is the number of original
weights and mextra is the number of additional weights, r is the number of rotation clusters.
We report the time for one optimization iteration (1 Iter.), the full precomputation time (Full),
and the precomputation time when switching constraint types at handles (Switch).

Figure 7.13: Left to right: the Blinden Hund is rigged to a skeleton composed of two disconnected
components. The yellow joints provide manipulators for a mesh-aware inverse kinematics
deformation.

mulation, the tetrahedra participate in preprocessing only, where internal complexity is folded
into our reduced system. At runtime our method considers only the surface.

To assess deformation quality, in Figure 7.12 we compare our results on the survey benchmark
to those of Figure 10 in [Botsch and Sorkine 2008], with our skinning weights automatically
generated using bounded biharmonic weights and enriched with additional weights per Sec-
tion 7.3.3. As expected, the mesh quality of our reduced nonlinear method surpasses the quality
of linear models. Meanwhile, the deformations are comparable to high quality nonlinear meth-
ods [Botsch et al. 2006a] that are orders of magnitude slower to compute.

The summary of our results can be found in Table 7.1. Our timings were obtained on a single-
core CPU implementation on a laptop with a 2.5GHz Core i7-2860QM. We typically perform
15 iterations of the local-global optimization each at about 10µs to 40µs, resulting in total
solve times of about 0.15 to 0.6 milliseconds. With our models, this performance is close
to that of an LBS shader (with 4 weights per vertex, running in parallel on a GeForce 560M
GPU). In addition to full precomputation times, we also report the time necessary to switch
constraints or change their type (i.e. invert the system matrix in Eq. 7.19). In our figures and the
video accompanying [Jacobson et al. 2012a] we use yellow dots for positional constraints (both

142

7.4 Results

Figure 7.14: Shape-aware IK: a female model animated solely by positional constraints at the endpoints
of the head, hands and feet.

at point handles or bone endpoints), green dots for unconstrained points, and red dots when
specifying full transformations. Transformations at region handles (blue) are fully specified
unless otherwise noted.

In the realm of real-time animation, our approach provides shape-aware inverse kinematics
supporting both classical (Figure 7.14) and disconnected (Figures 7.13 & 7.15) skeletons. To
facilitate user control, our system also supports traditional hierarchical transformation chains
(forward kinematics) even when only a few points are ultimately used as constraints in our opti-
mization. Our optimization may be used to assuage the common LBS candy-wrapper effect by
spreading twist across multiple bones (see Figure 7.16). The blue line segments drawn between
joints denote this hierarchy and are not intended to visualize the affine transformations at joints,
which may be partially or entirely optimized by our system. While most variational methods
require constraints on each connected mesh component, our method can easily handle multiple
connected components, implicitly “glued together” by manually painted skinning weights (see
Figure 7.17).

Reduced variational models are typically associated with a higher energy value and a loss of
quality due to the reduction of degrees of freedom. While our model reduction also increases
the original energy value, projection into our deformation subspace has a nice regularization
side-effect, forcing the solution to more visually pleasing deformations than the non-reduced
method. For example, with C1 weight functions, we can guarantee C1 deformations, unlike
non-reduced ARAP energy minimization (see Figure 7.8). Similarly, the reduction of the en-
ergy term using rotation clusters (Section 7.3.2) helps to avoid deformation field singularities
occasionally produced by the non-reduced method (see Figure 7.7).

The utility of generating additional weights at abstract handles is illustrated in Figure 7.9. If all
region handles are fully constrained, there is no room for optimization and our method reduces
to LBS. However, after adding 15 additional weights, our technique results in more natural,
shape-preserving deformations. Additional weight functions were also used in the benchmark

143

7 Fast automatic skinning transformations

Figure 7.15: Three disconnected skeletons control the Wiener dog. Additional abstract handle weights
are generated along the belly allowing it to deform elastically.

Original LBS Ours

Figure 7.16: Our method naturally spreads elbow twist across the skeleton, avoiding the LBS artifacts.

Figure 7.17: Bubble Man with 17 connected components and only 5 positional handles. Our deformation
subspace (LBS) is designed to prevent the components from falling apart.

144

7.5 Limitations and future work

Figure 7.18: Deforming a cross with region controls produces a smooth, high quality shape in real time.

examples (see Figure 7.12) and a cross-shape model (see Figure 7.18), designed to stress-test
fairness of a branching structure’s deformation.

7.5 Limitations and future work

To guarantee real-time performance, we use a fixed number of iterations in the local-global
optimization and therefore, we cannot guarantee that our solution has converged completely.
However, by initializing the optimization by the previous frame’s transformations, we do not
observe any disturbing artifacts even when using only 15 iterations (note that a reduced model
typically requires much fewer iterations than an unreduced one). Inverse-kinematics methods
often incorporate many other tunable parameters, such as balance and joint limit constraints
[Shi et al. 2007]. Incorporating such terms is an obvious direction for improving the scope of
our results.

The additional weights employed at abstract handles to bolster our optimization space are sim-
ple to construct, but may not be optimal for any given input mesh, linear blend skinning setup,
and number of desired additional weights. With many overlapping original weights, our em-
bedding in weight space causes our additional weights to overlap more. This in turn results
in the practical disadvantage of having to support a large number of influencing handles in a
shader implementation of linear blend skinning. Specifying the maximum number of influenc-
ing weights at any given point is an interesting constraint on our additional weight construction
that we do not yet consider, even though previous weight reduction methods can be used as an
immediate alternative [Landreneau and Schaefer 2010].

Another interesting line of future work, inspired by Figure 7.11, is to study different types of
bending terms to support a user-tunable range of elastic effects for surfaces.

We justify clustering vertices in weight space because vertices with similar weights will have
similar deformation gradients. This assumption holds for typical weight functions with small
gradients, allowing us to use a small number of rotation groups. Robust and efficient handling
of abruptly changing weights would be an interesting future direction.

145

7 Fast automatic skinning transformations

7.6 Conclusion

Linear deformation methods are still sometimes preferred over nonlinear ones because of their
speed and simplicity, resulting in compromises in quality [Botsch and Sorkine 2008]. By re-
ducing both the space of possible deformations and simplifying the elastic energy function, our
method avoids this compromise and delivers a method for deformations that are both fast and
of high quality. We introduce new modes of control: shape-aware inverse kinematics combined
with disconnected skeletons. Our method is simple to implement, with the time-critical inner
loop only consisting of dense matrix multiplications and low-dimensional (d×d) singular value
decompositions. We believe our method will help to promote nonlinear deformation methods
in applications where run-time efficiency is a primary concern.

7.7 Appendix: Physically based dynamics

Adding physically based dynamics to our optimization is straightforward. By treating the gra-
dient of our ARAP energies as internal forces we can introduce a conservation of momentum
term. This barely changes the system matrix and right-hand side, but drastically changes the
behavior. Now the automatic transformations are smooth functions of time (see Figure 7.19).

To accommodate standard notation used in physically based animation, we will use slightly
different notation than the previous section. In this section: x ∈ Rn×3 (née v′) are the unknown
mesh vertex positions, M ∈ Rn×n is the lumped mass matrix (see Section 2.1.3), and W (née
M) is the matrix composed of skinning weights and rest positions.

7.7.1 ARAP with dynamics

First we describe how dynamics are added to the unreduced ARAP. This is similar to Section 3
of [Chao et al. 2010]. A starting point of a physical simulation is Newton’s second law:

fext + fint = M a, (7.22)

where f ext
i ∈ Rn×d, f int ∈ Rn×d, M ∈ Rn×n, and a ∈ Rn×d are the external forces, internal

forces, mass matrix and acceleration.

Examining the ARAP energy EARAP(x) in Equation (7.4) we can think of −∇EARAP(x) as a
force which pushes x towards an optimal configuration (critical point of EARAP(x)). When we
do not have dynamics, we say we are finding a static solution because for each frame we follow
this gradient until convergence, until equilibrium. For dynamics, we can substitute the internal
forces with −∇EARAP(x) in Equation (7.22):

fext −∇EARAP(x) = M a. (7.23)

During our simulation we will let fext be some arbitrary forces that are held constant for any
given time step t. We also hold the mass matrix M constant and we will in fact use the diagonal,
lumped version (see Section 2.1.3). Treating the acceleration term a as unknown, we may use

146

7.7 Appendix: Physically based dynamics

Figure 7.19: Only the head of the Ogre is moved up and down all other transformations are free. A static
animation would be a global rigid transformation. Instead an animation with dynamics
shows interesting elastic behavior. Notice that the arms bend at the elbow, this semantic
information is derived implicitly from the skinning subspace.

finite-differencing in time to expand it as a linear function of unknown velocities v at the current
time step and the velocities of the previous time step v0:

a =
v − v0

h
, (7.24)

where h is the constant scalar time step size. The unknown velocities may in turn be expanded
into linear functions of vertex positions:

v =
x− x0

h
. (7.25)

And finally this means the unknown accelerations a are just a linear function of current posi-
tions, previous positions and previous velocities, of which x0 and v0 are known:

a =
x−x0

h
− v0

h
(7.26)

=
1

h2
x− 1

h2
x0 −

1

h
v0. (7.27)

Substituting this into our Equation (7.23) produces:

fext −∇EARAP(x) = M

(
1

h2
x− 1

h2
x0 −

1

h
v0

)
(7.28)

=
1

h2
Mx− 1

h2
Mx0 −

1

h
Mv0. (7.29)

If we take the anti-derivative with respect to xT we have the quantity (energy):

E(x) =
1

2
aTMa− xTfext + EARAP(x). (7.30)

Expanding a as above gives:

E(x) =
1

2

(
1

h2
x− 1

h2
x0 −

1

h
v0

)T

M

(
1

h2
x− 1

h2
x0 −

1

h
v0

)
− xTfext + EARAP(x).

147

7 Fast automatic skinning transformations

Treating x0 and v0 as constant we can remove constant scalar terms and gather like terms with
respect to x:

E(x) = xT 1

2h2
Mx + xTM

(
− 1

h2
x0 −

1

h
v0

)
+ xTfext + EARAP(x). (7.31)

Notice how this affects our “local/global” optimization. For the global step, we need to add
1
h2 M to the quadratic coefficient matrix in EARAP. This matrix is constant so adding it will only
affect precomputation. We also have new linear terms for the global step. These terms depend
on x0 and v0 which will be changing per time step. They do not depend on the rotations R
found during the local step. This means some portion of the global step’s right-hand side will
depend on R and another part will depend on x0 and v0. Because none of the new terms in
Equation (7.31) depend on R, the local step (SVDs) does not change at all.

7.7.2 Reduction

We have already written ARAP with dynamics as a familiar energy minimization in Equa-
tion (7.31). The substitution proceeds as in Section 7.3.1. In this notation our LBS subspace is
represented by:

x = WT, (7.32)

where W ∈ Rn×((d+1)m) is the matrix combining rest-pose vertex positions xi with vertex
weights wj(xi), and T ∈ R((d+1)m)×d stacks transposed transformation matrices Tj .

We may also parameterize the velocities and previous positions in this subspace:

v =
1

h
(WT−WT0) (7.33)

= WS, (7.34)
x0 = WT0, (7.35)

where S = 1
h

(T−T0) is the change in transformations between time steps.

Making these substitutions we have an energy optimization similar to Equation (7.15):

argmin
T,R

1

2
tr
(
TT
(
L̃ + M̃

)
T
)
− tr

((
RK̃ + (T0 + hS0)T M̃

)
T
)

subject to WeqT = Peq, R ∈ SO(d)r,

(7.36)

where L̃ = WTLW, M̃ = 1
h2 WTMW, and K̃ = KW. Similarly all computation in the inner

loop is collapsed to complexities on the order of T rather than x. Even external forces such as
gravity or buoyancy can benefit from precomputation using M̃. An open research question for
future work is how to incorporate collision response without affecting performance.

148

8
Robust inside-outside segmentation
via generalized winding numbers

Solid shapes in computer graphics are often represented with boundary descriptions, e.g. tri-
angle meshes, but animation, physically-based simulation, and geometry processing are more
realistic and accurate when explicit volume representations are available. Tetrahedral meshes
which exactly contain (interpolate) the input boundary description are desirable but difficult
to construct for a large class of input meshes. Character meshes and CAD models are of-
ten composed of many connected components with numerous self-intersections, non-manifold
pieces, and open boundaries, precluding existing meshing algorithms. We propose an auto-
matic algorithm handling all of these issues, resulting in a compact discretization of the input’s
inner volume. We only require reasonably consistent orientation of the input triangle mesh. By
generalizing the winding number for arbitrary triangle meshes, we define a function that is a
perfect segmentation for watertight input and is well-behaved otherwise. This function guides
a graphcut segmentation of a constrained Delaunay tessellation (CDT), providing a minimal
description that meets the boundary exactly and may be fed as input to existing tools to achieve
element quality. We highlight our robustness on a number of examples and show applications
of solving PDEs, volumetric texturing and elastic simulation.

8.1 Introduction

A large class of surface meshes used in computer graphics represent solid 3D objects. Ac-
cordingly, many applications need to treat such models as volumetric objects: for example, the
animation or physically-based simulation of a hippopotamus would look quite different (and
unrealistic) if handled as a thin shell, rather than a solid (see Figure 8.19). Since many oper-

149

8 Robust inside-outside segmentation via generalized winding numbers

Input mesh Winding number in CDT

Slice through volume Refined tet meshSurface of segmented CDT

Figure 8.1: The Big SigCat input mesh has 3442 pairs of intersecting triangles (bright red), 1020 edges
on open boundaries (dark red), 344 non-manifold edges (purple) and 67 connected compo-
nents (randomly colored). On top of those problems, a SIGGRAPH logo shaped hole is
carved from her side.

ations in animation, simulation and geometry processing require an explicit representation of
an object’s volume, for example for finite element analysis and solving PDEs, a conforming1

tetrahedral meshing of the surface is highly desired, as it enables volumetric computation with
direct access to and assignment of boundary surface values. However, a wide range of “real-life”
models, although they appear to describe the boundary of a solid object, are in fact unmesh-
able with current tools, due to the presence of geometric and topological artifacts such as self-
intersections, open boundaries and non-manifold edges. As a consequence, processing is often
limited to the surface, bounding volumetric grids [McAdams et al. 2011] or approximations
with volume-like scaffolding [Zhou et al. 2005, Baran and Popović 2007, Zhang et al. 2010].

The aforementioned artifacts are common in man-made meshes, as these are the direct output of
human creativity expressed through modeling tools, which very easily allow such artifacts to ap-
pear. Sometimes they are even purposefully introduced by the designer: for example, character
meshes will typically contain many overlapping components representing clothing, accessories
or small features, many of which have open boundaries (see Figure 8.2). Modelers choose very
specific boundary mesh layout and vertex density, necessary for articulation or faithful repre-
sentation of important features while staying on a tight vertex budget. It is therefore highly
desirable to avoid remeshing and subsequent interpolation, and at the same time obtain a valid
and precise representation of the object’s inner volume.

In this chapter, we propose an automatic algorithm for producing volumetric meshes that fully
contain the geometry of the input surface model. Our method robustly handles artifacts common
in man-made meshes while still supporting the full set of quality assurances, as do existing
conforming meshing tools.

1Contrary to some authors’ use of “conforming” to mean that every mesh edge is locally Delaunay, we use it
simply to mean that the volume mesh interpolates to the boundary description.

150

8.1 Introduction

Input mesh Slice in output volume

Figure 8.2: Each whisker, tooth and eye of the Big SigCat is a separate component, intersecting the body.
On top of this, many have open boundaries (dark red) and non-manifold edges (purple).

Past years have seen many advances in algorithms for generating high quality simplicial (trian-
gles in R2, tetrahedra in R3) volume meshes. The popular tools TRIANGLE [Shewchuk 1996]
and TETGEN [Si 2003] are examples of methods that exactly conform to a given piecewise-
linear boundary description. Such tools support a wide range of features, in particular con-
cerning element quality, but they fail when the input boundary descriptions contain geometric
ambiguities or flaws which make the inner volume even remotely ambiguous. The number of
these issues in a common man-made model may range in the hundreds or thousands (see Fig-
ure 8.1), so manual clean up is time consuming and deadeningly tedious. An alternative could
be to treat this as a surface repair problem, but this precludes exactly maintaining the original
boundary vertices and facets during local fixup operations [Attene 2010]. Surface reconstruc-
tion techniques are not quite suitable in our setting either, because they focus on recovering
surfaces from scans of real solids, where the artifacts should only arise from scanning errors,
and hence partial or complete remeshing and loss of input features may occur.

Our method generally follows the steps of reconstruction based on constrained Delaunay tes-
sellation (CDT): we compute the (tetrahedral) CDT of the convex hull of the input vertices and
facets. We rely on state-of-the-art CDT tools, which currently require certain pre-processing
of the input, such as subdivision of self-intersecting facets and discarding degeneracies. The
goal is then to segment the CDT volume into “inside” and “outside” elements, such that the
set of inside elements comprises a valid conforming tet mesh. Our main contribution is the
introduction of a new inside-outside confidence function by generalizing the winding number.
Though similar at a high enough level, signed distance functions do not encode segmentation
confidence. They smoothly pass through zero at the surface, whereas our function has a sharp

151

8 Robust inside-outside segmentation via generalized winding numbers

1

0

½

-½

2

1½

Figure 8.3: The winding number intuitively captures self-intersections, maintaining boundary exactly
(cf. Figure (5) in [Shen et al. 2004]).

jump there. Away from the surface our function is smooth (in fact, harmonic!). It defines a
perfect, piecewise-constant segmentation of space when the input is perfect (i.e. a watertight
surface). When the input contains ambiguities and missing information, the well-behaved na-
ture of our function makes it suitable for guiding an energy-minimizing segmentation of the
CDT, which can be efficiently computed using graphcut. We can constrain the segmentation to
exactly contain all input vertices and facets, as well as ensure surface manifoldness. The final
output is a minimal tetrahedral mesh carved from the CDT which may be post-processed using
existing tools to achieve high-quality elements or heterogeneous sizing.

We evaluate our algorithm on a wide range of inputs, which are otherwise unmeshable with ex-
isting tools. We demonstrate the usefulness of the method via applications such as physically-
based elasticity simulation, skinning weight computation for real-time animation, geometric
modeling and volumetric texturing. Our algorithm offers a step towards a new level of robust-
ness for unstructured volumetric meshing, which will potentially have a large impact on the
standard computer graphics pipeline, especially as geometry processing turns toward treating
solids as solids rather than operating (often just out of convenience or obligation) on merely the
surface.

8.2 Related work

Surface repair. Artifacts of surface meshes, such as violations of the connected 2-
manifoldness, consistent orientation or watertightness properties, not only disturb conform-
ing volumetric meshing but also surface-based processing, because the majority of geo-
metric algorithms assumes clean input. Although the problem of mesh repair has been
extensively studied, it remains elusive in practice [Ju 2009, Campen et al. 2012]. Most
methods for meshing of polygon soups into surfaces do not robustly deal with self-
intersecting input facets [Hoppe et al. 1993, Rossignac and Cardoze 1999, Guéziec et al. 2001,
Podolak and Rusinkiewicz 2005] insofar as promising a volume-meshable, watertight surface.
Some methods do offer guarantees; they work by globally remeshing the output [Ju 2004,
Bischoff et al. 2005] or by making local modifications at the cost of not maintaining the origi-
nal mesh (geometry and/or connectivity) in troublesome areas [Yamakawa and Shimada 2009,
Attene 2010]. Bischoff and Kobbelt [2005] repair CAD models while trying to preserve the

152

8.2 Related work

original meshing, but they assume that the input is divided into manifold patches that do not self-
intersect, and their method requires a spatially-varying threshold for gap filling. [Attene 2010]
provide volume meshing as an application of their watertight output. However, because their
algorithm iterates between removing troublesome patches and hole filling, large portions of the
original mesh may be deleted (see Figure 8.17). Holes are filled by locally modifying the mesh
and become hard boundary constraints for volume meshing. Conversely, our winding number
function incorporates global information to intelligently resolve missing information ambigu-
ities. A volumetric tool for general surface repair exists [Nooruddin and Turk 2003], but its
voxel-based nature does not scale well for large, detailed models and complicates interpolation
of the input mesh. Unlike our method, the seminal work of [Murali and Funkhouser 1997] is
not restricted to consistently oriented input. However, their voting-based approach is prone to
mis-assignment in regions of overlap and loss of small details [Attene 2010].

Surface reconstruction can be seen as an alternative way to obtain a clean, watertight
surface mesh. However, most reconstruction algorithms are tailored to perform well on
noisy point cloud inputs and hence do not strive to preserve the input mesh structure. Al-
gorithms like the Zipper of [Turk and Levoy 1994] stitch range images by generally only
modifying the mesh along the overlap, but this approach is only suitable for well-aligned
range images. A host of reconstruction methods, starting with [Hoppe et al. 1992], fit an
implicit function to the input surface geometry and extract a level set, which is guaran-
teed to be watertight for well-behaved functions; recent methods are quite robust to noisy
data [Kazhdan et al. 2006, Mullen et al. 2010] and even unoriented data [Alliez et al. 2007].
However, the original input mesh is generally lost during contouring. Shen et al. [2004] de-
sign level-sets using moving least squares to perfectly interpolate input facets, but contouring
loses any premeditated discretization distribution. Further, due to the oscillatory nature of their
function, the exact interpolation constraint may need to be relaxed when components overlap
(see our Figure 8.3 and their Figure 5).

Surface reconstruction of point clouds has been achieved with graphcut segmentation on
voxel-grids [Hornung and Kobbelt 2006] and on Delaunay meshes [Wan et al. 2011]. Later,
[Wan et al. 2012] tackled open surfaces via graphcut on a level-set of an intersection of ap-
proximating “crusts”. Our method, as many previous methods, segments a volume from
a constrained Delaunay tessellation of the input convex hull. The peeling procedure of
[Dey and Goswami 2003] fills surface holes ensuring a watertight result, though possibly non-
manifold. Further, it requires a fine enough initial discretization to prevent a degenerate so-
lution. The spectral method of [Kolluri et al. 2004] improves upon this. They provide similar
post-processing heuristics to ours for ensuring manifoldness. However, extending their spectral
analysis to interpolate input facets is not obvious.

Unstructured tetrahedral mesh generation. Efficient creation of Delaunay tessella-
tions is well studied; refer to [Shewchuk 2012] for an excellent survey. The methods can
be subdivided into those that exactly interpolate input vertices and faces [George et al. 1990,
Shewchuk 1996, Joshi and Ourselin 2003, Si 2003, Geuzaine and Remacle 2009] and those
that approximate watertight input surfaces [Shimada and Gossard 1995, Alliez et al. 2005,
Bridson et al. 2005, Labelle and Shewchuk 2007]. We heavily rely on the former category

153

8 Robust inside-outside segmentation via generalized winding numbers

0

1

Figure 8.4: Winding number is the signed length of the projection of a curve onto a circle at a given a
point divided by 2π. Outside the curve, the projection cancels itself out. Inside, it measures
one.

to mesh the convex hull of our input. Additionally, as our method outputs a minimal
tetrahedral mesh, we may post-process with mesh refinement tools [Schöberl 1997, Si 2003,
Klingner and Shewchuk 2007, Geuzaine and Remacle 2009] to achieve element quality.

Winding number, inside-outside tests. The winding number of closed curves is an
old concept [Meister 1769/70]. To the best of our knowledge, no previous work has gen-
eralized “winding numbers” computed as integrals on open curves or surfaces. However,
many related functions exist. Mean value coordinates (MVC) use a similar projection integral
[Floater 2003, Ju et al. 2005], but lack the jump discontinuity across the boundary that gives
the winding number its unique segmentation property. MVC are also notably not harmonic,
and thus may oscillate and not satisfy the maximum principle. In the terminology presented
by [Zhou et al. 2008], our winding number adheres to an “object-based” definition of inside-
outside. Thus we are a complement to their “view-based” definition. Their method uses ray-
shooting combined with graphcut to achieve a different set of applications, more suitable to
computer vision.

8.3 Method

Our goal is a tetrahedral mesh conforming to an input shape. We achieve this by computing
a constrained Delaunay tessellation (CDT) containing the input vertices and facets, then by
evaluating a generalization of the winding number for each element we segment inside and
outside elements of the CDT resulting in the final tet mesh.

Let the input shape in Rd be described by a list of n vertices V = {v1,v2, . . . ,vn} , vi ∈ Rd

and a list of m simplicial facets F = {f1, . . . , fm} where fi ∈ {1, 2, . . . , n}d (we only consider
d = 2 and d = 3)2. The goal is then to find a set of elements E ⊂ {1, . . . , k}d+1 defined over

2 The integral definition of the winding number (thus, also our generalization) is well-defined for any dimension.
Though our proofs for harmonicity are not, we hypothesize this to be the case.

154

8.4 Winding number

1

0

0

0

1

-1

0

0

1 2

1

0

Figure 8.5: Winding number exactly segments inside and outside for concave, high-genus, inverted and
overlapping curves. Multiple components are also naturally handled: consider this entire
figure and the winding numbers remain the same.

a set of vertices vE which represent the area (if d = 2) or volume (if d = 3) of (V ,F). In the
ideal case, we achieve exact interpolation: vE = V and all facets in F appear as subfacets of
elements in E . Note, facets and elements correspond to triangles and tetrahedra inR3 and edges
and triangles in R2.

Although F forms a graph or mesh over V , the input is not assumed to be (d − 1)-manifold,
orientable or closed. We do assume the mesh intuitively represents or loosely approximates
the surface of some solid and has reasonably consistent orientation. This is motivated by the
observation that most practical input meshes were created in such a way that they appear to be
the surface of some solid when rendered with single-sided lighting.

We first construct an inside-outside confidence function which generalizes the winding number.
We then evaluate the integral average of this function at each element in a CDT containing
(V ,F). Finally, we select a subset E of the CDT elements via graphcut energy optimization
with optional constraints to enforce strict facet interpolation and manifoldness.

8.4 Winding number

The traditional winding number w(p) is a signed, integer-valued property of a point p with
respect to a closed Lipschitz curve C in R2. Intuitively, if we imagine there is an observer
located at p tracking a moving point along C, the winding number tells us the number of full
revolutions the observer took. Full counter-clockwise revolutions increase the count by one,
while clockwise turns subtract one. In other words, w(p) is the number of times C wraps
around p in the counter-clockwise direction. Without loss of generality let p = 0, parameterize
C using polar coordinates and define

w(p) =
1

2π

∮
C
dθ. (8.1)

It is the signed length of the projection of C onto the unit circle around p divided by 2π (see
Figure 8.4). A value of 0 or 1 means p lies outside or inside C, respectively. The winding

155

8 Robust inside-outside segmentation via generalized winding numbers

number distinguishes outside and inside for curves enclosing regions of arbitrary genus, and
also identifies regions of overlap (see Figure 8.5).

θi

ci+1

cip

The integral in Equation (8.1) provides an immediate and exact
discretization if C is piecewise linear:

w(p) =
1

2π

n∑
i=1

θi, (8.2)

where θi is the signed angle between vectors from two con-
secutive vertices ci and ci+1 on C to p. Let a = ci − p and
b = ci+1 − p, then:

tan (θi(p)) =
det([a b])

a · b =
axby − aybx
axbx + ayby

. (8.3)

8.4.1 Generalization to R3

The winding number immediately generalizes to R3 by replacing angle with solid angle. The
solid angle Ω of a Lipschitz surface S with respect to a point p ∈ R3 (w.l.o.g. let p = 0) is
defined using spherical coordinates to be:

Ω(p) =

∫∫
S

sin (φ) dθdφ. (8.4)

It is the signed surface area of the projection of S onto the unit sphere centered at p.

Let the winding number of a closed surface S at point p be defined as w(p) := Ω(p)/4π. The
same classification properties apply as inR2. The notion of “winding”, now counts the (signed)
total number of times the surface wraps around a point.

vk
vi

p

Ωf

vj

And again, if we have a triangulated, piecewise-linear surface,
there is an immediate and exact discretization of Equation (8.4):

w(p) =
m∑
f=1

1

4π
Ωf (p), (8.5)

where Ωf is the solid angle of the oriented triangle {vi,vj,vk}
with respect to p. Let a = vi − p, b = vj − p,
c = vk − p and a = ‖a‖, b = ‖b‖, c = ‖c‖; then follow-
ing [van Oosterom and Strackee 1983]:

tan

(
Ω(p)

2

)
=

det([a b c])

abc+ (a · b)c+ (b · c)a+ (c · a)b
. (8.6)

156

8.4 Winding number

1

0

½

-½

Figure 8.6: Left to right: winding number field with respect to an open, partial circle converging to a
closed circle. Note the ±1 jump discontinuity across the curve. Otherwise the function is
harmonic: smooth with minimal oscillation.

8.4.2 Open, non-manifold and beyond

The simplicity of the discrete formulae in Equations (8.2) and (8.5) begs the question, what will
happen if the input is open? Or non-manifold? Or otherwise ambiguous?

We first consider open curves inR2. Instead of an indicator, step function, Equation (8.2) is now
an otherwise smooth function that jumps by ±1 across the curve (see Figure 8.6). In fact, the
smoothness and fairness of this generalized winding number may be well understood. Except
on the curve, it is harmonic! This implies C∞ smoothness and minimal oscillations — highly
desirable properties.

The sum of harmonic functions is harmonic, so it suffices to show that all θi and Ωi are
harmonic. This is easy to do using symbolic differentiation and simplification using Maple
[Char et al. 1983] (see Figure 8.7). In R3 treating all triangle vertices vi,vj,vk as symbolic
variables makes Maple run out of memory, therefore we take advantage of invariance to trans-
lation and fix vi = (0, 0, 0).

The winding number is not simply the unique harmonic function determined by setting one side
of the boundary to 0 and the other to 1, as if by a diffusion curve of [Orzan et al. 2008] (also
cf. [Davis et al. 2002]). This is true if and only if the input is watertight. Rather, the winding
number is the sum of harmonic functions corresponding to each input facet, setting one side to
−1/2 and the other to 1/2 (see Figure 8.9). We do not explicitly control the boundary conditions
— they are implicitly defined by the boundary winding number itself. This allows graceful shift
from a perfect segmentation function to a smooth confidence measure as artifacts appear in the
boundary. Unlike [Orzan et al. 2008] who solve a variational problem, we have a closed-form
expression to evaluate the winding number.

Equation (8.5) may be interpreted as an instance of the boundary element method (BEM) for
evaluating the solution to the Laplace equation. If we define Dirichlet boundary conditions
on each side of our facets using the winding number, the solution of the Laplace equation on
the entire space is exactly equivalent to w(p) for p ∈ Rd. This follows from the uniqueness
property of harmonic functions.

An alternative understanding of the winding number is to shoot rays in every direction from p.
For each ray sum ±1 for each signed intersection with the input. The traditional and our
generalized winding number is the average of these values. This understanding is useful

157

8 Robust inside-outside segmentation via generalized winding numbers

define Laplacian operator in 2d
Laplacian2 := (f,x,y) -> diff(f,x,x) + diff(f,y,y);
arbitrary position for vi, a := vi - p
a_x := vi_x-px; a_y := vi_y-py;
arbitrary position for vj, b := vj - p
b_x := vj_x-px; b_y := vj_y-py;
determinant of (a,b)
detab := a_x*b_y - b_x*a_y;
a dot b
adotb := a_x*b_x + a_y*b_y;
quotient := detab / adotb;
sab := 2*arctan(simplify(quotient));
simplify(Laplacian2(sab,px,py),symbolic);
result is 0

define Laplacian operator in 3d
Laplacian3 := (f,x,y,z) -> diff(f,x,x) + diff(f,y,y) + diff(f,z,z);
vi := (0,0,0), a := vi - p
a_x := 0-px; a_y := 0-py; a_z := 0-pz;
arbitrary position for vj, b := vj - p
b_x := vj_x-px; b_y := vj_y-py; b_z := vj_z-pz;
arbitrary position for vk, c := vk - p
c_x := vk_x-px; c_y := vk_y-py; c_z := vk_z-pz;
determinant of (a,b,c)
detabc := a_x*b_y*c_z + b_x*c_y*a_z + c_x*a_y*b_z -
 a_x*c_y*b_z - b_x*a_y*c_z - c_x*b_y*a_z;
a := sqrt(a_x*a_x+a_y*a_y+a_z*a_z);
b := sqrt(b_x*b_x+b_y*b_y+b_z*b_z);
c := sqrt(c_x*c_x+c_y*c_y+c_z*c_z);
divisor in atan
divisor := a*b*c + (a_x*b_x+a_y*b_y+a_z*b_z)*c +
 (b_x*c_x+b_y*c_y+b_z*c_z)*a + (c_x*a_x+c_y*a_y+c_z*a_z)*b;
sabc := 2*arctan(detabc / divisor);
simplify(Laplacian3(sabc,px,py,pz),symbolic);
result is 0

Figure 8.7: MAPLE code proving that signed angle inR2, solid angleR3, and, by extension, the winding
number are harmonic.

1

0

½

-½

2

1½

Figure 8.8: Winding number gracefully handles holes (in grey curve, left), non-manifold attachments
(middle), and exactly or nearly duplicate facets (right).

158

8.4 Winding number

+ +=+ =+

1

0
½

-½

Figure 8.9: The winding number is the sum of harmonic functions defined for each facet.

conceptually, but difficult to realize as an algorithm. While casting a few rays is possible
[Nooruddin and Turk 2003, Houston et al. 2003], this approximation will be noisy in the pres-
ence of open boundaries and non-manifold edges. By considering the input’s projection on the
unit ball around p instead, our algorithm is tantamount to shooting all possible rays.

The jump discontinuity across the input facets provides the winding number a unique advan-
tage as a confidence measure in contrast to other methods (e.g. signed distance fields). Such
measures continuously approach a zero level-set, where the difference between the measure at
a clearly inside point (just to the inside of a facet) and a clearly outside point (just to the out-
side) diminishes. In contrast, the winding number instead becomes ever more confident and the
measure approaches the discontinuous boundary conditions at that facet, regardless of whether
the facet is part of a watertight component (see Figure 8.3).

Non-manifold edges appear often in 3D character meshes to describe thin clothing or acces-
sories. It is convenient to conceptually treat each manifold patch of (V ,F) as an appropriately
open or closed surface. Each patch then contributes independently to the total winding number.
Thus non-manifold edges affect the winding number in a similarly predictable manner to open
boundaries (see Figure 8.8 middle).

In character meshes and CAD models, there may be entirely duplicated or nearly duplicated
patches of the input mesh. These shift the winding number range locally (see Figure 8.8 right).
This disqualifies simply thresholding the winding number for final segmentation, hence our use
of a carefully crafted graphcut energy.

8.4.3 Hierarchical evaluation

The discrete formulae in Equations 8.2 and 8.5 give a direct route to a naive implementation
to compute w(p): simply sum the contribution of θi or Ωi for each input facet. This is embar-
rassingly parallel and the geometric definition invites the possibility of a shader-style parallel
implementation. However, the asymptotic runtime would still grow linearly with the number
of input facets. A facet’s effect on w(p) diminishes with respect to its distance to p. We could
asymptotically speed up our evaluation with an adaptation of the Fast Multipole Method, how-
ever this would only be an approximation. Instead, we achieve exact evaluation and asymptotic
performance gains by noticing that the winding number obeys the following simple property.

Consider a possibly open surface S and an arbitrary closing surface S̄ such that ∂S̄ = ∂S and
S̄ ∪ S is some closed, oriented surface T . Then if p is outside the convex hull of T , we know
that wS(p) + wS̄(p) = wT (p) = 0. Interestingly this means wS(p) = −wS̄(p), regardless of
how S̄ is constructed. Notice this result is trivial if S is closed, as wS(p) = 0.

We can conceptually express our mesh as a union of manifold patches. We define exterior

159

8 Robust inside-outside segmentation via generalized winding numbers

Algorithm 1: construct_hierarchy(T,V ,F)
Inputs:
T root of subtree in hierarchy
V mesh vertex positions
F list of facets in bbox(T)

begin
E ← exterior_edges(F) // Compute list of exterior edges of F
T.S̄ ← closure(E) // Compute closure of F
if |F| < 100 or |T.S̄| ≥ |F| then

T.F ← F // mark as leaf and save F
return

end
Fleft ← restrict(V ,F ,bbox(T.left)) // Restriction of F , left
Fright ← restrict(V ,F ,bbox(T.right)) // Restriction of F , right
construct_hierarchy(T.left,V ,Fleft) // recurse
construct_hierarchy(T.right,V ,Fright) // recurse

end

Algorithm 2: hier_winding(p, T, V)→ w

Inputs:
p evaluation point
T root of subtree in hierarchy
V mesh vertex positions

Outputs:
w exact generalized winding number at p

begin
if T is a leaf then

w ← naive_winding(p, T.F ,V) // use all faces T.F
else if p is outside bbox(T) then

w ← −naive_winding(p, T.S̄,V) // use closure T.S̄
else

wleft ← hier_winding(p, T.left,V) // recurse left
wright ← hier_winding(p, T.right,V) // recurse right
w ← wleft + wright // sum

end
return w

end

160

8.5 Segmentation

edges as boundary edges of such a segmentation. In R3, if p lies outside the convex hull
of (V ,F), then we collect all exterior edges and trivially triangulate each with an arbitrary
vertex. Though ugly from a surface repair point of view, these triangles indeed represent a
valid closing of (V ,F) and will only be used for winding number evaluation. Note that the
segmentation into manifold patches is never explicitly computed. Rather we traverse around
each facet in order, and for each directed edge i, j we increment count(i, j) if i < j and
decrement count(j, i) if j < i. In this way we keep track of how many extra times each edge is
seen in the forward or backward direction. Finally all edges with count(i, j) 6= 0 are declared
exterior and triangulated with some arbitrary vertex k with orientation {i, j, k} if count(i, j) =
c > 0 and {j, i, k} if count(i, j) = −c < 0. These triangles are repeated |c| times to account
for possible multiple coverage of the same exterior edge. In R2, we analogously find exterior
vertices and connect them to an arbitrary vertex using appropriately oriented line segments.

For reasonably tessellated meshes, the number of exterior edges and thus the number of closing
triangles will be O(

√
m). We exploit this by evaluating the winding number using a bounding

volume hierarchy partitioning F . Though there is an art to optimizing bounding volume hierar-
chies, we opt for a simple axis-aligned-bounding-box hierarchy. We initialize the root with the
bounding box of V . We precompute the exterior edges and closure of F , then we simply bisect
the box, splitting its longest side. Each facet of F is distributed to the child whose box contains
the facet’s barycenter. We recurse on each child. Splitting stops when the number of a box’s
exterior edges approximately equals the number of its facets or when the number of its facets
slips below a threshold (≈100). This stopping criterion ensures that worst case performance
stays the same. See Algorithm 1. To evaluate the winding number, we traverse this hierarchy
recursively. When we reach a box of which the evaluation point is outside, we evaluate using
the closure. See Algorithm 2. In general we see large speed ups (see Figures 8.10 & 8.11).

8.5 Segmentation

We segment according to the winding number by selecting a subset of the elements in a con-
strained Delaunay tessellation of the convex hull of (V ,F). We may then refine this mesh to
meet quality criterion using [Si 2003] or [Klingner and Shewchuk 2007].

Theoretically the only problems when computing a CDT on our input mesh (V ,F) are self-
intersections. In R2, the TRIANGLE program [Shewchuk 1996] automatically adds Steiner
points at line segment intersections. To our knowledge there is no equivalent in R3. So, we
first remove any duplicate or degenerate facets. Then we compute all triangle-triangle inter-
sections using the exact construction kernel in [CGAL]. This kernel is exact even for difficult
cases like coplanar, overlapping triangles. It specifies the locations for Steiner points and con-
straint segments on each offending triangle. We solve a separate 2D CDT problem to meet each
set of constraints. Alternatively, employing [Campen and Kobbelt 2010] promises performance
gains.

Unfortunately, efficient CDT algorithms are prone to numerical issues and fail when input con-
straints are too close together. Thus additional clean up is occasionally required. Rather than
remesh the entire input, we notice that in practice a CDT is possible when no facets are con-
strained. Thus we enforce as many facets as permitted by our choice of CDT meshing software

161

8 Robust inside-outside segmentation via generalized winding numbers

−3

−2

−1

0

Winding number computation time (subdivided Dino)
Seconds

 Naive

 Hierarchical

Number of input facets, m

1e0

1e-3

1e-2

1e-1

1e3 1e61e51e4 1e7

Figure 8.10: Hierarchical evaluation performs asymptotically better than the naive implementation on
the subdivided Dino. Naive (blue) fits neatly to m0.94, hierarchical (green) to m0.43.

Winding number computation time (SHREC Dataset)
Seconds

1e-2

1e-4

1e-3

 Naive

 Hierarchical

Number of input facets, m
1e2 1e51e41e3

Figure 8.11: Hierarchical evaluation performs asymptotically better than the naive implementation on a
large set of different meshes. Naive (blue) fits neatly to m1.00, hierarchical (green) fits in
least squares sense to m0.55 (black line).

162

8.5 Segmentation

a) b) c) d)

1

0

½

-½

2

1½

Figure 8.12: The winding number inside a hand with thin accessories (a). Without constraints acces-
sories may be lost (b). Adding the incident element with highest winding number, recovers
them (c). Local improvement of the graphcut energy encourages smoothness (d).

[Si 2003]. Troublesome facets are removed or subdivided according to a small area and small
angle threshold. Subdivision helps ensure minimal disturbance of the facet interpolation.

By using an imperfect CDT, we are relaxing our strict interpolation constraint. However, surface
repair methods like [Attene et al. 2007] are much more aggressive (see Figure 8.17). Further,
our preprocessing is solely to facilitate construction of the CDT, which is orthogonal to our
volume segmentation problem. All original facets are still used to compute the winding number.
When improved CDT methods appear, our method will immediately see benefits.

8.5.1 Energy minimization with graphcut

We now have a standard segmentation problem. If the input is perfectly free of ambiguities then
the winding number already acts as an exact segmentation. If the input is not perfectly clean
then we need a more sophisticated segmentation. An obvious first approach is to apply a simple
threshold:

is_outside(ei) =

{
true if w(ei) < 0.5

false otherwise
, (8.7)

163

8 Robust inside-outside segmentation via generalized winding numbers

(1) (2a) (2b) (3)

1

0

½

-½

2

1½

Figure 8.13: Thresholding winding number finds unambiguous attachments (1). Harder cases require
facet constraints. Splinters (2a) are avoided by local improvement with a smoothness en-
ergy fixes this (2b). Finally, the winding number can detect outliers (3).

where by abuse of notation, letw(ei) = 1
V

∫
ei
w(p)dV be the integral average ofw in element ei.

However, this does not incorporate coherency between neighboring elements (see Figure 8.12).

Instead we propose an energy functional, consisting of a data term and smoothness term, whose
minimum respects the winding number, but behaves better due to enforced smoothness. The
energy is written:

E =
m∑
i=1

u(xi) + γ
1

2

∑
j∈N(i)

v(xi, xj)

 , (8.8)

where xi is the unknown binary segmentation function at element ei, N(i) is the set of elements
sharing a facet with ei and γ is a parameter balancing the data and smoothness terms. We define
the data term as:

u(xi) =

{
max(w(ei)− 0, 0) if xi = outside

max(1− w(ei), 0) otherwise
, (8.9)

These terms will become edge weights in a graphcut optimization and thus must be non-
negative. If γ = 0 then the optimal solution coincides with constant thresholding
[Chen et al. 2011].

We use an exponential function to achieve a discontinuity-aware smoothness term
[Boykov and Funka-Lea 2006]:

v(xi, xj) =

{
0 if xi = xj
aij exp(|w(ei)−w(ej)|2)

2σ2 otherwise
, (8.10)

where aij is the length/area (for d = 2/3) of the facet shared between ei and ej , and σ is a
“noise”-estimation parameter. A graph with appropriate edge-weights is constructed according
to [Kolmogorov and Zabin 2004], and the optimal segmentation is found by running a max-flow
algorithm.

164

8.5 Segmentation

Input model Computation time Output

Input model |V| |F| |∂F| #self-int. #CC #nme. pre. CDT w cut |E|
Tree 2599 4067 1097 386 32 0 1.99 0.48 1.06 0.06 11643
Holy Cow 2632 5080 206 83 1 0 0.74 0.02 0.05 0.05 9232
Bikini Woman 2827 5204 477 472 11 24 2.29 0.22 0.60 0.06 13057
Ant 2859 5258 152 1578 62 1 7.14 0.48 0.59 0.06 18466
SWAT Man 5277 9820 551 2806 51 24 12.12 1.14 2.47 0.08 31317
Frog 6614 13216 0 316 3 0 1.75 0.39 1.57 0.06 21909
Dog 7953 15848 56 0 1 0 0.51 0.67 2.45 0.07 27707
Rhino 8071 16031 23 2150 26 0 10.29 0.73 4.37 0.10 74446
Alien Space-object 8762 17692 0 1686 32 0 13.41 0.74 7.86 0.10 57293
Skeleton 11963 21551 0 4095 206 0 25.17 4.19 31.87 0.28 217517
Flying Bug 12603 23932 1200 1731 25 0 9.12 1.77 8.69 0.10 62285
Crocodile 17332 34404 0 5236 65 0 22.33 0.20 6.88 0.13 98719
Bear 24936 23530 320 5572 37 0 24.62 0.15 5.38 0.15 56605
Beast 32311 64618 0 969 1 0 7.84 2.98 40.10 0.36 192613
Ballet Woman’s Head 39068 76618 1146 8660 44 0 33.19 4.72 92.39 0.10 201991
Big SigCat 40224 60502 1020 3442 65 344 18.88 1.67 9.22 0.12 95896
Phone 42003 83998 0 1597 11 3 15.50 2.76 17.76 0.20 150159
Elephant Head 52740 105056 416 613 5 0 11.26 2.94 19.47 0.27 186025
Ballet Woman 70488 139324 1714 9734 44 0 45.95 7.07 153.23 0.83 615313

Table 8.1: Statistics for the various examples. |V| and |F| are the number of vertices and facets in the
input 3D model. |∂F| is the number of boundary edges, #self-int. the number of intersect-
ing pairs of facets, #CC the number of connected components, and #nme. the number of
non-manifold edges. We report timings for each stage of our algorithm in seconds: (pre.)
pre-processing (dominated by self-intersection meshing), constructing a CDT with TETGEN

(CDT), hierarchically evaluating the winding number w, and final graphcut segmentation
(cut). The number of elements in the output tet mesh is |E|.

One last question remains: how to evaluate the integral average of the winding number per ele-
ment? A simple solution is to evaluate w at the barycenter of each element. This works well for
inputs without major issues and when the CDT contains reasonably well-shaped elements. For
extremely difficult cases we can increase the accuracy of this integral by using more quadrature
points. We use a simple symmetric scheme of [Zhang et al. 2009] and see diminishing returns
on the number of points.

8.5.2 Optional hard constraints

Our generalized winding number combined with graphcut can be seen as an outlier detector
if some of the input facets F do not appear as subfacets of the segmented elements E , as
this only happens when the input is ambiguous (see Figure 8.13). Unfortunately, we cannot
efficiently and optimally enforce facet interpolation as hard constraints. Enforcing these con-
straints as infinite penalty terms in Equation (8.8) results in a nonregular function in the parlance
of [Kolmogorov and Zabin 2004]. They prove that such functions, and thus our constraints, can
not be optimized using graphcut.

For completeness we implement a simple heuristic approach to ensuring facet constraints are
met. We march over unsatisfied constraints and satisfy them by adding the incident element with
largest winding number. After each update we greedily optimize the energy in Equation (8.8) by
recursively testing whether to flip the assignment of elements neighboring any just-flipped ele-
ments. During improvement we do not allow flips that violate any already satisfied constraints.
We converge to a local and feasible minimum w.r.t. the energy and the facet constraints.

165

8 Robust inside-outside segmentation via generalized winding numbers

2

0

1

-1

Figure 8.14: Each triangle of the Cat (originally with open bottom) is ripped off and slowly rotated in a
random direction. The winding number gracefully degrades.

We may similarly enforce a surface manifoldness constraint by marching over edges and ver-
tices in the CDT. When a non-manifold issue is found we simply sort incident elements in
descending order according to their winding number and label them inside until local manifold-
ness is achieved. Again we greedily improve after each step to a local minimum. The method
of [Attene et al. 2007] converts sets of tetrahedra (e.g. our output) into manifold volumetric
meshes, and alternatively could post-process our output without manifoldness constraints.

8.6 Experiments and results

We evaluated our algorithm on a large number of input shapes (see Figures 8.22-8.25). In
this table we show the input mesh, highlighting artifacts; a slice through the bounding box,
showing the winding number computed for each element of the CDT; and our resulting tet mesh
with cut-away slices. We show success on a variety of man-made meshes: CAD models (e.g.
Phone, Alien Space-object) and character meshes (e.g. Skeleton, SWAT Man, Ballet Woman,
Crocodile). Our input and output meshes are publicly available as supplemental material to
[Jacobson et al. 2013a].

Meshes like the Skeleton contain many slightly overlapping connected components. These
could be meshed independently and combined using boolean operations, but this complicates
implementation and will not work for inputs like SWAT Man, whose overlapping components
have open boundaries and non-manifold edges. For SWAT Man, we activate our optional con-
straints ensuring that all input facets are contained in the final tet mesh. This is necessary for
such applications as physically-based simulation requiring safe contact detection.

The Ant has minimal triangulation for the thin legs and antennae, which our method preserves.
This not only allows direct access to and assignment of boundary values, but enables efficient
storage as the input mesh and our output tet mesh share the same vertex set.

The Ballet Woman contains a very detailed mouth (see also Ballet Woman’s Head in the sup-

166

8.6 Experiments and results

Input Our method[Attene 10]

Figure 8.15: The ears of the Elephant Head overlap and flip inside-out (bright green) creating a negative
volume. The result of [Attene 2010] creates a watertight surface, but the tusks and eyes
are conspicuously missing. Our winding number identifies this region (w < 0), but our
segmentation removes the region creating a hole (actually topological handle, blue).

plemental video of [Jacobson et al. 2013a]). Our meshing preserves these features while still
correctly segmenting out the mouth cavity.

We report statistics in Table 8.1. Our timings were obtained on an iMac Intel Core i7 3.4GHz
computer with 16GB memory. Our implementation is serial except for computing the winding
number, which uses an OPENMP parallel for loop over the evaluation points. We tested the
performance of our hierarchical evaluation versus a naive one with two experiments. First, we
measured average computation time of a single evaluation in the bounding box of the Dino mesh
under increasing subdivision levels (see Figure 8.10). Next we considered 700 (target) models
of the SHREC dataset [Bronstein et al. 2010] (see Figure 8.11). For both experiments we av-
erage the computation time of 1000 random samples in the test shape’s bounding box. Both
experiments show that in general our hierarchical evaluation performs asymptotically better.

We stress tested our generalization of the winding number by considering how the function
responds to degenerating input. The Cat in Figure 8.14 has an open base, and its winding
number is a smooth (harmonic) field in ≈[0, 1]. We separate each triangle of the mesh and
slowly rotate it in an arbitrary direction, evaluating the effect on the winding number. The
winding number field maintains the image of cat until the triangles have rotated by π, when the
mesh as a whole clearly breaks our consistent orientation assumption.

We compare our method to first repairing the input as a surface using [Attene 2010] and meshing
the result (see Figure 8.15). The Elephant’s ear flips inside-outside making volume determina-
tion badly ill-posed there: our method deletes the region creating a topological handle. Attene’s
MESHFIX deletes the region and then fills the hole with a different topology, but other parts
of the mesh suffer: the tusks and eyes are also deleted. In Figure 8.17, [Attene 2010] fills the
holes in the Holey Cow with the same topology as our method, but deletes the entire tail, which
self-intersects its udder. Because our method avoids such drastic surface changes, we may com-
pute a volumetric texturing using [Takayama et al. 2008] that meets the original surface (see

167

8 Robust inside-outside segmentation via generalized winding numbers

Figure 8.16: Physically based, elasticity simulation of refined volumes computed with our method.

Input [Attene 10] Generalized winding number

Extracted volume (tail overlaps utters) Volumetric deformation

Figure 8.17: Left to right: Holey Cow with its tail intersecting its udder. [Attene 2010] fills the holes,
but deletes the tail. A slice through the winding number shows correct assignment of 0
outside, 1 inside the main part, and 2 inside the overlapping tail (red), inset. This may be
meshed as usual gluing the tail to the body. Or we may duplicate this doubly covered region
and glue it to either side. This allows the tail and its volume to be pulled out.

Figure 8.18). One may then simply render the original surface and only show the inner texture
when the Tree is cut.

In lieu of computing a volume discretization, many geometry processing tasks may be instead
conducted on the surface. For example, the self-intersections in the Beast might have previ-
ously discouraged the use of a volumetric deformation technique due to the manual cleanup
involved in preparing the model for tet meshing. Bending with surface-based technique reveals
shell-like collapses when compared to a volumetric technique using a our volume discretiza-
tion (see Figure 8.19). Some techniques—such as computing skinning weights automatically
with methods like the one described in Chapter 4—are designed specifically for volumes (see
Figure 8.20). Without our method, this algorithm has a limited set of inputs or requires tedious

168

8.7 Limitations and future work

Figure 8.18: The Tree contains many intersections and open boundaries (left). Our method is robust to
these, producing a compatible mesh for applying volumetric texturing (right).

Surface-based Volume-based

Figure 8.19: Self-intersections in the otherwise clean Beast prevent volume-meshing with previous
methods. Surface-based deformation is one option, but bending causes shell-like collapses
not present in a volume deformation enabled by our method.

user preparation of input (defeating its automation gains). State of the art physically-based elas-
ticity simulation techniques also require tetrahedral volume meshes. Our method accordingly
expands the domain of inputs for these methods (see Figures 8.16).

8.7 Limitations and future work

The winding number and our generalization rely heavily on the orientation of input facets.
Triangle soups with unknown or erroneous orientations would need further preprocessing (e.g.
with [Borodin et al. 2004]). Since a single facet has a drastically different effect on the total
winding number when its orientation agrees with its neighbors, it would be interesting to use
the notion of our generalized winding number to verify or correct triangle orientations.

The number of connected components in our output is not controlled even when manifoldness
is constrained. It would be interesting to extend the work of [Chen et al. 2011] to 3D, enabling
such topological constraints in our graphcut segmentation.

Many meshes contain sheet-like features not part of the main solid body, such as leaves on
a tree or cape on an action hero. Such features are typically two-sided and would require
special treatment to consider the thin solids they represent. Conversely the accessories or nearly
duplicated regions we do handle may also cause ambiguities. When duplicated surfaces nearly

169

8 Robust inside-outside segmentation via generalized winding numbers

Input triangle mesh Our output tet mesh

Automatic weights Novel poses of textured inputTextured input

Figure 8.20: Left to right: the Bikini Woman has many artifacts, as well as thin sheet-like accessories.
Their volumes are ambiguous, but our facet constraints ensure some trivial connection.
This enables automatic, volumetric skinning weight computation (see Chapters 4 & 5) on
a refinement of our output. Only the weights on the original vertices are needed to deform
the original textured input mesh.

enclose a concavity, the winding number increases and may cause the region to be marked as
inside (see Figure 8.21). The difference between inside and outside in these cases is a matter
of semantics. To alleviate this, such accessories could be tagged as non-participatory for the
winding number computation, but still constrained during our segmentation. Achieving such
tagging automatically is an interesting direction for future work in the accelerating field of
retrieving semantics from 3D shapes.

Our generalized winding number correctly identifies regions of overlap even in the presence of
surface artifacts such as holes (see Figure 8.17). This suggests the ability to construct volume
discretization that respect self-intersections of the original surface (rather than “correct” them).
We show a proof-of-concept of this idea, by duplicating the meshing inside the Holey Cow’s
overlapping tail (where w≈2) and gluing separately to the tail and body. The tail and its volume
may then be deformed in and out of the body. More complicated overlaps are far from trivial to
untangle and we continue to investigate this problem in our future work.

8.8 Conclusion

Generalizing the winding number to arbitrary triangle meshes proves to be a powerful and math-
ematically beautiful tool. The core of our method is simple to implement and our hierarchical
acceleration structure enables efficient evaluation on large models. The winding number’s har-
monic nature and implicitly defined, discontinuous boundary conditions make it ideal for guid-

170

8.8 Conclusion

1

0
½

-½

2
1½

(a) (b) (c)

Figure 8.21: Inside-outside of the Snake (a) becomes ambiguous when thin sheets are used to represent
accessories such as a ski-mask (b) or a muzzle (c). In (b) and (c) the winding number at the
yellow points are similar, but the semantic inside-outside classification is opposite.

ing our graphcut segmentation when input meshes contain self-intersections, open boundaries,
and non-manifold pieces. We hope that our algorithm’s success on previously unmeshable mod-
els will encourage volumetric processing of solid shapes throughout computer graphics.

171

8 Robust inside-outside segmentation via generalized winding numbers

Tree ∂ F: 1097, si: 386, cc: 32, nme: 0

Big SigCat ∂ F: 1020, si: 3442, cc: 65, nme: 344

Holey Cow ∂ F: 206, si: 83, cc: 1, nme: 0

Skeleton ∂ F: 0, si: 194, cc: 4095, nme: 0

Rhino ∂ F: 23, si: 2150, cc: 26, nme: 0

10 ½-½ 21½

Figure 8.22: Each row shows left to right: input model with connected components randomly colored,
self-intersections facets marked in red, open boundaries in dark red and non-manifold edges
in purple; slice through CDT visualizing winding number; surface of output mesh; hot-dog
slice view of output mesh.

172

8.8 Conclusion

Alien Space-object ∂ F: 0, si: 1686, cc: 32, nme: 0

Crocodile ∂ F: 0, si: 5236, cc: 65, nme: 0

Flying Bug ∂ F: 1200, si: 1731, cc: 25, nme: 0

Beast ∂ F: 0, si: 969, cc: 1, nme: 0

10 ½-½ 21½

Figure 8.23: Results continued.

173

8 Robust inside-outside segmentation via generalized winding numbers

Ant ∂ F: 152, si: 1578, cc: 62, nme: 1

Ballet Woman ∂ F: 1714, si: 9734, cc: 44, nme: 0

SWAT man ∂ F: 551, si: 2806, cc: 51, nme: 24

Ballet Woman’s Head ∂ F: 1146, si: 8660, cc: 44, nme: 0

10 ½-½ 21½

Figure 8.24: Results continued.

174

8.8 Conclusion

Phone ∂ F: 0, si: 1576, cc: 11, nme: 3

Bikini Woman ∂ F: 477, si: 472, cc: 11, nme: 24

Bear ∂ F: 320, si: 5572, cc: 37, nme: 0

Dog ∂ F: 56, si: 0, cc: 1, nme: 0

Frog ∂ F: 0, si: 316, cc: 3, nme: 0

10 ½-½ 21½

Figure 8.25: Results continued.

175

8 Robust inside-outside segmentation via generalized winding numbers

176

9
Conclusion

Our sequence of algorithms for real-time shape deformation climaxes in a system that can de-
form shapes using nonlinear elastic energy optimization at unprecedented rates (see Chapter 7).

Although our algorithms require a bit more machinery than, say, Phong shading, we argue
those Phong principles of Chapter 1 still apply. All of our deformation works are deemed
successful only because of their ability to create perceptually believable and visually pleasing
deformations. Although these claims are subjective (one could and should conduct a perceptual
user study to verify them), we derive our techniques from common place assumptions, e.g.
bones should deform rigidly and if a user moves a control to the left, the shape should not move
to the right.

As for simplicity, our required mathematics are not much more than that which is described
in Chapter 2. The most advanced subroutines necessary for reproduction are sparse Cholesky
decomposition and 3D constrained Delaunay tessellation. Both, thankfully, exist already in
robust, efficient libraries (e.g. [MATLAB 2012]).

By founding our work around linear blend skinning, we invariantly maintain real-time frame
rates through out our shape deformation techniques. Similarly, with each work we strive to
provide practical and expressive interface to our algorithms’ parameters. In fact, it is with these
interfaces in mind that we design our algorithms in the first place. Hence, human control and
expressiveness remains easy.

177

9 Conclusion

9.1 Recapitulation of core contributions

We began by establishing a continuous foundation for useful intrinsic, shape energies in Chap-
ter 3. This gave us reassurances when employing discretizations (e.g. of the Laplacian Energy)
in later chapters in terms of mesh independence and convergence. This is not only practi-
cally important for applications, but also convenient for conducting the research in subsequent
chapters: we can prototype on low-resolution discretization with confidence that our solutions
approximate continuous solutions and hence will agree with high-resolution solutions.

With this foundation, we examined how such energies can be employed to craft linear blend
skinning weight functions for real-time deformation. As we found, minimizers of these en-
ergies as employed previously for point and region handles (e.g. [Botsch and Kobbelt 2004,
Sorkine et al. 2004]) were not sufficient for two core reasons.

First, some tasks are better completed with alternative control structures such as rigid skeletons
and cages. Supporting all handle types and all combinations is important for providing the
user with the right tool for her task. Second, while these energies produce fair deformations or
surfaces, they do not produce quality weight functions, insofar as they do not simultaneously
satisfy a list of redeeming properties: smoothness, boundedness, monotonicity, locality.

We designed automatic weight functions that support all handle types (via appropriate bound-
ary conditions) and meet these properties by constrained optimization. This began with finding
biharmonic functions subject to box constraints which directly enforce boundedness and facili-
tate locality (Chapter 4), and culminated in a system that approximates solutions to a nonlinear,
nonconvex optimization promising monotonic weight functions (Chapter 5).

Our weight functions do not ensure that the resulting surface or displacements are biharmonic
functions, but rather they tell us that the blending is biharmonic (see Section 4.7). Comfortable
with this concept, we explored different blending schemes, more powerful then simple linear
blend skinning. In Chapter 6, we derived a new, nonlinear skinning formula which enables
stretching and twisting of skeleton bones. We achieved this by utilizing a second set of our
previously defined weight functions. Our automatic weight functions prove to be an important
tool in our research. We can quickly prototype such ideas for skinning, which would otherwise
require trained artists.

We further expanded the space of deformations possible with skinning, this time not by chang-
ing the underlying LBS formula but by enabling a simpler interface (Chapter 7). By defining
nonlinear, elastic energy optimization in the subspace of a given skinning rig, we may opti-
mize for all but a subset of the skinning transformations. In this way we met users’ high level
constraints, while ensuring a quality deformation of the shape itself. This reduced the effort
required to find new poses and define animations. With extra, procedurally generated weight
functions, we bolstered the LBS subspace into a space capable of achieving variational model-
ing results on par with full-resolution, nonlinear techniques, but orders of magnitude faster.

Finally, all this work in 3D remains of only academic interest without the ability to provide our
algorithms with suitable input. In 3D, we operate on volume discretizations, which are difficult
to obtain for typical shapes represented by triangle meshes with holes, non-manifold edges,
multiple components and self-intersections.

178

9.2 Publications

In Chapter 8, we designed a new confidence function by generalizing the winding number
for non-watertight models. Treating this function as a data-term, we used graphcut energy
optimization to segment a constrained Delaunay tesslation of the domain. Using a CDT ensures
exact interpolation of the input mesh. This makes integration our previous methods easier and
less prone to interpolation errors. Our generalized winding number function enjoys a number
of nice properties, stemming from the fact that it is harmonic. We were only able to prove this
fact by first noticing it empirically. Our meticulous study of polyharmonic functions made it
obvious that our generalized winding number just had to be harmonic: it was only a matter of
proving it.

9.2 Publications

The work contained in this thesis has lead to a number of scientific publications, appear-
ing in top-tier graphics journals (ACM Transactions on Graphics and Computer Graphics
Forum) and presented at top-tier graphics conferences (SIGGRAPH, SIGGRAPH Asia, and
ACM/Eurographics Symposium on Geometry Processing).

9.2.1 Journal publications

JACOBSON, A., KAVAN, L., AND SORKINE-HORNUNG, O. 2013. Robust inside-outside
segmentation using generalized winding numbers. ACM Trans. Graph., to appear.

JACOBSON, A., BARAN, I., POPOVIĆ, J., AND SORKINE-HORNUNG, O. 2013. Bounded
biharmonic weights for real-time deformation. Communications of ACM, to appear.

JACOBSON, A., BARAN, I., KAVAN, L., POPOVIĆ, J., AND SORKINE, O. 2012. Fast auto-
matic skinning transformations. ACM Trans. Graph. 31, 4.

JACOBSON, A., WEINKAUF, T., AND SORKINE, O. 2012. Smooth shape-aware functions with
controlled extrema. In Proc. SGP.

JACOBSON, A., AND SORKINE, O. 2011. Stretchable and twistable bones for skeletal shape
deformation. ACM Trans. Graph. 30, 6, 165:1–165:8.

JACOBSON, A., BARAN, I., POPOVIĆ, J., AND SORKINE, O. 2011. Bounded biharmonic
weights for real-time deformation. ACM Trans. Graph. 30, 4.

JACOBSON, A., TOSUN, E., SORKINE, O., AND ZORIN, D. 2010. Mixed finite elements for
variational surface modeling. In Proc. SGP.

9.2.2 Technical reports

JACOBSON, A. 2012. Bijective mappings with generalized barycentric coordinates: a coun-
terexample. Tech. Rep. 780, ETH Zurich.

JACOBSON, A., AND SORKINE, O. 2012. A cotangent Laplacian for images as surfaces. Tech.
Rep. 757, ETH Zurich.

179

http://www.google.com/search?q=Robust+inside-outside+segmentation+using+generalized+winding+numbers
http://www.google.com/search?q=Robust+inside-outside+segmentation+using+generalized+winding+numbers
http://www.google.com/search?q=Bounded+biharmonic+weights+for+real-time+deformation
http://www.google.com/search?q=Bounded+biharmonic+weights+for+real-time+deformation
http://www.google.com/search?q=Fast+automatic+skinning+transformations
http://www.google.com/search?q=Fast+automatic+skinning+transformations
http://www.google.com/search?q=Smooth+shape-aware+functions+with+controlled+extrema
http://www.google.com/search?q=Smooth+shape-aware+functions+with+controlled+extrema
http://www.google.com/search?q=Stretchable+and+twistable+bones+for+skeletal+shape+deformation
http://www.google.com/search?q=Stretchable+and+twistable+bones+for+skeletal+shape+deformation
http://www.google.com/search?q=Bounded+biharmonic+weights+for+real-time+deformation
http://www.google.com/search?q=Bounded+biharmonic+weights+for+real-time+deformation
http://www.google.com/search?q=Mixed+finite+elements+for+variational+surface+modeling
http://www.google.com/search?q=Mixed+finite+elements+for+variational+surface+modeling
http://www.google.com/search?q=Bijective+mappings+with+generalized+barycentric+coordinates:+a+counterexample
http://www.google.com/search?q=Bijective+mappings+with+generalized+barycentric+coordinates:+a+counterexample
http://www.google.com/search?q=A+cotangent+Laplacian+for+images+as+surfaces

9.3 Reflections

This thesis represents over three years of research on real-time shape deformation. This has
resulted in a wealth of code and a healthy repertoire of techniques. First hand implementations
of and experimentation with dozens of previous techniques has been incalculably valuable to
progressing the research and culminating in the contributions of this thesis. These experiments
have cultivated a perspective which can hopefully assist others who wish to reimplement this
work or begin similar explorations into the exciting field of real-time shape deformation.

Constrained optimization is a powerful hammer. Learning to use modern solvers and
understanding—at some reasonable level—how they work has been essential to this thesis.
Applying the variational principle to our problems results in energy optimization, so it is pru-
dent to know what is currently possible and what is not. For example, Chapters 4 and 5 depend
heavily on the availability of efficient, large sparse quadratic programming solvers. Knowing
that such a solver exists guides our decision in Chapter 5 to convert the topological constraints
of the difficult, ideal problem to the linear inequality constraints of our more practical problem.
It is also important to embrace the variational principle as a means to verify results. Two impor-
tant questions to ask are: “Is the energy lower?” and “Has the optimization converged?” If the
energy is lower, but the solution looks worse, then perhaps the energy is wrong. This may not
always mean that a better energy exists in plain sight. In the end, we are always only approxi-
mating that ill-posed energy which measures “user surprise”. Evaluating whether convergence
has been obtained is critical, not just for ensuring the best possible results but also for verifying
that the solver is doing its job. We were long confused by the lack of smoothness and locality
when prototyping our weight functions in Chapter 4. Eventually we realized that convergence
was not being obtained with the solver we were using at the time [Byrd et al. 1995]. Noticing
this led to switching solvers (to MOSEK or the active set technique in Section 2.2.3) and only
then could we properly experiment to verify the properties of our new weight functions.

All of the methods in this thesis were decidedly implemented without an advanced (compli-
cated) mesh data-structure (e.g. half-edge data structure). Instead a mesh is nearly always rep-
resented simply as a list of vertex positions V ∈ Rn×3 and a list of triangle or tetrahedra indices
F or T. This not only matches our linear algebra manipulations (e.g. Chapter 7) and facili-
tates working with the standard computer graphics pipeline, but also places focus on globally
defined, intrinsic quantities (e.g. Laplacian energy) rather than local ones (e.g. sharp features).
This not coincidentally mirrors the focus of this thesis. In choosing a mesh data structure for
research prototyping, we have found that one should justify any inconvenience or complication.
For example, to compute the cotangent Laplacian on an irregular mesh, a per-triangle definition
suffices with a (V,F) storage of a mesh, whereas a loop over the neighborhood rings nested in-
side a loop over each vertex in a half-edge data structure is unnecessarily complicated and more
prone to border-case errors (not to mention it strays farther from our FEM roots in Section 2.1).
Further, it has been much easier to level up an implementation when necessary—from (V,F)
to CGAL or OPENMESH—than to level down. We have embraced this concept and built our
open source prototyping library, LIBIGL, in MATLAB and C++ [Jacobson et al. 2013b].

Throughout our projects, we strive to maintain dimension invariance (at least up to R2 and
R3). This not only increases the applicability and scope of each of our contributions, but also
provides a straightforward path for research. In R2, shapes may be quickly designed to test a

180

9.3 Reflections

theory at hand (see Section 9.4.2). Making the leap to R3 is not always trivial: rotations are no
longer commutative, curvatures are more complicated, volume-meshing is more involved, etc.
However, most of our core concepts are directly analogous and we see immediate benefits by
first experimenting in R2.

9.3.1 Lingering, unsolved problems

Our linear blend skinning subspace in Chapter 7 regularizes the as-rigid-as-possible energy op-
timization into producing smooth deformations. Otherwise the full-resolution solution would
show derivative discontinuities at fixed constraints (see Figure 7.8) and internal singularities in
the rotation field (see Figure 7.7). Our subspace inherits its smoothness from our weight func-
tions, which are defined according to energies corresponding to sufficiently high-order PDEs.
Directly combining high-order smoothness with nonlinear elastic energy optimization at the
full, unreduced level remains a challenging problem. Even standing state-of-the-art full resolu-
tion solutions (e.g. [Botsch et al. 2006a, Botsch et al. 2007b]) show derivative discontinuities,
kinks, near constrained handles. One promising direction is to bridge the gap between sparse
subspace deformation and intrinsic full resolution deformation using smooth intrinsic bases
[Hildebrandt et al. 2011].

Isolated point constraints are perhaps the most primitive and most intuitive interface for mod-
eling, but also the least rigorously defined. To study point constraints rigorously would be to
reexamine their fundamental motivation. Is a point constraint really just a small region con-
straint? How small? If it is infinitesimal then how can we measure its influence properly?

In our experiments dealing with bone handles of an internal skeletons, we have noticed that the
precise placement of joints (where bones meet) has a drastic impact on the resulting deforma-
tion [Kavan and Sorkine 2012]. It not only affects our automatic weight computation, but also
determines the relative center of rotation during posing. This means it affects not just the defor-
mation quality, but the effectiveness of the interface itself. This sensitivity could be alleviated
by assisting the user’s placement or repositioning of handles in their rest state.

In our work, we ignore collisions (a.k.a. interference). Ensuring local and global injectivity
while meeting user constraints is an important and largely still unsolved problem in modeling
[Harmon et al. 2011]. Treating collisions would imply new interpretations of intrinsic and se-
mantic information. However, the discontinuous nature of collision response makes it difficult
to deal with, not to mention while maintaining real-time performance.

In order to achieve real-time performance in our current work, we push as much computation as
we can into precomputation before the deformation session starts. Much of our precomputation
efforts are spent reducing the full resolution deformation problem to a smaller subspace. For
example, our smooth weight functions remove unnecessary high-frequency deformations result-
ing in a more appropriate low-frequency subspace of deformations from a sparse set of handles.
The very problem statement of handle-based deformation presumes such a low-frequency solu-
tion, but our precomputation ignores this. Much effort is spent computing weights via energies
defined on a fine resolution discretization of the domain, but we know a priori that the solution
will be considerably lower frequency. For example, the minute body hairs on a character will
not significantly effect the weight function attached to the forearm bone. This implies that we

181

Figure 9.1: Our physical interface prototype can be constructed on the fly and used to control skeletons
of arbitrary topology.

could get away with much coarser representations of our input geometry for precomputation
tasks. Doing so would require care to ensure intrinsic information like a shape’s topology and
geodesic distances are respected. We would need to balance approximation power with savings
from a coarser representation.

The more we can improve precomputation performance, the more we can push these subroutines
into the interactive experience. This opens new avenues for interactive weight definition, where
the user adjusts handle positions and sees changes to deformations in real-time; or for on-the-fly
subspace adjustment for collision response in simulation (Section 7.7).

9.4 Future work

The story of real-time shape deformation does not end with this thesis, but rather begins a new
chapter. We can continue to push the quality and control achievable in real-time. We are now
interested in measuring quality in terms of a deformation’s incorporation of semantics and in
exploring novel interfaces for controlling our real-time deformation systems.

9.4.1 Physical interfaces

We are deforming 3D shapes at near haptic rates. Yet we mostly control these deformations
using a 2D mouse and our feedback is via a 2D monoscopic display. Even in a reduced skeleton-
based deformation system the number of degrees of freedom is on the order of 100. Chapter 7
addresses this for intuitive automatic assignment, but if we want full control then we need a new
interface with an equitable amount of degrees of freedom.

We are currently working on designing a device with such degrees of freedom. Leveraging
recent advances in 3D printing and electronic sensing, we have designed a set of mechanical
joints which continuously report their configuration (see Figure 9.1). Each joint’s 3 rotational
degrees of freedom may then be mapped (at > 120 Hz) to the rotational degrees of freedom in
a virtual skinning skeleton controlling a character on screen. The joints may be rearranged into
any tree topology: the same parts can build a human, spider, or hand.

182

9.4 Future work

9.4.2 Semantics

Our weight functions incorporate semantics implied by the user’s placement of control handles
(e.g. skeletons tell us which parts should be rigid), but this is still indirect. In future work, we
would like to investigate what are the best interfaces for the user to directly indicated semantics
with minimal effort. We are inspired by the success of Daniel Sýkora and colleagues’ work on
designing interfaces for manipulating 2D cartoons [Sýkora et al. 2005, Sýkora et al. 2009].

Another interesting question is whether semantics useful for real-time shape deformation can
be derived automatically. Even in the four years writing this thesis, we have witnessed
an explosion in the amount of 3D data. Cutting-edge works by Guibas and colleagues
(e.g. [Ovsjanikov et al. 2011, Huang et al. 2012] and Cohen-Or, Zhang, and colleagues (e.g.
[Sidi et al. 2011, Wang et al. 2012]) have studied how co-analysis of large sets of shapes may
be used effectively for tasks like classification, exploration, correspondence and segmentation.
We would like to point these high-powered techniques at improving real-time shape deforma-
tion quality. Perhaps we can leverage the robust volumes of Chapter 8.

183

184

REFERENCES

References

ALLIEZ, P., COHEN-STEINER, D., YVINEC, M., AND DESBRUN, M. 2005. Variational
tetrahedral meshing. ACM Trans. Graph. 24, 3.

ALLIEZ, P., COHEN-STEINER, D., TONG, Y., AND DESBRUN, M. 2007. Voronoi-based
variational reconstruction of unoriented point sets. In Proc. SGP.

AMARA, M., AND DABAGHI, F. 2001. An optimal C0 finite element algorithm for the 2D
biharmonic problem: theoretical analysis and numerical results. Numer. Math. 90, 1, 19–46.

AN, S. S., KIM, T., AND JAMES, D. L. 2008. Optimizing cubature for efficient integration of
subspace deformations. ACM Trans. Graph. 27, 165:1–165:10.

ANDERSEN, E. D., AND ANDERSEN, K. D. 2000. The MOSEK interior point optimizer for lin-
ear programming: an implementation of the homogeneous algorithm. In High Performance
Optimization. Kluwer Academic Publishers, 197–232.

ANGUELOV, D., SRINIVASAN, P., KOLLER, D., THRUN, S., RODGERS, J., AND DAVIS, J.
2005. SCAPE: shape completion and animation of people. ACM Trans. Graph. 24, 3.

ATTENE, M., FERRI, M., AND GIORGI, D. 2007. Combinatorial 3-Manifolds from Sets of
Tetrahedra. In Proc. CW.

ATTENE, M. 2010. A lightweight approach to repairing digitized polygon meshes. The Visual
Computer 26, 11, 1393–1406.

AU, O. K.-C., TAI, C.-L., LIU, L., AND FU, H. 2006. Dual Laplacian editing for meshes.
IEEE TVCG 12, 3, 386–395.

AU, O. K.-C., FU, H., TAI, C.-L., AND COHEN-OR, D. 2007. Handle-aware isolines for
scalable shape editing. ACM Trans. Graph. 26, 3, 83.

BADLER, N. I., AND SMOLIAR, S. W. 1979. Digital representations of human movement.
ACM Comput. Surv. 11, 1, 19–38.

BARAN, I., AND POPOVIĆ, J. 2007. Automatic rigging and animation of 3D characters. ACM
Trans. Graph. 26, 3, 72:1–72:8.

BARBIČ, J., AND JAMES, D. L. 2005. Real-time subspace integration for St. Venant-Kirchhoff
deformable models. ACM Trans. Graph. 24, 3, 982–990.

BARTH, T. J. 1992. Aspects of unstructured grids and finite-volume solvers for the euler
and navier-stokes equations. In AGARD, Special Course on Unstructured Grid Methods for
Advection Dominated Flows, vol. 1.

BEN-CHEN, M., WEBER, O., AND GOTSMAN, C. 2009. Variational harmonic maps for space
deformation. ACM Trans. Graph. 28, 3, 34:1–34:11.

BISCHOFF, S., AND KOBBELT, L. 2005. Structure preserving CAD model repair. Comput.
Graph. Forum 24, 3, 527–536.

BISCHOFF, S., PAVIC, D., AND KOBBELT, L. 2005. Automatic restoration of polygon models.
ACM Trans. Graph. 24, 4.

185

http://www.google.com/search?q=Variational+tetrahedral+meshing
http://www.google.com/search?q=Variational+tetrahedral+meshing
http://www.google.com/search?q=Voronoi-based+variational+reconstruction+of+unoriented+point+sets
http://www.google.com/search?q=Voronoi-based+variational+reconstruction+of+unoriented+point+sets
http://www.google.com/search?q=An+optimal+C^0+finite+element+algorithm+for+the+2D+biharmonic+problem:+theoretical+analysis+and+numerical+results
http://www.google.com/search?q=An+optimal+C^0+finite+element+algorithm+for+the+2D+biharmonic+problem:+theoretical+analysis+and+numerical+results
http://www.google.com/search?q=Optimizing+cubature+for+efficient+integration+of+subspace+deformations
http://www.google.com/search?q=Optimizing+cubature+for+efficient+integration+of+subspace+deformations
http://www.google.com/search?q=The+textscmosek+interior+point+optimizer+for+linear+programming:+an+implementation+of+the+homogeneous+algorithm
http://www.google.com/search?q=The+textscmosek+interior+point+optimizer+for+linear+programming:+an+implementation+of+the+homogeneous+algorithm
http://www.google.com/search?q=SCAPE:+shape+completion+and+animation+of+people
http://www.google.com/search?q=Combinatorial+3-Manifolds+from+Sets+of+Tetrahedra
http://www.google.com/search?q=Combinatorial+3-Manifolds+from+Sets+of+Tetrahedra
http://www.google.com/search?q=A+lightweight+approach+to+repairing+digitized+polygon+meshes
http://www.google.com/search?q=Dual+Laplacian+editing+for+meshes
http://www.google.com/search?q=Handle-aware+isolines+for+scalable+shape+editing
http://www.google.com/search?q=Handle-aware+isolines+for+scalable+shape+editing
http://www.google.com/search?q=Digital+representations+of+human+movement
http://www.google.com/search?q=Automatic+rigging+and+animation+of+3D+characters
http://www.google.com/search?q=Real-time+subspace+integration+for+St.+Venant-Kirchhoff+deformable+models
http://www.google.com/search?q=Real-time+subspace+integration+for+St.+Venant-Kirchhoff+deformable+models
http://www.google.com/search?q=Aspects+of+unstructured+grids+and+finite-volume+solvers+for+the+euler+and+navier-stokes+equations
http://www.google.com/search?q=Aspects+of+unstructured+grids+and+finite-volume+solvers+for+the+euler+and+navier-stokes+equations
http://www.google.com/search?q=Variational+harmonic+maps+for+space+deformation
http://www.google.com/search?q=Variational+harmonic+maps+for+space+deformation
http://www.google.com/search?q=Structure+preserving+CAD+model+repair
http://www.google.com/search?q=Automatic+restoration+of+polygon+models

REFERENCES

BLAIR, P. 1994. Cartoon Animation. Walter Foster Publishing, Inc., Irvine, CA, USA.

BLOOR, M. I. G., AND WILSON, M. J. 1990. Using partial differential equations to generate
free-form surfaces. Computer Aided Design 22, 4, 202–212.

BORODIN, P., ZACHMANN, G., AND KLEIN, R. 2004. Consistent Normal Orientation for
Polygonal Meshes. In Proc. CGI.

BOROSÁN, P., HOWARD, R., ZHANG, S., AND NEALEN, A. 2010. Hybrid Mesh Editing.
Eurographics Association, Norrköping, Sweden, H. P. A. Lensch and S. Seipel, Eds., 41–44.

BOTSCH, M., AND KOBBELT, L. 2004. An intuitive framework for real-time freeform model-
ing. ACM Trans. Graph. 23, 3, 630–634.

BOTSCH, M., AND KOBBELT, L. 2005. Real-time shape editing using radial basis functions.
Comput. Graph. Forum 24, 3, 611–621.

BOTSCH, M., AND SORKINE, O. 2008. On linear variational surface deformation methods.
IEEE Transactions on Visualization and Computer Graphics 14, 1, 213–230.

BOTSCH, M., PAULY, M., GROSS, M., AND KOBBELT, L. 2006. PriMo: Coupled prisms for
intuitive surface modeling. In Proc. SGP, 11–20.

BOTSCH, M., PAULY, M., RÖSSL, C., BISCHOFF, S., AND KOBBELT, L. 2006. Geometric
modeling based on triangle meshes. In Eurographics 2006 Course Notes.

BOTSCH, M., PAULY, M., KOBBELT, L., ALLIEZ, P., LÉVY, B., BISCHOFF, S., AND RÖSSL,
C. 2007. Geometric modeling based on polygonal meshes. In ACM SIGGRAPH courses.

BOTSCH, M., PAULY, M., WICKE, M., AND GROSS, M. 2007. Adaptive space deformations
based on rigid cells. Comput. Graph. Forum 26, 3, 339–347.

BOTSCH, M., PAULY, M., KOBBELT, L., ALLIEZ, P., AND LEVY, B. 2008. Geometric
modeling based on polygonal meshes. In Eurographics 2008 Courses.

BOTSCH, M., KOBBELT, L., PAULY, M., ALLIEZ, P., AND LÉVY, B. 2010. Polygon Mesh
Processing. AK Peters.

BOTSCH, M. 2005. High Quality Surface Generation and Efficient Multiresolution Editing
Based on Triangle Meshes. Shaker Verlag Aachen. PhD Thesis, RWTH Aachen.

BOTSCH, M. 2011. Smoothing & fairing. In Graduate School at SGP.

BOUAZIZ, S., DEUSS, M., SCHWARTZBURG, Y., WEISE, T., AND PAULY, M. 2012. Shape-
up: Shaping discrete geometry with projections. Comput. Graph. Forum 31, 5, 1657–1667.

BOYKOV, Y., AND FUNKA-LEA, G. 2006. Graph cuts and efficient nd image segmentation.
IJCV 70, 2.

BRAESS, D. 2002. Finite Elements: Theory, fast solvers and applications in solid mechanics,
2nd edn, vol. 13.

BRAMBLE, J., AND FALK, R. 1985. A mixed-Lagrange multiplier finite element method for
the polyharmonic equation. Mathematical Modelling and Numerical Analysis 19, 4.

BRAND, M., AND CHEN, D. 2011. Parallel quadratic programming for image processing. In

186

http://www.google.com/search?q=Using+partial+differential+equations+to+generate+free-form+surfaces
http://www.google.com/search?q=Using+partial+differential+equations+to+generate+free-form+surfaces
http://www.google.com/search?q=Consistent+Normal+Orientation+for+Polygonal+Meshes
http://www.google.com/search?q=Consistent+Normal+Orientation+for+Polygonal+Meshes
http://www.google.com/search?q=Hybrid+Mesh+Editing
http://www.google.com/search?q=An+intuitive+framework+for+real-time+freeform+modeling
http://www.google.com/search?q=An+intuitive+framework+for+real-time+freeform+modeling
http://www.google.com/search?q=Real-time+shape+editing+using+radial+basis+functions
http://www.google.com/search?q=On+linear+variational+surface+deformation+methods
http://www.google.com/search?q=PriMo:+Coupled+prisms+for+intuitive+surface+modeling
http://www.google.com/search?q=PriMo:+Coupled+prisms+for+intuitive+surface+modeling
http://www.google.com/search?q=Geometric+modeling+based+on+triangle+meshes
http://www.google.com/search?q=Geometric+modeling+based+on+triangle+meshes
http://www.google.com/search?q=Geometric+modeling+based+on+polygonal+meshes
http://www.google.com/search?q=Adaptive+space+deformations+based+on+rigid+cells
http://www.google.com/search?q=Adaptive+space+deformations+based+on+rigid+cells
http://www.google.com/search?q=Geometric+modeling+based+on+polygonal+meshes
http://www.google.com/search?q=Geometric+modeling+based+on+polygonal+meshes
http://www.google.com/search?q=Smoothing+&+fairing
http://www.google.com/search?q=Shape-up:+Shaping+discrete+geometry+with+projections
http://www.google.com/search?q=Shape-up:+Shaping+discrete+geometry+with+projections
http://www.google.com/search?q=Graph+cuts+and+efficient+nd+image+segmentation
http://www.google.com/search?q=A+mixed-Lagrange+multiplier+finite+element+method+for+the+polyharmonic+equation
http://www.google.com/search?q=A+mixed-Lagrange+multiplier+finite+element+method+for+the+polyharmonic+equation
http://www.google.com/search?q=Parallel+quadratic+programming+for+image+processing

REFERENCES

Proc. ICIP.

BREMER, P.-T., EDELSBRUNNER, H., HAMANN, B., AND PASCUCCI, V. 2004. A topological
hierarchy for functions on triangulated surfaces. IEEE TVCG 10, 4, 385 – 396.

BREZZI, F., AND FORTIN, M. 1991. Mixed and hybrid finite element methods, volume 15 of
Springer Series in Computational Mathematics. Springer-Verlag, New York 2, 5, 2.

BRIDSON, R., TERAN, J., MOLINO, N., AND FEDKIW, R. 2005. Adaptive physics based
tetrahedral mesh generation using level sets. Engineering with Computers 21, 1, 2–18.

BRONSTEIN, A. M., BRONSTEIN, M. M., CASTELLANI, U., FALCIDIENO, B., FUSIELLO,
A., GODIL, A., GUIBAS, L. J., KOKKINOS, I., LIAN, Z., OVSJANIKOV, M., PATANÉ, G.,
SPAGNUOLO, M., AND TOLDO, R. 2010. SHREC 2010: robust large-scale shape retrieval
benchmark. In 3DOR, 71–78.

BYRD, R. H., LU, P., NOCEDAL, J., AND ZHU, C. 1995. A limited memory algorithm for
bound constrained optimization. SIAM J. Sci. Comput. 16, 5, 1190–1208.

BYRD, R. H., NOCEDAL, J., AND WALTZ, R. A. 2006. Knitro: An integrated package for
nonlinear optimization. In Large Scale Nonlinear Optimization, Springer Verlag, 35–59.

CAMPEN, M., AND KOBBELT, L. 2010. Exact and Robust (Self-)Intersections for Polygonal
Meshes. Comput. Graph. Forum 29, 2.

CAMPEN, M., ATTENE, M., AND KOBBELT, L. 2012. A Practical Guide to Polygon Mesh
Repairing. Eurographics Tutorial.

CARR, J., BEATSON, R., CHERRIE, J., MITCHELL, T., FRIGHT, W., MCCALLUM, B., AND

EVANS, T. 2001. Reconstruction and representation of 3D objects with radial basis functions.
In Proc. ACM SIGGRAPH, 67–76.

CARR, J. C., BEATSON, R. K., MCCALLUM, B. C., FRIGHT, W. R., MCLENNAN, T. J.,
AND MITCHELL, T. J. 2003. Smooth surface reconstruction from noisy range data. In Proc.
ACM GRAPHITE, 119–127.

CARR, H., SNOEYINK, J., AND VAN DE PANNE, M. 2004. Simplifying flexible isosurfaces
using local geometric measures. In Proc. Visualization, 497–504.

CELNIKER, G., AND GOSSARD, D. 1991. Deformable curve and surface finite-elements for
free-form shape design. In Proc. SIGGRAPH, 257–266.

CGAL, Computational Geometry Algorithms Library. http://www.cgal.org.

CHAO, I., PINKALL, U., SANAN, P., AND SCHRÖDER, P. 2010. A simple geometric model
for elastic deformations. ACM Trans. Graph. 29, 4 (July), 38:1–38:6.

CHAR, B., GEDDES, K., AND GONNET, G. 1983. The Maple symbolic computation system.
SIGSAM 17, 3–4, 31–42.

CHEN, C., FREEDMAN, D., AND LAMPERT, C. 2011. Enforcing topological constraints in
random field image segmentation. In Proc. CVPR.

CIARLET, P. G., AND RAVIART, P.-A. 1974. A mixed finite element method for the biharmonic
equation. In Mathematical aspects of finite elements in partial differential equations. 125–

187

http://www.google.com/search?q=A+topological+hierarchy+for+functions+on+triangulated+surfaces
http://www.google.com/search?q=A+topological+hierarchy+for+functions+on+triangulated+surfaces
http://www.google.com/search?q=Mixed+and+hybrid+finite+element+methods,+volume+15+of+Springer+Series+in+Computational+Mathematics
http://www.google.com/search?q=Mixed+and+hybrid+finite+element+methods,+volume+15+of+Springer+Series+in+Computational+Mathematics
http://www.google.com/search?q=Adaptive+physics+based+tetrahedral+mesh+generation+using+level+sets
http://www.google.com/search?q=Adaptive+physics+based+tetrahedral+mesh+generation+using+level+sets
http://www.google.com/search?q=SHREC+2010:+robust+large-scale+shape+retrieval+benchmark
http://www.google.com/search?q=SHREC+2010:+robust+large-scale+shape+retrieval+benchmark
http://www.google.com/search?q=A+limited+memory+algorithm+for+bound+constrained+optimization
http://www.google.com/search?q=A+limited+memory+algorithm+for+bound+constrained+optimization
http://www.google.com/search?q=Knitro:+An+integrated+package+for+nonlinear+optimization
http://www.google.com/search?q=Knitro:+An+integrated+package+for+nonlinear+optimization
http://www.google.com/search?q=Exact+and+Robust+mbox(Self-)Intersections+for+Polygonal+Meshes
http://www.google.com/search?q=Exact+and+Robust+mbox(Self-)Intersections+for+Polygonal+Meshes
http://www.google.com/search?q=A+Practical+Guide+to+Polygon+Mesh+Repairing
http://www.google.com/search?q=A+Practical+Guide+to+Polygon+Mesh+Repairing
http://www.google.com/search?q=Reconstruction+and+representation+of+3D+objects+with+radial+basis+functions
http://www.google.com/search?q=Smooth+surface+reconstruction+from+noisy+range+data
http://www.google.com/search?q=Simplifying+flexible+isosurfaces+using+local+geometric+measures
http://www.google.com/search?q=Simplifying+flexible+isosurfaces+using+local+geometric+measures
http://www.google.com/search?q=Deformable+curve+and+surface+finite-elements+for+free-form+shape+design
http://www.google.com/search?q=Deformable+curve+and+surface+finite-elements+for+free-form+shape+design
http://www.google.com/search?q=textscCgal,+Computational+Geometry+Algorithms+Library
http://www.google.com/search?q=A+simple+geometric+model+for+elastic+deformations
http://www.google.com/search?q=A+simple+geometric+model+for+elastic+deformations
http://www.google.com/search?q=The+Maple+symbolic+computation+system
http://www.google.com/search?q=Enforcing+topological+constraints+in+random+field+image+segmentation
http://www.google.com/search?q=Enforcing+topological+constraints+in+random+field+image+segmentation
http://www.google.com/search?q=A+mixed+finite+element+method+for+the+biharmonic+equation
http://www.google.com/search?q=A+mixed+finite+element+method+for+the+biharmonic+equation

REFERENCES

145. Publication No. 33.

CIARLET, P. 1978. The finite element method for elliptic problems. North-Holland.

CLARENZ, U., DIEWALD, U., DZIUK, G., RUMPF, M., AND RUSU, R. 2004. A finite
element method for surface restoration with smooth boundary conditions. Comput. Aided
Geom. Design 21, 5, 427–445.

CRANE, K., WEISCHEDEL, C., AND WARDETZKY, M. 2012. Geodesics in heat. ACM Trans.
Graph., Conditionally accepted.

CRANE, K. 2012. private communication.

DAVIS, J., MARSCHNER, S. R., GARR, M., AND LEVOY, M. 2002. Filling holes in complex
surfaces using volumetric diffusion. In 3DPVT, 428–438.

DAVIS, T. A. 2004. UMFPACK V4.3—an unsymmetric-pattern multifrontal method. ACM
Trans. Math. Softw. 30, 2, 196–199.

DECKELNICK, K., AND DZIUK, G. 2006. Error analysis of a finite element method for the
Willmore flow of graphs. Interfaces and free boundaries 8, 1, 21.

DER, K. G., SUMNER, R. W., AND POPOVIĆ, J. 2006. Inverse kinematics for reduced
deformable models. ACM Trans. Graph. 25, 3, 1174–1179.

DEROSE, A. D. 1985. Geometric Continuity: A Parameterization Independent Measure of.
PhD thesis, University of California at Berkeley.

DEY, T. K., AND GOSWAMI, S. 2003. Tight cocone: a water-tight surface reconstructor. In
Proc. SM.

DO CARMO, M. P. 1976. Differential Geometry of Curves and Surfaces. Prentice-Hall.

DUFF, I. S. 2004. Ma57—a code for the solution of sparse symmetric definite and indefinite
systems. ACM Trans. Math. Softw. 30, 2.

DZIUK, G. 1988. Finite elements for the Beltrami operator on arbitrary surfaces. Partial
differential equations and calculus of variations, 142–155.

DZIUK, G. 1990. An algorithm for evolutionary surfaces. Numerische Mathematik 58, 1,
603–611.

EDELSBRUNNER, H., LETSCHER, D., AND ZOMORODIAN, A. 2002. Topological persistence
and simplification. DCG 28, 4, 511 – 533.

FALK, R. 1978. Approximation of the biharmonic equation by a mixed finite element method.
SIAM Journal on Numerical Analysis 15, 3, 556–567.

FAURE, F., GILLES, B., BOUSQUET, G., AND PAI, D. K. 2011. Sparse meshless models of
complex deformable solids. ACM Trans. Graph. 30 (August), 73:1–73:10.

FELIPPA, C. A. 2004. Introduction to Finite Element Methods. College of Engineering,
University of Colorado.

FINCH, M., SNYDER, J., AND HOPPE, H. 2011. Freeform vector graphics with controlled
thin-plate splines. ACM Trans. Graph. 30, 6, 166:1–166:10.

188

http://www.google.com/search?q=A+finite+element+method+for+surface+restoration+with+smooth+boundary+conditions
http://www.google.com/search?q=A+finite+element+method+for+surface+restoration+with+smooth+boundary+conditions
http://www.google.com/search?q=Geodesics+in+heat
http://www.google.com/search?q=Filling+holes+in+complex+surfaces+using+volumetric+diffusion
http://www.google.com/search?q=Filling+holes+in+complex+surfaces+using+volumetric+diffusion
http://www.google.com/search?q=UMFPACK+V4.3---an+unsymmetric-pattern+multifrontal+method
http://www.google.com/search?q=Error+analysis+of+a+finite+element+method+for+the+Willmore+flow+of+graphs
http://www.google.com/search?q=Error+analysis+of+a+finite+element+method+for+the+Willmore+flow+of+graphs
http://www.google.com/search?q=Inverse+kinematics+for+reduced+deformable+models
http://www.google.com/search?q=Inverse+kinematics+for+reduced+deformable+models
http://www.google.com/search?q=Tight+cocone:+a+water-tight+surface+reconstructor
http://www.google.com/search?q=Ma57---a+code+for+the+solution+of+sparse+symmetric+definite+and+indefinite+systems
http://www.google.com/search?q=Ma57---a+code+for+the+solution+of+sparse+symmetric+definite+and+indefinite+systems
http://www.google.com/search?q=Finite+elements+for+the+Beltrami+operator+on+arbitrary+surfaces
http://www.google.com/search?q=An+algorithm+for+evolutionary+surfaces
http://www.google.com/search?q=Topological+persistence+and+simplification
http://www.google.com/search?q=Topological+persistence+and+simplification
http://www.google.com/search?q=Approximation+of+the+biharmonic+equation+by+a+mixed+finite+element+method
http://www.google.com/search?q=Sparse+meshless+models+of+complex+deformable+solids
http://www.google.com/search?q=Sparse+meshless+models+of+complex+deformable+solids
http://www.google.com/search?q=Freeform+vector+graphics+with+controlled+thin-plate+splines
http://www.google.com/search?q=Freeform+vector+graphics+with+controlled+thin-plate+splines

REFERENCES

FLEISHMANN, P., KOSIK, R., HAINDL, B., AND SELBERHERR, S. 1999. Simple mesh exam-
ples to illustrate specific finite element mesh requirements. In 8th Int. Meshing Roundtable.

FLOATER, M. S. 2003. Mean value coordinates. Computer-Aided Geometric Design 20, 1,
19–27.

FORMAN, R. 1998. Morse theory for cell-complexes. Adv. in Math. 134, 1, 90–145.

FORSTMANN, S., AND OHYA, J. 2006. Fast skeletal animation by skinned arc-spline based
deformation. In Proc. Eurographics, short papers volume.

FORSTMANN, S., OHYA, J., KROHN-GRIMBERGHE, A., AND MCDOUGALL, R. 2007. De-
formation styles for spline-based skeletal animation. In Proc. SCA, 141–150.

FRÖHLICH, S., AND BOTSCH, M. 2011. Example-driven deformations based on discrete
shells. Comput. Graph. Forum 30, 8, 2246–2257.

GEORGE, P. L., HECHT, F., AND SALTEL, E. 1990. Automatic 3d mesh generation with
prescribed meshed boundaries. IEEE Transactions on Magnetics 26, 2, 771–774.

GEORGIEV, T. 2004. Photoshop healing brush: a tool for seamless cloning. In Proc. ECCV
ACV Workshop, 1–8.

GEUZAINE, C., AND REMACLE, J. F. 2009. GMSH: A 3-D finite element mesh generator with
built-in pre- and post-processing . Numerical Methods in Engineering.

GILLES, B., BOUSQUET, G., FAURE, F., AND PAI, D. 2011. Frame-based elastic models.
ACM Trans. Graph. 30, 2.

GINGOLD, Y. I., AND ZORIN, D. 2006. Controlled-topology filtering. In Proc. SPM, 53–61.

GINGOLD, Y. 2008. private communication.

GRINSPUN, E., GINGOLD, Y., REISMAN, J., AND ZORIN, D. 2006. Computing discrete
shape operators on general meshes. In Computer Graphics Forum, vol. 25, 547–556.

GUENNEBAUD, G., JACOB, B., ET AL., 2010. Eigen v3. http://eigen.tuxfamily.org.

GUÉZIEC, A., TAUBIN, G., LAZARUS, F., AND HOM, B. 2001. Cutting and stitching: Con-
verting sets of polygons to manifold surfaces. IEEE TVCG 7, 2.

HARMON, D., PANOZZO, D., SORKINE, O., AND ZORIN, D. 2011. Interference aware geo-
metric modeling. ACM Transactions on Graphics (proceedings of ACM SIGGRAPH ASIA)
30, 6, 137:1–137:10.

HELENBROOK, B. T. 2003. Mesh deformation using the biharmonic operator. Int.. Journal for
Numerical Methods in Engineering 56, 7, 1007–1021.

HERON. 60. Metrica. Alexandria, Roman Egypt.

HILDEBRANDT, K., SCHULZ, C., TYCOWICZ, C. V., AND POLTHIER, K. 2011. Interactive
surface modeling using modal analysis. ACM Trans. Graph. 30, 5, 119:1–119:11.

HOPPE, H., DEROSE, T., DUCHAMP, T., MCDONALD, J., AND STUETZLE, W. 1992. Surface
reconstruction from unorganized points. SIGGRAPH Comput. Graph. 26, 2.

189

http://www.google.com/search?q=Simple+mesh+examples+to+illustrate+specific+finite+element+mesh+requirements
http://www.google.com/search?q=Simple+mesh+examples+to+illustrate+specific+finite+element+mesh+requirements
http://www.google.com/search?q=Mean+value+coordinates
http://www.google.com/search?q=Morse+theory+for+cell-complexes
http://www.google.com/search?q=Fast+skeletal+animation+by+skinned+arc-spline+based+deformation
http://www.google.com/search?q=Fast+skeletal+animation+by+skinned+arc-spline+based+deformation
http://www.google.com/search?q=Deformation+styles+for+spline-based+skeletal+animation
http://www.google.com/search?q=Deformation+styles+for+spline-based+skeletal+animation
http://www.google.com/search?q=Example-driven+deformations+based+on+discrete+shells
http://www.google.com/search?q=Example-driven+deformations+based+on+discrete+shells
http://www.google.com/search?q=Automatic+3d+mesh+generation+with+prescribed+meshed+boundaries
http://www.google.com/search?q=Automatic+3d+mesh+generation+with+prescribed+meshed+boundaries
http://www.google.com/search?q=Photoshop+healing+brush:+a+tool+for+seamless+cloning
http://www.google.com/search?q=textscgmsh:+A+3-D+finite+element+mesh+generator+with+built-in+pre-+and+post-processing+
http://www.google.com/search?q=textscgmsh:+A+3-D+finite+element+mesh+generator+with+built-in+pre-+and+post-processing+
http://www.google.com/search?q=Frame-based+elastic+models
http://www.google.com/search?q=Controlled-topology+filtering
http://www.google.com/search?q=Computing+discrete+shape+operators+on+general+meshes
http://www.google.com/search?q=Computing+discrete+shape+operators+on+general+meshes
http://www.google.com/search?q=Eigen+v3
http://www.google.com/search?q=Cutting+and+stitching:+Converting+sets+of+polygons+to+manifold+surfaces
http://www.google.com/search?q=Cutting+and+stitching:+Converting+sets+of+polygons+to+manifold+surfaces
http://www.google.com/search?q=Interference+aware+geometric+modeling
http://www.google.com/search?q=Interference+aware+geometric+modeling
http://www.google.com/search?q=Mesh+deformation+using+the+biharmonic+operator
http://www.google.com/search?q=Interactive+surface+modeling+using+modal+analysis
http://www.google.com/search?q=Interactive+surface+modeling+using+modal+analysis
http://www.google.com/search?q=Surface+reconstruction+from+unorganized+points
http://www.google.com/search?q=Surface+reconstruction+from+unorganized+points

REFERENCES

HOPPE, H., DEROSE, T., DUCHAMP, T., MCDONALD, J., AND STUETZLE, W. 1993. Mesh
optimization. ACM Trans. Graph..

HORMANN, K., AND SUKUMAR, N. 2008. Maximum entropy coordinates for arbitrary poly-
topes. Comput. Graph. Forum 27, 5, 1513–1520.

HORNUNG, A., AND KOBBELT, L. 2006. Robust reconstruction of watertight 3D models from
non-uniformly sampled point clouds without normal information. In Proc. SGP.

HOUSTON, B., BOND, C., AND WIEBE, M. 2003. A unified approach for modeling complex
occlusions in fluid simulations. In ACM SIGGRAPH 2003 Sketches & Applications.

HUANG, J., SHI, X., LIU, X., ZHOU, K., WEI, L.-Y., TENG, S.-H., BAO, H., GUO, B.,
AND SHUM, H.-Y. 2006. Subspace gradient domain mesh deformation. ACM Trans. Graph.
25, 3, 1126–1134.

HUANG, Q.-X., ADAMS, B., WICKE, M., AND GUIBAS, L. J. 2008. Non-rigid registration
under isometric deformations. In Proc. SGP, 1449–1457.

HUANG, Q.-X., ZHANG, G.-X., GAO, L., HU, S.-M., BUTSCHER, A., AND GUIBAS, L.
2012. An optimization approach for extracting and encoding consistent maps in a shape
collection. ACM Trans. Graph. 31, 6.

IGARASHI, T., MOSCOVICH, T., AND HUGHES, J. F. 2005. As-rigid-as-possible shape ma-
nipulation. ACM Trans. Graph. 24, 3, 1134–1141.

JACOBSON, A., BARAN, I., POPOVIĆ, J., AND SORKINE, O. 2011. Bounded biharmonic
weights for real-time deformation. ACM Trans. Graph. 30, 4.

JACOBSON, A., BARAN, I., KAVAN, L., POPOVIĆ, J., AND SORKINE, O. 2012. Fast auto-
matic skinning transformations. ACM Trans. Graph. 31, 4.

JACOBSON, A., WEINKAUF, T., AND SORKINE, O. 2012. Smooth shape-aware functions with
controlled extrema. In Proc. SGP.

JACOBSON, A., KAVAN, L., AND SORKINE-HORNUNG, O. 2013. Robust inside-outside
segmentation using generalized winding numbers. ACM Trans. Graph., to appear.

JACOBSON, A., PANOZZO, D., AND DIAMANTI, O., 2013. libigl: A simple C++ geometry
processing library. http://igl.ethz.ch/projects/libigl/.

JAMES, D. L., AND TWIGG, C. D. 2005. Skinning mesh animations. ACM Trans. Graph. 24,
3, 399–407.

JOSHI, P., AND CARR, N. A. 2008. Repoussé: automatic inflation of 2d artwork. In Proc.
SBIM, 49–55.

JOSHI, B., AND OURSELIN, S. 2003. BSP-Assisted Constrained Tetrahedralization. IMR,
251–260.

JOSHI, P., MEYER, M., DEROSE, T., GREEN, B., AND SANOCKI, T. 2007. Harmonic
coordinates for character articulation. ACM Trans. Graph. 26, 3, 71.

JU, T., SCHAEFER, S., AND WARREN, J. 2005. Mean value coordinates for closed triangular
meshes. ACM Trans. Graph. 24, 3.

190

http://www.google.com/search?q=Mesh+optimization
http://www.google.com/search?q=Mesh+optimization
http://www.google.com/search?q=Maximum+entropy+coordinates+for+arbitrary+polytopes
http://www.google.com/search?q=Maximum+entropy+coordinates+for+arbitrary+polytopes
http://www.google.com/search?q=Robust+reconstruction+of+watertight+3D+models+from+non-uniformly+sampled+point+clouds+without+normal+information
http://www.google.com/search?q=Robust+reconstruction+of+watertight+3D+models+from+non-uniformly+sampled+point+clouds+without+normal+information
http://www.google.com/search?q=A+unified+approach+for+modeling+complex+occlusions+in+fluid+simulations
http://www.google.com/search?q=A+unified+approach+for+modeling+complex+occlusions+in+fluid+simulations
http://www.google.com/search?q=Subspace+gradient+domain+mesh+deformation
http://www.google.com/search?q=Non-rigid+registration+under+isometric+deformations
http://www.google.com/search?q=Non-rigid+registration+under+isometric+deformations
http://www.google.com/search?q=An+optimization+approach+for+extracting+and+encoding+consistent+maps+in+a+shape+collection
http://www.google.com/search?q=An+optimization+approach+for+extracting+and+encoding+consistent+maps+in+a+shape+collection
http://www.google.com/search?q=As-rigid-as-possible+shape+manipulation
http://www.google.com/search?q=As-rigid-as-possible+shape+manipulation
http://www.google.com/search?q=Bounded+biharmonic+weights+for+real-time+deformation
http://www.google.com/search?q=Bounded+biharmonic+weights+for+real-time+deformation
http://www.google.com/search?q=Fast+automatic+skinning+transformations
http://www.google.com/search?q=Fast+automatic+skinning+transformations
http://www.google.com/search?q=Smooth+shape-aware+functions+with+controlled+extrema
http://www.google.com/search?q=Smooth+shape-aware+functions+with+controlled+extrema
http://www.google.com/search?q=Robust+inside-outside+segmentation+using+generalized+winding+numbers
http://www.google.com/search?q=Robust+inside-outside+segmentation+using+generalized+winding+numbers
http://www.google.com/search?q=libigl:+A+simple+C+++geometry+processing+library
http://www.google.com/search?q=libigl:+A+simple+C+++geometry+processing+library
http://www.google.com/search?q=Skinning+mesh+animations
http://www.google.com/search?q=Repouss'e:+automatic+inflation+of+2d+artwork
http://www.google.com/search?q=BSP-Assisted+Constrained+Tetrahedralization.
http://www.google.com/search?q=Harmonic+coordinates+for+character+articulation
http://www.google.com/search?q=Harmonic+coordinates+for+character+articulation
http://www.google.com/search?q=Mean+value+coordinates+for+closed+triangular+meshes
http://www.google.com/search?q=Mean+value+coordinates+for+closed+triangular+meshes

REFERENCES

JU, T. 2004. Robust repair of polygonal models. ACM Trans. Graph. 23, 3.

JU, T. 2009. Fixing geometric errors on polygonal models: a survey. Journal of Computer
Science and Technology 24, 1.

KARNI, Z., FREEDMAN, D., AND GOTSMAN, C. 2009. Energy-based image deformation. In
Proc. SGP, 1257–1268.

KAVAN, L., AND SORKINE, O. 2012. Elasticity-inspired deformers for character articulation.
ACM Trans. Graph. 31, 6.

KAVAN, L., COLLINS, S., ZARA, J., AND O’SULLIVAN, C. 2008. Geometric skinning with
approximate dual quaternion blending. ACM Trans. Graph. 27, 4, 105:1–105:23.

KAVAN, L., COLLINS, S., AND O’SULLIVAN, C. 2009. Automatic linearization of nonlinear
skinning. In Proc. I3D, 49–56.

KAVAN, L., SLOAN, P., AND O’SULLIVAN, C. 2010. Fast and efficient skinning of animated
meshes. Comput. Graph. Forum 29, 2, 327–336.

KAZHDAN, M., BOLITHO, M., AND HOPPE, H. 2006. Poisson surface reconstruction. In
Proc. SGP.

KLINGNER, B. M., AND SHEWCHUK, J. R. 2007. Agressive tetrahedral mesh improvement.
In Proc. IMR.

KOBBELT, L., CAMPAGNA, S., VORSATZ, J., AND SEIDEL, H.-P. 1998. Interactive multi-
resolution modeling on arbitrary meshes. In Proc. SIGGRAPH, 105–114.

KOLLURI, R., SHEWCHUK, J., AND O’BRIEN, J. 2004. Spectral surface reconstruction from
noisy point clouds. Proc. SGP.

KOLMOGOROV, V., AND ZABIN, R. 2004. What energy functions can be minimized via graph
cuts? IEEE PAMI 26, 2.

LABELLE, F., AND SHEWCHUK, J. R. 2007. Isosurface stuffing: fast tetrahedral meshes with
good dihedral angles. ACM Trans. Graph. 26, 3.

LACARELLE, A., FAUSTMANN, T., GREENBLATT, D., PASCHEREIT, C., LEHMANN, O.,
LUCHTENBURG, D., AND NOACK, B. 2009. Spatiotemporal Characterization of a Conical
Swirler Flow Field Under Strong Forcing. Journal of Engineering for Gas Turbines and
Power 131, 031504.

LANDRENEAU, E., AND SCHAEFER, S. 2010. Poisson-based weight reduction of animated
meshes. Comput. Graph. Forum 29, 6, 1945–1954.

LANGER, T., AND SEIDEL, H.-P. 2008. Higher order barycentric coordinates. Comput. Graph.
Forum 27, 2, 459–466.

LASSETER, J. 1987. Principles of traditional animation applied to 3d computer animation. In
SIGGRAPH.

LEE, J. 1997. The Law of Cosines in a Tetrahedron. J. Korea Soc. Math. Ed. Ser. Pure Appl.
Math. 4, B.

191

http://www.google.com/search?q=Robust+repair+of+polygonal+models
http://www.google.com/search?q=Fixing+geometric+errors+on+polygonal+models:+a+survey
http://www.google.com/search?q=Energy-based+image+deformation
http://www.google.com/search?q=Elasticity-inspired+deformers+for+character+articulation
http://www.google.com/search?q=Geometric+skinning+with+approximate+dual+quaternion+blending
http://www.google.com/search?q=Geometric+skinning+with+approximate+dual+quaternion+blending
http://www.google.com/search?q=Automatic+linearization+of+nonlinear+skinning
http://www.google.com/search?q=Automatic+linearization+of+nonlinear+skinning
http://www.google.com/search?q=Fast+and+efficient+skinning+of+animated+meshes
http://www.google.com/search?q=Fast+and+efficient+skinning+of+animated+meshes
http://www.google.com/search?q=Poisson+surface+reconstruction
http://www.google.com/search?q=Agressive+tetrahedral+mesh+improvement
http://www.google.com/search?q=Interactive+multi-resolution+modeling+on+arbitrary+meshes
http://www.google.com/search?q=Interactive+multi-resolution+modeling+on+arbitrary+meshes
http://www.google.com/search?q=Spectral+surface+reconstruction+from+noisy+point+clouds
http://www.google.com/search?q=Spectral+surface+reconstruction+from+noisy+point+clouds
http://www.google.com/search?q=What+energy+functions+can+be+minimized+via+graph+cuts?
http://www.google.com/search?q=What+energy+functions+can+be+minimized+via+graph+cuts?
http://www.google.com/search?q=Isosurface+stuffing:+fast+tetrahedral+meshes+with+good+dihedral+angles
http://www.google.com/search?q=Isosurface+stuffing:+fast+tetrahedral+meshes+with+good+dihedral+angles
http://www.google.com/search?q=Spatiotemporal+Characterization+of+a+Conical+Swirler+Flow+Field+Under+Strong+Forcing
http://www.google.com/search?q=Spatiotemporal+Characterization+of+a+Conical+Swirler+Flow+Field+Under+Strong+Forcing
http://www.google.com/search?q=Poisson-based+weight+reduction+of+animated+meshes
http://www.google.com/search?q=Poisson-based+weight+reduction+of+animated+meshes
http://www.google.com/search?q=Higher+order+barycentric+coordinates
http://www.google.com/search?q=Principles+of+traditional+animation+applied+to+3d+computer+animation
http://www.google.com/search?q=The+Law+of+Cosines+in+a+Tetrahedron

REFERENCES

LEVIN, A., LISCHINSKI, D., AND WEISS, Y. 2004. Colorization using optimization. ACM
Trans. Graph. 23, 689–694.

LEWIS, J. P., CORDNER, M., AND FONG, N. 2000. Pose space deformation: a unified
approach to shape interpolation and skeleton-driven deformation. In Proc. SIGGRAPH, 165–
172.

LI, D., SUN, X., REN, Z., LIN, S., TONG, Y., GUO, B., AND ZHOU, K. 2012. Transcut:
Interactive rendering of translucent cutouts. IEEE TVCG 19, 3.

LIAO, S.-H., FENG TONG, R., XIANG DONG, J., AND DONG ZHU, F. 2009. Gradient field
based inhomogeneous volumetric mesh deformation for maxillofacial surgery simulation.
Computers & Graphics 33, 3.

LIPMAN, Y., SORKINE, O., COHEN-OR, D., LEVIN, D., RÖSSL, C., AND SEIDEL, H.-P.
2004. Differential coordinates for interactive mesh editing. In Proc. SMI, 181–190.

LIPMAN, Y., SORKINE, O., LEVIN, D., AND COHEN-OR, D. 2005. Linear rotation-invariant
coordinates for meshes. ACM Trans. Graph. 24, 3, 479–487.

LIPMAN, Y., KOPF, J., COHEN-OR, D., AND LEVIN, D. 2007. GPU-assisted positive mean
value coordinates for mesh deformations. In Proc. SGP, 117–124.

LIPMAN, Y., LEVIN, D., AND COHEN-OR, D. 2008. Green coordinates. ACM Trans. Graph.
27, 3.

LISCHINSKI, D., FARBMAN, Z., UYTTENDAELE, M., AND SZELISKI, R. 2006. Interactive
local adjustment of tonal values. ACM Trans. Graph. 25, 3, 646–653.

LIU, L., ZHANG, L., XU, Y., GOTSMAN, C., AND GORTLER, S. J. 2008. A local/global
approach to mesh parameterization. Comput. Graph. Forum 27, 5, 1495–1504.

MACNEAL, R., OF TECHNOLOGY. DIVISION OF ENGINEERING, C. I., AND SCIENCE, A.
1949. The Solution of Partial Differential Equations by Means of Electrical Networks. PhD
thesis, California Institute of Technology.

MAGNENAT-THALMANN, N., AND THALMANN, D. 1987. The direction of synthetic actors
in the film rendez-vous a montreal. Computer Graphics and Applications, IEEE 7, 12.

MAGNENAT-THALMANN, N., LAPERRIÈRE, R., AND THALMANN, D. 1988. Joint-dependent
local deformations for hand animation and object grasping. In Graphics Interface, 26–33.

MANSON, J., AND SCHAEFER, S. 2010. Moving least squares coordinates. In Proc. SGP,
1517–1524.

MANSON, J., AND SCHAEFER, S. 2011. Hierarchical deformation of locally rigid meshes.
Comput. Graph. Forum 30, 8, 2387–2396.

MATLAB. 2012. 7.13.0.564 (R2011b). The MathWorks Inc., Natick, Massachusetts.

MCADAMS, A., ZHU, Y., SELLE, A., EMPEY, M., TAMSTORF, R., TERAN, J., AND

SIFAKIS, E. 2011. Efficient elasticity for character skinning with contact and collisions.
ACM Trans. Graph. 30 (Aug.), 37:1–37:12.

MEISTER, A. 1769/70. Generalia de genesi figurarum planarum et inde pendentibus earum

192

http://www.google.com/search?q=Colorization+using+optimization
http://www.google.com/search?q=Pose+space+deformation:+a+unified+approach+to+shape+interpolation+and+skeleton-driven+deformation
http://www.google.com/search?q=Pose+space+deformation:+a+unified+approach+to+shape+interpolation+and+skeleton-driven+deformation
http://www.google.com/search?q=Transcut:+Interactive+rendering+of+translucent+cutouts
http://www.google.com/search?q=Transcut:+Interactive+rendering+of+translucent+cutouts
http://www.google.com/search?q=Gradient+field+based+inhomogeneous+volumetric+mesh+deformation+for+maxillofacial+surgery+simulation
http://www.google.com/search?q=Gradient+field+based+inhomogeneous+volumetric+mesh+deformation+for+maxillofacial+surgery+simulation
http://www.google.com/search?q=Differential+coordinates+for+interactive+mesh+editing
http://www.google.com/search?q=Linear+rotation-invariant+coordinates+for+meshes
http://www.google.com/search?q=Linear+rotation-invariant+coordinates+for+meshes
http://www.google.com/search?q=GPU-assisted+positive+mean+value+coordinates+for+mesh+deformations
http://www.google.com/search?q=GPU-assisted+positive+mean+value+coordinates+for+mesh+deformations
http://www.google.com/search?q=Green+coordinates
http://www.google.com/search?q=Interactive+local+adjustment+of+tonal+values
http://www.google.com/search?q=Interactive+local+adjustment+of+tonal+values
http://www.google.com/search?q=A+local/global+approach+to+mesh+parameterization
http://www.google.com/search?q=A+local/global+approach+to+mesh+parameterization
http://www.google.com/search?q=The+direction+of+synthetic+actors+in+the+film+rendez-vous+a+montreal
http://www.google.com/search?q=The+direction+of+synthetic+actors+in+the+film+rendez-vous+a+montreal
http://www.google.com/search?q=Joint-dependent+local+deformations+for+hand+animation+and+object+grasping
http://www.google.com/search?q=Joint-dependent+local+deformations+for+hand+animation+and+object+grasping
http://www.google.com/search?q=Moving+least+squares+coordinates.
http://www.google.com/search?q=Hierarchical+deformation+of+locally+rigid+meshes
http://www.google.com/search?q=Efficient+elasticity+for+character+skinning+with+contact+and+collisions
http://www.google.com/search?q=Generalia+de+genesi+figurarum+planarum+et+inde+pendentibus+earum+ajfectionibus
http://www.google.com/search?q=Generalia+de+genesi+figurarum+planarum+et+inde+pendentibus+earum+ajfectionibus
http://www.google.com/search?q=Generalia+de+genesi+figurarum+planarum+et+inde+pendentibus+earum+ajfectionibus

REFERENCES

ajfectionibus. Novi Comm. Soc. Reg. Scient. Gotting., 144–180+9 plates.

MERRY, B., MARAIS, P., AND GAIN, J. 2006. Animation space: A truly linear framework for
character animation. ACM Trans. Graph. 25, 4, 1400–1423.

MEYER, M., DESBRUN, M., SCHRÖDER, P., AND BARR, A. 2002. Discrete differential-
geometry operators for triangulated 2-manifolds. Visualization and mathematics 3, 35–57.

MEYER, M., DESBRUN, M., SCHRÖDER, P., AND BARR, A. H. 2003. Discrete differential-
geometry operators for triangulated 2-manifolds. In Visualization and Mathematics III.
Springer-Verlag, 35–57.

MOHR, A., AND GLEICHER, M. 2003. Building efficient, accurate character skins from
examples. ACM Trans. Graph. 22, 3 (July), 562–568.

MONK, P. 1987. A mixed finite element method for the biharmonic equation. SIAM Journal
on Numerical Analysis 24, 4, 737–749.

MORETON, H. P., AND SÉQUIN, C. H. 1992. Functional optimization for fair surface design.
In Proc. SIGGRAPH, 167–176.

MULLEN, P., DE GOES, F., DESBRUN, M., COHEN-STEINER, D., AND ALLIEZ, P. 2010.
Signing the unsigned: Robust surface reconstruction from raw pointsets. Comput. Graph.
Forum 29, 5.

MÜLLER, M., HEIDELBERGER, B., TESCHNER, M., AND GROSS, M. 2005. Meshless
deformations based on shape matching. ACM Trans. Graph. 24, 3.

MURALI, T. M., AND FUNKHOUSER, T. A. 1997. Consistent solid and boundary representa-
tions from arbitrary polygonal data. In Proc. I3D.

NAUMOV, M. 2011. Parallel solution of sparse triangular linear systems in the preconditioned
iterative methods on the gpu. NVIDIA Technical Report.

NAUMOV, M. 2012. Parallel incomplete-lu and Cholesky factorization in the preconditioned
iterative methods on the gpu. NVIDIA Technical Report.

NEALEN, A., IGARASHI, T., SORKINE, O., AND ALEXA, M. 2007. FiberMesh: designing
freeform surfaces with 3D curves. ACM Trans. Graph. 26, 3, 41.

NI, X., GARLAND, M., AND HART, J. C. 2004. Fair morse functions for extracting the
topological structure of a surface mesh. ACM Trans. Graph. 23, 3, 613–622.

NOCEDAL, J., AND WRIGHT, S. 2006. Numerical Optimization, Second Edition.

NOORUDDIN, F. S., AND TURK, G. 2003. Simplification and repair of polygonal models using
volumetric techniques. IEEE TVCG 9, 2.

ORZAN, A., BOUSSEAU, A., WINNEMÖLLER, H., BARLA, P., THOLLOT, J., AND SALESIN,
D. 2008. Diffusion curves: a vector representation for smooth-shaded images. ACM Trans.
Graph. 27, 3, 92:1–92:8.

OVSJANIKOV, M., LI, W., GUIBAS, L., AND MITRA, N. J. 2011. Exploration of continuous
variability in collections of 3d shapes. ACM Trans. Graph. 30, 4.

193

http://www.google.com/search?q=Generalia+de+genesi+figurarum+planarum+et+inde+pendentibus+earum+ajfectionibus
http://www.google.com/search?q=Generalia+de+genesi+figurarum+planarum+et+inde+pendentibus+earum+ajfectionibus
http://www.google.com/search?q=Generalia+de+genesi+figurarum+planarum+et+inde+pendentibus+earum+ajfectionibus
http://www.google.com/search?q=Animation+space:+A+truly+linear+framework+for+character+animation
http://www.google.com/search?q=Animation+space:+A+truly+linear+framework+for+character+animation
http://www.google.com/search?q=Discrete+differential-geometry+operators+for+triangulated+2-manifolds
http://www.google.com/search?q=Discrete+differential-geometry+operators+for+triangulated+2-manifolds
http://www.google.com/search?q=Discrete+differential-geometry+operators+for+triangulated+2-manifolds
http://www.google.com/search?q=Discrete+differential-geometry+operators+for+triangulated+2-manifolds
http://www.google.com/search?q=Building+efficient,+accurate+character+skins+from+examples
http://www.google.com/search?q=Building+efficient,+accurate+character+skins+from+examples
http://www.google.com/search?q=A+mixed+finite+element+method+for+the+biharmonic+equation
http://www.google.com/search?q=Functional+optimization+for+fair+surface+design
http://www.google.com/search?q=Signing+the+unsigned:+Robust+surface+reconstruction+from+raw+pointsets
http://www.google.com/search?q=Meshless+deformations+based+on+shape+matching
http://www.google.com/search?q=Meshless+deformations+based+on+shape+matching
http://www.google.com/search?q=Consistent+solid+and+boundary+representations+from+arbitrary+polygonal+data
http://www.google.com/search?q=Consistent+solid+and+boundary+representations+from+arbitrary+polygonal+data
http://www.google.com/search?q=Parallel+solution+of+sparse+triangular+linear+systems+in+the+preconditioned+iterative+methods+on+the+gpu
http://www.google.com/search?q=Parallel+solution+of+sparse+triangular+linear+systems+in+the+preconditioned+iterative+methods+on+the+gpu
http://www.google.com/search?q=Parallel+incomplete-lu+and+Cholesky+factorization+in+the+preconditioned+iterative+methods+on+the+gpu
http://www.google.com/search?q=Parallel+incomplete-lu+and+Cholesky+factorization+in+the+preconditioned+iterative+methods+on+the+gpu
http://www.google.com/search?q=FiberMesh:+designing+freeform+surfaces+with+3D+curves
http://www.google.com/search?q=FiberMesh:+designing+freeform+surfaces+with+3D+curves
http://www.google.com/search?q=Fair+morse+functions+for+extracting+the+topological+structure+of+a+surface+mesh
http://www.google.com/search?q=Fair+morse+functions+for+extracting+the+topological+structure+of+a+surface+mesh
http://www.google.com/search?q=Simplification+and+repair+of+polygonal+models+using+volumetric+techniques
http://www.google.com/search?q=Simplification+and+repair+of+polygonal+models+using+volumetric+techniques
http://www.google.com/search?q=Diffusion+curves:+a+vector+representation+for+smooth-shaded+images
http://www.google.com/search?q=Exploration+of+continuous+variability+in+collections+of+3d+shapes
http://www.google.com/search?q=Exploration+of+continuous+variability+in+collections+of+3d+shapes

REFERENCES

PEKELNY, Y., AND GOTSMAN, C. 2008. Articulated object reconstruction and markerless
motion capture from depth video. Comput. Graph. Forum 27, 2, 399–408.

PÉREZ, P., GANGNET, M., AND BLAKE, A. 2003. Poisson image editing. ACM Trans. Graph.
22, 3, 313–318.

PHONG, B. T. 1975. Illumination for computer generated pictures. Commun. ACM 18, 6,
311–317.

PINKALL, U., AND POLTHIER, K. 1993. Computing discrete minimal surfaces and their
conjugates. Experiment. Math. 2, 1, 15–36.

PODOLAK, J., AND RUSINKIEWICZ, S. 2005. Atomic volumes for mesh completion. In Proc.
SGP.

REUTER, M., BIASOTTI, S., GIORGI, D., PATANČ, G., AND SPAGNUOLO, M. 2009. Discrete
Laplace-Beltrami operators for shape analysis and segmentation. Computers & Graphics 33,
3, 381–390.

ROSSIGNAC, J., AND CARDOZE, D. 1999. Matchmaker: manifold BReps for non-manifold
r-sets. In Proc. SMA, 31–41.

RUSTAMOV, R. M. 2011. Multiscale biharmonic kernels. In Proc. SGP, 1521–1531.

SAYAS, F. 2008. A gentle introduction to the Finite Element Method.

SCHAEFER, S., MCPHAIL, T., AND WARREN, J. 2006. Image deformation using moving
least squares. ACM Trans. Graph. 25, 3, 533–540.

SCHLÖMER, T., HECK, D., AND DEUSSEN, O. 2011. Farthest-point optimized point sets with
maximized minimum distance. In Proc. of the ACM SIGGRAPH Symp. on High Performance
Graphics, 135–142.

SCHNEIDER, R., AND KOBBELT, L. 2000. Generating fair meshes with G1 boundary condi-
tions. In Geometric Modeling and Processing Conference Proceedings.

SCHNEIDER, R., AND KOBBELT, L. 2001. Geometric fairing of irregular meshes for free-form
surface design. Computer Aided Geometric Design 18, 4 (May), 359–379.

SCHÖBERL, J. 1997. NETGEN: An advancing front 2D/3D-mesh generator based on abstract
rules. Computing and Visualization in Science.

SCHOLZ, R. 1978. A mixed method for 4th order problems using linear finite elements. RAIRO
Anal. Numér. 12, 1, 85–90, iii.

SEDERBERG, T. W., AND PARRY, S. R. 1986. Free-form deformation of solid geometric
models. In Proc. SIGGRAPH, 151–160.

SHARF, A., LEWINER, T., SHKLARSKI, G., TOLEDO, S., AND COHEN-OR, D. 2007. Inter-
active topology-aware surface reconstruction. ACM Trans. Graph. 26, 3.

SHEN, C., O’BRIEN, J. F., AND SHEWCHUK, J. R. 2004. Interpolating and approximating
implicit surfaces from polygon soup. ACM Trans. Graph. 23, 3, 896–904.

SHEPARD, D. 1968. A two-dimensional interpolation function for irregularly-spaced data. In

194

http://www.google.com/search?q=Articulated+object+reconstruction+and+markerless+motion+capture+from+depth+video
http://www.google.com/search?q=Articulated+object+reconstruction+and+markerless+motion+capture+from+depth+video
http://www.google.com/search?q=Poisson+image+editing
http://www.google.com/search?q=Illumination+for+computer+generated+pictures
http://www.google.com/search?q=Computing+discrete+minimal+surfaces+and+their+conjugates
http://www.google.com/search?q=Computing+discrete+minimal+surfaces+and+their+conjugates
http://www.google.com/search?q=Atomic+volumes+for+mesh+completion
http://www.google.com/search?q=Discrete+Laplace-Beltrami+operators+for+shape+analysis+and+segmentation
http://www.google.com/search?q=Discrete+Laplace-Beltrami+operators+for+shape+analysis+and+segmentation
http://www.google.com/search?q=Matchmaker:+manifold+BReps+for+non-manifold+r-sets
http://www.google.com/search?q=Matchmaker:+manifold+BReps+for+non-manifold+r-sets
http://www.google.com/search?q=Multiscale+biharmonic+kernels
http://www.google.com/search?q=Image+deformation+using+moving+least+squares
http://www.google.com/search?q=Image+deformation+using+moving+least+squares
http://www.google.com/search?q=Farthest-point+optimized+point+sets+with+maximized+minimum+distance
http://www.google.com/search?q=Farthest-point+optimized+point+sets+with+maximized+minimum+distance
http://www.google.com/search?q=Generating+fair+meshes+with+G^1+boundary+conditions
http://www.google.com/search?q=Generating+fair+meshes+with+G^1+boundary+conditions
http://www.google.com/search?q=Geometric+fairing+of+irregular+meshes+for+free-form+surface+design
http://www.google.com/search?q=Geometric+fairing+of+irregular+meshes+for+free-form+surface+design
http://www.google.com/search?q=textscNETGEN:+An+advancing+front+2D/3D-mesh+generator+based+on+abstract+rules
http://www.google.com/search?q=textscNETGEN:+An+advancing+front+2D/3D-mesh+generator+based+on+abstract+rules
http://www.google.com/search?q=A+mixed+method+for+4th+order+problems+using+linear+finite+elements
http://www.google.com/search?q=Free-form+deformation+of+solid+geometric+models
http://www.google.com/search?q=Free-form+deformation+of+solid+geometric+models
http://www.google.com/search?q=Interactive+topology-aware+surface+reconstruction
http://www.google.com/search?q=Interactive+topology-aware+surface+reconstruction
http://www.google.com/search?q=Interpolating+and+approximating+implicit+surfaces+from+polygon+soup
http://www.google.com/search?q=Interpolating+and+approximating+implicit+surfaces+from+polygon+soup
http://www.google.com/search?q=A+two-dimensional+interpolation+function+for+irregularly-spaced+data

REFERENCES

Proceedings of the 1968 23rd ACM national conference, ACM, 517–524.

SHEWCHUK, J. R. 1996. Triangle: Engineering a 2D quality mesh generator and delaunay
triangulator. vol. 1148 of Lecture Notes in Computer Science.

SHEWCHUK, J. 2012. Unstructured Mesh Generation. Combinatorial Scientific Computing 12,
257.

SHI, X., ZHOU, K., TONG, Y., DESBRUN, M., BAO, H., AND GUO, B. 2007. Mesh puppetry:
cascading optimization of mesh deformation with inverse kinematics. ACM Trans. Graph.
26, 3, 81:1–81:10.

SHIMADA, K., AND GOSSARD, D. C. 1995. Bubble mesh: automated triangular meshing of
non-manifold geometry by sphere packing.

SI, H., 2003. TETGEN: A 3D delaunay tetrahedral mesh generator. http://tetgen.
berlios.de.

SIBSON, R. 1981. Interpolating multivariate data. John Wiley & Sons, ch. A brief description
of natural neighbor interpolation, 21–36.

SIDI, O., VAN KAICK, O., KLEIMAN, Y., ZHANG, H., AND COHEN-OR, D. 2011. Unsuper-
vised co-segmentation of a set of shapes via descriptor-space spectral clustering. ACM Trans.
Graph. 30, 6.

SORKINE, O., AND ALEXA, M. 2007. As-rigid-as-possible surface modeling. In Proc. SGP,
109–116.

SORKINE, O., LIPMAN, Y., COHEN-OR, D., ALEXA, M., RÖSSL, C., AND SEIDEL, H.-P.
2004. Laplacian surface editing. In Proc. SGP, 179–188.

SORKINE, O., COHEN-OR, D., IRONY, D., AND TOLEDO, S. 2005. Geometry-aware bases
for shape approximation. IEEE Transactions on Visualization and Computer Graphics 11, 2,
171–180.

SUMNER, R. W., ZWICKER, M., GOTSMAN, C., AND POPOVIĆ, J. 2005. Mesh-based inverse
kinematics. ACM Trans. Graph. 24, 3, 488–495.

SUMNER, R. W., SCHMID, J., AND PAULY, M. 2007. Embedded deformation for shape
manipulation. ACM Trans. Graph. 26, 3, 80.

SÝKORA, D., BURIÁNEK, J., AND ŽÁRA, J. 2005. Sketching cartoons by example. In Proc.
SBIM, 27–34.

SÝKORA, D., DINGLIANA, J., AND COLLINS, S. 2009. LazyBrush: Flexible painting tool for
hand-drawn cartoons. Comput. Graph. Forum 28, 2, 599–608.

TAKAYAMA, K., OKABE, M., IJIRI, T., AND IGARASHI, T. 2008. Lapped solid textures:
Filling a model with anisotropic textures. ACM Trans. Graph. 27, 3.

TAUBIN, G. 1995. A signal processing approach to fair surface design. In Proc. SIGGRAPH,
351–358.

TERAN, J., SIFAKIS, E., BLEMKER, S. S., NG-THOW-HING, V., LAU, C., AND FEDKIW, R.
2005. Creating and simulating skeletal muscle from the visible human data set. IEEE TVCG

195

http://www.google.com/search?q=Triangle:+Engineering+a+2D+quality+mesh+generator+and+delaunay+triangulator
http://www.google.com/search?q=Triangle:+Engineering+a+2D+quality+mesh+generator+and+delaunay+triangulator
http://www.google.com/search?q=Unstructured+Mesh+Generation
http://www.google.com/search?q=Mesh+puppetry:+cascading+optimization+of+mesh+deformation+with+inverse+kinematics
http://www.google.com/search?q=Mesh+puppetry:+cascading+optimization+of+mesh+deformation+with+inverse+kinematics
http://www.google.com/search?q=Bubble+mesh:+automated+triangular+meshing+of+non-manifold+geometry+by+sphere+packing
http://www.google.com/search?q=Bubble+mesh:+automated+triangular+meshing+of+non-manifold+geometry+by+sphere+packing
http://www.google.com/search?q=textscTetGen:+A+3D+delaunay+tetrahedral+mesh+generator
http://tetgen.berlios.de
http://tetgen.berlios.de
http://www.google.com/search?q=Unsupervised+co-segmentation+of+a+set+of+shapes+via+descriptor-space+spectral+clustering
http://www.google.com/search?q=Unsupervised+co-segmentation+of+a+set+of+shapes+via+descriptor-space+spectral+clustering
http://www.google.com/search?q=As-rigid-as-possible+surface+modeling
http://www.google.com/search?q=Laplacian+surface+editing
http://www.google.com/search?q=Geometry-aware+bases+for+shape+approximation
http://www.google.com/search?q=Geometry-aware+bases+for+shape+approximation
http://www.google.com/search?q=Mesh-based+inverse+kinematics
http://www.google.com/search?q=Mesh-based+inverse+kinematics
http://www.google.com/search?q=Embedded+deformation+for+shape+manipulation
http://www.google.com/search?q=Embedded+deformation+for+shape+manipulation
http://www.google.com/search?q=Sketching+cartoons+by+example
http://www.google.com/search?q=LazyBrush:+Flexible+painting+tool+for+hand-drawn+cartoons
http://www.google.com/search?q=LazyBrush:+Flexible+painting+tool+for+hand-drawn+cartoons
http://www.google.com/search?q=Lapped+solid+textures:+Filling+a+model+with+anisotropic+textures
http://www.google.com/search?q=Lapped+solid+textures:+Filling+a+model+with+anisotropic+textures
http://www.google.com/search?q=A+signal+processing+approach+to+fair+surface+design
http://www.google.com/search?q=Creating+and+simulating+skeletal+muscle+from+the+visible+human+data+set

REFERENCES

11, 3, 317–328.

THOMAS, F., AND JOHNSTON, O. 1987. Disney Animation: The Illusion of Life. Abbeville
Press.

TONG, Y., LOMBEYDA, S., HIRANI, A. N., AND DESBRUN, M. 2003. Discrete multiscale
vector field decomposition. ACM Trans. Graph. 22, 3.

TOSUN, E. 2008. Geometric modeling using high-order derivatives. PhD thesis. AAI3330186.

TURK, G., AND LEVOY, M. 1994. Zippered polygon meshes from range images. In SIG-
GRAPH.

VAN OOSTEROM, A., AND STRACKEE, J. 1983. The Solid Angle of a Plane Triangle. Biomed-
ical Engineering, IEEE Transactions on, 2.

WAN, M., WANG, Y., AND WANG, D. 2011. Variational surface reconstruction based on
Delaunay triangulation and graph cut. Int. Journal of Numerical Engineering.

WAN, M., WANG, Y., BAE, E., TAI, X., AND WANG, D. 2012. Reconstructing Open Surfaces
via Graph-Cuts. IEEE TVCG 19, 2.

WANG, X. C., AND PHILLIPS, C. 2002. Multi-weight enveloping: least-squares approximation
techniques for skin animation. In Proc. SCA, 129–138.

WANG, R. Y., PULLI, K., AND POPOVIĆ, J. 2007. Real-time enveloping with rotational
regression. ACM Trans. Graph. 26, 3, 73.

WANG, O., LANG, M., FREI, M., HORNUNG, A., SMOLIC, A., AND GROSS, M. 2011.
Stereobrush: interactive 2d to 3d conversion using discontinuous warps. In Proc. SBIM,
47–54.

WANG, Y., ASAFI, S., VAN KAICK, O., ZHANG, H., COHEN-OR, D., AND CHEN, B. 2012.
Active co-analysis of a set of shapes. ACM Trans. Graph. 31, 6.

WARDETZKY, M., BERGOU, M., HARMON, D., ZORIN, D., AND GRINSPUN, E. 2007.
Discrete quadratic curvature energies. Computer Aided Geometric Design 24, 8-9, 499–518.

WARDETZKY, M., MATHUR, S., KÄLBERER, F., AND GRINSPUN, E. 2007. Discrete Laplace
operators: no free lunch. In Proc. SGP, 33–37.

WAREHAM, R., AND LASENBY, J. 2008. Bone Glow: An improved method for the assignment
of weights for mesh deformation. Articulated Motion and Deformable Objects, 63–71.

WEBER, O., AND GOTSMAN, C. 2010. Controllable conformal maps for shape deformation
and interpolation. ACM Trans. Graph. 29, 4, 78:1–78:11.

WEBER, O., SORKINE, O., LIPMAN, Y., AND GOTSMAN, C. 2007. Context-aware skeletal
shape deformation. Comput. Graph. Forum 26, 3, 265–273.

WEBER, O., BEN-CHEN, M., AND GOTSMAN, C. 2009. Complex barycentric coordinates
with applications to planar shape deformation. Comput. Graph. Forum 28, 2, 587–597.

WEBER, O., BEN-CHEN, M., GOTSMAN, C., AND HORMANN, K. 2011. A complex view of
barycentric mappings. Comput. Graph. Forum 30, 5.

196

http://www.google.com/search?q=Discrete+multiscale+vector+field+decomposition
http://www.google.com/search?q=Discrete+multiscale+vector+field+decomposition
http://www.google.com/search?q=Zippered+polygon+meshes+from+range+images
http://www.google.com/search?q=The+Solid+Angle+of+a+Plane+Triangle
http://www.google.com/search?q=Variational+surface+reconstruction+based+on+Delaunay+triangulation+and+graph+cut
http://www.google.com/search?q=Variational+surface+reconstruction+based+on+Delaunay+triangulation+and+graph+cut
http://www.google.com/search?q=Reconstructing+Open+Surfaces+via+Graph-Cuts
http://www.google.com/search?q=Reconstructing+Open+Surfaces+via+Graph-Cuts
http://www.google.com/search?q=Multi-weight+enveloping:+least-squares+approximation+techniques+for+skin+animation
http://www.google.com/search?q=Multi-weight+enveloping:+least-squares+approximation+techniques+for+skin+animation
http://www.google.com/search?q=Real-time+enveloping+with+rotational+regression
http://www.google.com/search?q=Real-time+enveloping+with+rotational+regression
http://www.google.com/search?q=Stereobrush:+interactive+2d+to+3d+conversion+using+discontinuous+warps
http://www.google.com/search?q=Active+co-analysis+of+a+set+of+shapes
http://www.google.com/search?q=Discrete+quadratic+curvature+energies
http://www.google.com/search?q=Discrete+Laplace+operators:+no+free+lunch
http://www.google.com/search?q=Discrete+Laplace+operators:+no+free+lunch
http://www.google.com/search?q=Bone+Glow:+An+improved+method+for+the+assignment+of+weights+for+mesh+deformation
http://www.google.com/search?q=Bone+Glow:+An+improved+method+for+the+assignment+of+weights+for+mesh+deformation
http://www.google.com/search?q=Controllable+conformal+maps+for+shape+deformation+and+interpolation
http://www.google.com/search?q=Controllable+conformal+maps+for+shape+deformation+and+interpolation
http://www.google.com/search?q=Context-aware+skeletal+shape+deformation
http://www.google.com/search?q=Context-aware+skeletal+shape+deformation
http://www.google.com/search?q=Complex+barycentric+coordinates+with+applications+to+planar+shape+deformation
http://www.google.com/search?q=Complex+barycentric+coordinates+with+applications+to+planar+shape+deformation
http://www.google.com/search?q=A+complex+view+of+barycentric+mappings
http://www.google.com/search?q=A+complex+view+of+barycentric+mappings

REFERENCES

WEBER, O., PORANNE, R., AND GOTSMAN, C. 2012. Biharmonic coordinates. Comput.
Graph. Forum 31, 8.

WEBER, J. 2000. Run-time skin deformation. In Proc. Game Developers Conference.

WEINKAUF, T., GINGOLD, Y., AND SORKINE, O. 2010. Topology-based smoothing of 2D
scalar fields with C1-continuity. Comput. Graph. Forum (proc. EuroVis) 29, 3, 1221–1230.

WELCH, W., AND WITKIN, A. 1994. Free-form shape design using triangulated surfaces. In
Proc. SIGGRAPH, 247–256.

XU, J., AND ZIKATANOV, L. 1999. A monotone finite element scheme for convection-diffusion
equations. Math. Comput. 68, 228.

XU, G., PAN, Q., AND BAJAJ, C. L. 2006. Discrete surface modelling using partial differential
equations. Comput. Aided Geom. Design 23, 2, 125–145.

YAMAKAWA, S., AND SHIMADA, K. 2009. Removing self intersections of a triangular mesh
by edge swapping, edge hammering, and face lifting. Proc. IMR.

YANG, X., SOMASEKHARAN, A., AND ZHANG, J. J. 2006. Curve skeleton skinning for
human and creature characters. Comput. Animat. Virtual Worlds 17, 3-4, 281–292.

YÜCER, K., JACOBSON, A., HORNUNG, A., AND SORKINE, O. 2012. Transfusive image
manipulation. ACM Trans. Graph. 31.

ZAYER, R., RÖSSL, C., KARNI, Z., AND SEIDEL, H.-P. 2005. Harmonic guidance for surface
deformation. In Computer Graphics Forum (Proceedings of Eurographics), 601–609.

ZHANG, L., CUI, T., AND LIU, H. 2009. A set of symmetric quadrature rules on triangles and
tetrahedra. J. Comput. Math 27, 1, 89–96.

ZHANG, S., NEALEN, A., AND METAXAS, D. 2010. Skeleton Based As-Rigid-As-Possible
Volume Modeling. In Proc. Eurographics, short papers volume, 21–24.

ZHENG, Y., AND TAI, C.-L. 2010. Mesh decomposition with cross-boundary brushes. Com-
put. Graph. Forum 29, 2, 527–535.

ZHOU, K., HUANG, J., SNYDER, J., LIU, X., BAO, H., GUO, B., AND SHUM, H.-Y. 2005.
Large mesh deformation using the volumetric graph Laplacian. ACM Trans. Graph, 24, 3,
496–503.

ZHOU, K., ZHANG, E., BITTNER, J., AND WONKA, P. 2008. Visibility-driven mesh analysis
and visualization through graph cuts. IEEE TVCG 14, 6.

ZHU, Y., AND GORTLER, S. J. 2007. 3D deformation using moving least squares. Tech. Rep.
Tr-10-07, Harvard University, Cambridge, MA.

197

http://www.google.com/search?q=Biharmonic+coordinates
http://www.google.com/search?q=Run-time+skin+deformation
http://www.google.com/search?q=Topology-based+smoothing+of+2D+scalar+fields+with+C^1-continuity
http://www.google.com/search?q=Topology-based+smoothing+of+2D+scalar+fields+with+C^1-continuity
http://www.google.com/search?q=Free-form+shape+design+using+triangulated+surfaces
http://www.google.com/search?q=A+monotone+finite+element+scheme+for+convection-diffusion+equations
http://www.google.com/search?q=A+monotone+finite+element+scheme+for+convection-diffusion+equations
http://www.google.com/search?q=Discrete+surface+modelling+using+partial+differential+equations
http://www.google.com/search?q=Discrete+surface+modelling+using+partial+differential+equations
http://www.google.com/search?q=Removing+self+intersections+of+a+triangular+mesh+by+edge+swapping,+edge+hammering,+and+face+lifting
http://www.google.com/search?q=Removing+self+intersections+of+a+triangular+mesh+by+edge+swapping,+edge+hammering,+and+face+lifting
http://www.google.com/search?q=Curve+skeleton+skinning+for+human+and+creature+characters
http://www.google.com/search?q=Curve+skeleton+skinning+for+human+and+creature+characters
http://www.google.com/search?q=Transfusive+image+manipulation
http://www.google.com/search?q=Transfusive+image+manipulation
http://www.google.com/search?q=Harmonic+guidance+for+surface+deformation
http://www.google.com/search?q=Harmonic+guidance+for+surface+deformation
http://www.google.com/search?q=A+set+of+symmetric+quadrature+rules+on+triangles+and+tetrahedra
http://www.google.com/search?q=A+set+of+symmetric+quadrature+rules+on+triangles+and+tetrahedra
http://www.google.com/search?q=Skeleton+Based+As-Rigid-As-Possible+Volume+Modeling
http://www.google.com/search?q=Skeleton+Based+As-Rigid-As-Possible+Volume+Modeling
http://www.google.com/search?q=Mesh+decomposition+with+cross-boundary+brushes
http://www.google.com/search?q=Large+mesh+deformation+using+the+volumetric+graph+Laplacian
http://www.google.com/search?q=Visibility-driven+mesh+analysis+and+visualization+through+graph+cuts
http://www.google.com/search?q=Visibility-driven+mesh+analysis+and+visualization+through+graph+cuts
http://www.google.com/search?q=3D+deformation+using+moving+least+squares

Appendix: 2D dataset

Appendix: 2D dataset

This dataset contains all 2D vector graphics cartoons used throughout this thesis. They are my
own creations and free to use for academic, non-military research.

198

Appendix: Curriculum Vitæ

Appendix: Curriculum Vitæ

Alec Jacobson

Office Address:
CAB G 82.2
Universitaetstrasse 6
8092 Zurich
Switzerland
people.inf.ethz.ch/ jalec
jacobson@inf.ethz.ch

Home Address:
Schaffhauserstrasse 123
8057 Zürich
Switzerland
alecjacobson.com
alecjacobson@gmail.com

Education
Ph.D. Eidgenössische Technische Hochschule Zürich, Computer Science, 2013: 5.5/6.0 GPA

M.A. New York University, Computer Science, May 2011: 4.0/4.0 GPA

B.A. New York University, Mathematics & Computer Science Joint Major with high depart-
mental honors, 2009, Magna Cum Laude: 3.8/4.0 GPA

Honors Diploma Graduate, Mayo High School, Rochester, MN, 2005: 5.2/4.0 weighted GPA

Graduate, University of Minnesota Talented Youth Math Program (UMTYMP Algebra I and II,
Geometry, Math Analysis, Calculus I, II and III), Sept. 1999 - May 2004: 4.0/4.0 GPA

Awards, Scholarships, Fellowships Received
Intel PhD Fellowship, 2012

Back Cover Image, Proceedings of ACM SIGGRAPH, 2011

New York University Henry M. MacCracken Fellowship, 2009-2011

Grand Prize, Games For Learning Institute Game Design Challenge 2009, Microsoft Research

New York University Founder’s Day Award, 2009

New York University Trustee’s Scholarship, 2005-2009

Mayo Foundation Scholarship, 2005-2009

New York University Dean’s list, 2006, 2008, 2009

Mayo Clinic Summer Mentored Undergraduate Research Fellowship, 2007

Rochester Film Festival, Best Animated Short Film, 2005

Journal Publications
Alec Jacobson, Ladislav Kavan, Olga Sorkine. “Robust Inside-Outside Segmentation using
Generalized Winding Numbers.” ACM Transactions on Graphics, Vol. 32(4), 2013 (ACM
SIGGRAPH Proceedings).

199

http://people.inf.ethz.ch/~jalec
mailto:jacobson@inf.ethz.ch
http://alecjacobson.com
mailto:alecjacobson@gmail.com

Appendix: Curriculum Vitæ

Daniel Sýkora, Ladislav Kavan, Martin Čadík, Ondřej Jamriška, Alec Jacobson, Brain Whited,
Maryann Simmons and Olga Sorkine-Hornung. “Ink-And-Ray: Global Illumination for Hand-
Drawn Animation.” ACM Transactions on Graphics, to appear, 2013.

Kaan Yücer, Alec Jacobson, Alexander Hornung, Olga Sorkine. “Transfusive Image Manipula-
tion.” ACM Transactions on Graphics, Vol. 31(6), 2012 (ACM SIGGRAPH Asia Proceedings).

Alec Jacobson, Tino Weinkauf, Olga Sorkine. “Smooth Shape-Aware Functions with Con-
trolled Extrema.” Computer Graphics Forum, Vol. 31(4), 2012 (EUROGRAPHICS/ACM SIG-
GRAPH Symposium on Geometry Processing Proceedings issue).

Alec Jacobson, Ilya Baran, Ladislav Kavan, Jovan Popović, Olga Sorkine. “Fast Automatic
Skinning Transformations.” ACM Transactions on Graphics, Vol. 31(4), 2012 (ACM SIG-
GRAPH Proceedings).

Alec Jacobson, Olga Sorkine. “Stretchable and Twistable Bones for Skeletal Shape Deforma-
tion.” ACM Transactions on Graphics, Vol. 30(6), 2011 (ACM SIGGRAPH Asia Proceedings).

Alec Jacobson, Ilya Baran, Jovan Popović, Olga Sorkine. “Bounded Biharmonic Weights for
Real-Time Deformation.” ACM Transactions on Graphics, Vol. 30(4), 2011 (ACM SIGGRAPH
Proceedings).

Alec Jacobson, Elif Tosun, Olga Sorkine, Denis Zorin. “Mixed Finite Elements for Variational
Surface Modeling.” Computer Graphics Forum, Vol. 29(5), pp. 1565–1574, 2010 (EURO-
GRAPHICS/ACM SIGGRAPH Symposium on Geometry Processing Proceedings).

Technical Reports
Alec Jacobson. “Bijective Mappings with Generalized Barycentric Coordinates: A Counterex-
ample” ETH Zurich, 2012.

Alec Jacobson, Olga Sorkine. “A Cotangent Laplacian Images as Surfaces.” ETH Zurich, 2012.

Research Experience
PhD Research, Advisor: Olga Sorkine, Interactive Geometry Lab, ETH Zurich, Zurich, Switzer-
land, 2011-present

PhD Research, Advisor: Olga Sorkine, Media Research Lab, New York University, New York,
NY, 2009-2011

Summer Research Intern, Advisor: Jovan Popović, Advanced Technology Labs, Adobe Sys-
tems, Seattle, WA, Summer 2010

Undergraduate Research, Advisor: Denis Zorin, Media Research Lab, New York University,
New York, NY, 2008-2009

Summer Mentored Undergraduate Research Fellowship, Advisor: Željko Bajzer, Mayo Clinic,
Rochester, MN, 2007

200

Appendix: Curriculum Vitæ

Work Experience
America Counts math intervention tutor and student teacher, Clinton Public Middle School for
Artists and Writers, New York, NY, 2008-2009

Calculus and Basic Algorithms Homework Grader, Math Department, New York University,
New York, NY, 2006-2009

Intern at the IBM Executive Briefing Center, Rochester, MN, Summer 2008

Computer Skills

MATLAB C, C++ Java, C# Mathematica Maple LaTeX, TeX
Qt Ruby Python PHP HTML Javascript
OpenGL UNIX tools CGAL CUDA OpenMP XNA
Development: Vim Xcode Visual Studio Eclipse NetBeans

Teaching Experience
Computer Graphics, Teaching Assistant, ETH Zurich, Zurich, Switzerland, 2011-2012

America Counts math intervention tutor and student teacher, Clinton Public Middle School for
Artists and Writers, New York, NY, 2008-2009

Calculus Grader, Math Department, New York University, New York, NY, 2006-2008

Volunteer computer programming teacher at Courant Splash! (cSplash), NYU, one-day festival
of classes in the mathematical and computer sciences for high school students, Spring 2008

Volunteer tutor at Rochester English for Speakers of Other Languages Summer School, 2007

Volunteer tutor of three elementary school boys from an African refugee family in the South
Bronx, 2005-2006

Conference Talks
ACM SIGGRAPH, Fast Automatic Skinning Transformations, August 8, 2012

EUROGRAPHICS/ACM SIGGRAPH Symposium on Geometry Processing, Smooth Shape-
Aware Functions with Controlled Extrema, July 16, 2012

ACM SIGGRAPH Asia, Stretchable, Twistable Bones for Skeletal Shape Deformation, Decem-
ber 14, 2011

ACM SIGGRAPH, Bounded Biharmonic Weights for Real-Time Deformation, August 10, 2011

EUROGRAPHICS/ACM SIGGRAPH Symposium on Geometry Processing, Mixed Finite Ele-
ments for Variational Surface Modeling, July 6, 2010

201

Appendix: Curriculum Vitæ

Invited Talks
Max-Planck-Institut für Informatik, Saarbrücken, Achieving High-Quality Shape Deformation
in Real Time, invited by Tino Weinkauf, February 26, 2013

Workshop on Computer Graphics and Emerging Technology, Shenzhen Institutes of Advanced
Technology, Achieving High-Quality Shape Deformation in Real Time, invited by Baoquan
Chen, November 26, 2012

New York University, Fast Automatic Skinning Transformations, invited by Denis Zorin, July
31, 2012

NSF Workshop on Barycentric Coordinates in Geometry Processing and Finite/Boundary El-
ement Methods, High-quality weight functions via constrained optimization, invited by Kai
Hormann, July 25, 2012

Freie Universität, Berlin, High Quality Weight Functions via Constrained Optimization, invited
by Konrad Polthier, June 22, 2012

LiberoVision, Zurich, Real-time Shape Deformation: Bounded Biharmonic Weights and
Stretchable, Twistable Bones, invited by Remo Ziegler, February 2, 2012

DISI University of Genoa, Real-time Deformation: Bounded Biharmonic Weights and Stretch-
able, Twistable Bones, invited by Enrico Puppo, June 27, 2011

ETH Zurich-Disney Research Zurich Tech Talk, Mixed Finite Elements for Variational Surface
Modeling, invited by Alexander Hornung, October 20, 2010

Languages

English (native)
Spanish (proficient)
German (beginner)

Academic Service
Program Committee Member:
Symposium on Geometry Processing, 2013
EUROGRAPHICS Short Papers, 2012-2013

Reviewer:
ACM SIGGRAPH
ACM SIGGRAPH Asia
Computer Graphics Forum
CVPR Conference on Computer Vision and Pattern Recognition
ECCV European Conference on Computer Vision
EUGRAPHICS
EUGRAPHICS Short Papers
Graphics Interface
IEEE Computer Graphics and Applications

202

Appendix: Curriculum Vitæ

IEEE Transactions on Visualization and Computer Graphics
Pacific Graphics
SIBGRAPI Conference on Graphics, Patterns and Images

Solo Art Exhibitions
Jewcy Main Office, Brooklyn, NY, 2008

“Humans I See Every Day,” Bronfman Center Gallery, New York, NY, 2008

Jewcy’s Online Featured Artist, Brooklyn, NY, 2008

Group Art Exhibitions
“Einstein on Witherspoon Street: Expressions for Social Justice,” Bronfman Center Gallery,
New York, NY, 2009

“Becoming: Visions of Childhood,” Bronfman Center Gallery, New York, NY, 2008

“Muslim-Jewish Art Collaborative Project,” Bronfman Center Gallery, New York, NY, 2008

“Clear is not a Color,” L. Iago Gallery, New York, NY, 2006

References
Olga Sorkine (PhD advisor, 2009-present)
Assistant Professor
Department of Computer Science
ETH Zurich
CNB G 106
Universtitaetstrasse 6
8092 Zurich, Switzerland
+ 41 44 632 83 57
sorkine@inf.ethz.ch

Jovan Popović (Internship advisor, summer 2010)
Principal Scientist
Advanced Technology Labs
Adobe Systems
801 N. 34th Street
Seattle, WA 98103
206-675-7000
jovan@adobe.com

203

mailto:sorkine@inf.ethz.ch
mailto:jovan@adobe.com

Appendix: Curriculum Vitæ

Denis Zorin (Undergraduate research advisor, 2008-2009)
Professor of Computer Science and Mathematics
Computer Science Department
Courant Institute of Mathematical Sciences
New York University
719 Broadway, New York, NY 10003
212-998-3405
dzorin@courant.nyu.edu

Željko Bajzer (Mentor for research fellowship, 2007)
Professor of Biophysics
Department of Biochemistry and Molecular Biology
Mayo Clinic
200 First St SW
Rochester, MN 55905
507-284-8584
bajzer@mayo.edu

204

mailto:dzorin@courant.nyu.edu
mailto:bajzer@mayo.edu

	1 Introduction
	1.1 Shape deformation
	1.2 Organization

	2 Mathematical foundation
	2.1 Dirichlet energy and the Laplace equation
	2.1.1 Neumann boundary conditions
	2.1.2 Cotangent weights
	Tetrahedral volume meshes
	A law of sines for tetrahedra
	Relationship to finite differences

	2.1.3 Mass matrix
	Quadrature rules
	Reference element
	Lumping

	2.2 Constrained optimization
	2.2.1 Constant equality constraints
	2.2.2 Linear equality constraints
	LU decomposition via two Cholesky decompositions
	Weak constraints via quadratic penalty functions

	2.2.3 Linear inequality constraints and the active set method
	2.2.4 Conic programming
	Conversion from quadratic to conic program

	3 Mixed finite elements for variational surface modeling
	3.1 Introduction
	3.2 Previous work
	3.3 Model problems
	3.3.1 Low-order decomposition
	3.3.2 Boundary condition types

	3.4 Mixed finite element discretization
	3.4.1 Laplacian energy & biharmonic equation
	3.4.2 Laplacian gradient energy & triharmonic equation

	3.5 Evaluation and applications
	3.6 Conclusions
	3.7 Appendix: Ciarlet-Raviart discretization and region boundary conditions
	3.8 Appendix: Reproducing the Three Pipes
	3.8.1 Parametric domain
	3.8.2 Boundary conditions

	4 Bounded biharmonic weights for real-time deformation
	4.1 Introduction
	4.2 Previous work
	4.3 Bounded biharmonic weights
	4.3.1 Formulation
	4.3.2 Comparison to existing schemes
	4.3.3 Shape preservation
	4.3.4 Implementation

	4.4 Results
	4.5 Conclusion
	4.6 Appendix: Equivalence of higher order barycentric coordinates and LBS
	4.7 Appendix: Relationship to precomputed bases
	4.8 Appendix: A cotangent Laplacian for images as surfaces
	4.9 Appendix: Bijective mappings with barycentric coordinates — a counterexample

	5 Smooth shape-aware functions with controlled extrema
	5.1 Introduction
	5.2 Background
	5.3 Method
	5.3.1 Ideal optimization
	5.3.2 Constraint simplification
	5.3.3 Choice of representative function
	5.3.4 Implementation

	5.4 Experiments and results
	5.5 Limitations and future work
	5.6 Conclusion
	5.7 Appendix: Conversion to conic programming
	5.8 Appendix: Iterative convexifiction

	6 Stretchable and twistable bones for skeletal shape deformation
	6.1 Introduction
	6.2 Stretchable, twistable bones
	6.2.1 Dual-quaternion skinning
	6.2.2 Properties of good endpoint weights
	6.2.3 Defining endpoint weights

	6.3 Implementation and results
	6.4 Conclusion

	7 Fast automatic skinning transformations
	7.1 Introduction
	7.2 Related work
	7.3 Method
	7.3.1 Automatic degrees of freedom
	7.3.2 Rotation clusters
	7.3.3 Additional weight functions

	7.4 Results
	7.5 Limitations and future work
	7.6 Conclusion
	7.7 Appendix: Physically based dynamics
	7.7.1 ARAP with dynamics
	7.7.2 Reduction

	8 Robust inside-outside segmentation via generalized winding numbers
	8.1 Introduction
	8.2 Related work
	8.3 Method
	8.4 Winding number
	8.4.1 Generalization to R3
	8.4.2 Open, non-manifold and beyond
	8.4.3 Hierarchical evaluation

	8.5 Segmentation
	8.5.1 Energy minimization with graphcut
	8.5.2 Optional hard constraints

	8.6 Experiments and results
	8.7 Limitations and future work
	8.8 Conclusion

	9 Conclusion
	9.1 Recapitulation of core contributions
	9.2 Publications
	9.2.1 Journal publications
	9.2.2 Technical reports

	9.3 Reflections
	9.3.1 Lingering, unsolved problems

	9.4 Future work
	9.4.1 Physical interfaces
	9.4.2 Semantics

	References
	Appendix: 2D dataset
	Appendix: Curriculum Vitæ

