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We propose a robust 2D meshing algorithm, TriWild, to generate curved
triangles reproducing smooth feature curves, leading to coarse meshes de-
signed to match the simulation requirements necessary by applications and
avoiding the geometrical errors introduced by linear meshes. The robustness
and effectiveness of our technique are demonstrated by batch processing an
SVG collection of 20k images, and by comparing our results against state of
the art linear and curvilinear meshing algorithms. We demonstrate for our al-
gorithm the practical utility of computing diffusion curves, fluid simulations,
elastic deformations, and shape inflation on complex 2D geometries.
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1 INTRODUCTION
Triangle meshing is at the core of a large fraction of two-dimensional
computer graphics and computer aided engineering applications,
most commonly, used to solve PDEs or optimization problems on
2D domains, in the context of physical simulation, geometric model-
ing, animation and nonphotorealistic rendering. Major efforts have
been invested in robustly generating meshes with linear edges with
good geometric quality. However, the restriction to linear meshes
makes precise reproduction of simple curved shapes, such as a Bézier
curve, impossible independently of the resolution used, resulting
in artifacts and/or excessive refinement in applications ranging
from physical simulation to nonphotorealistic rendering. Curved
meshes, i.e. meshes with curved edges, are an effective solution to
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Fig. 1. The official ACM SIGGGRAPH logo (www.siggraph.org/about/logos)
is converted into a curved triangle mesh. We use the mesh to compute
diffusion curves (Laplace), inflate surface (bilaplace), deform elastic bodies
(Neo-Hooke), and simulate fluid flow (Stokes). Note that the imperfections
in the input (shown in the closeups) are automatically healed by our method.

this problem: the idea is to use curved triangles instead of linear
ones, providing significantly superior geometric approximation of
a shape using a mesh of a particular size. In most cases, the lower
triangle count leads to an overall more efficient simulation for a
given desired accuracy [Braess 2007; Ciarlet and Raviart 1972; Scott
1973, 1975]. A simple 2D example is shown in Figure 2, which has a
geometric error of 2% of the overall area when 236 linear triangles
are used, and the error can be reduced to numerical zero with the
same number of curved triangles with a cubic Lagrangian geometric
map (Figure 2). While the use of curved meshes is well established
in the FEM literature (with a few applications in graphics [Boyé
et al. 2012; Mezger et al. 2009]), the automatic generation of these
meshes is rarely considered, and the few existing methods we tested
have a high failure rate on real-world examples (Section 5).
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Conforming
Delaunay. Our linear mesh. Boundary error of

the linear mesh.

Fig. 2. Comparison of Conforming Delaunay Triangulation (left) and of our
linear output (middle and right) corresponding to the model in Figure 1.
The curved mesh in Figure 1 has only 236 triangles and it approximates
the input exactly, without any geometric error, while the CDT linear mesh
requires around 4 thousand triangles to have a comparable visual quality.

We propose a robust 2D meshing algorithm, TriWild, to generate
high-quality curved meshes on complex 2D geometries. Our algo-
rithm takes as input a 2D scene described as an SVG file (a soup of
basic curved primitives, such as circles, ellipses, and Bézier curves),
and automatically produces an analysis-ready, high-quality curved
mesh. The algorithm starts by sanitizing the input curves and resam-
pling them based on their curvature. This step is crucial, since “dirty”
input is extremely common (see for a representative example the
official SVG of the SIGGRAPH logo in Figure 1) and the preservation
of degenerate features will inevitably lead to overrefined meshes
not usable in downstream applications (Figure 2). The sanitized
features are then meshed using a novel curved meshing algorithm
that creates an initial linear mesh, curves its edges, and then maps
each curved triangle to a reference domain (i.e., computes a geo-
metric map). The algorithm internally uses rational coordinates for
robustness and outputs a triangular mesh composed of cubic Bézier
triangles with positive Jacobian in floating points coordinates. The
created meshes are coarse, represent the input curves with high
fidelity, and are directly usable to solve discrete PDEs.
We stress test TriWild on a large SVG collection, which is chal-

lenging even for existing robust linear triangular meshers. Our algo-
rithm is able to handle even the most complex cases and produces
meshes directly usable in FEM simulations. We also demonstrate
the practical applicability of our algorithm in four common graph-
ics applications: (1) color interpolation to create diffusion curves
vector graphics [Boyé et al. 2012; Orzan et al. 2008], (2) viscous flow
simulation in complex geometries [Stenberg 1984], (3) simulation
of elastic deformations [Mezger et al. 2009], and (4) conversion of
planar meshes into 3D models using surface inflation [Joshi and
Carr 2008; Sýkora et al. 2014]. A reference implementation of our
algorithm and a set of scripts to reproduce the results in the paper
are provided at https://github.com/wildmeshing/TriWild.

2 RELATED WORK
Our method creates a linear triangulation and then bends the edges
of the mesh to create a curved triangulation. Both types of triangula-
tions have received significant attention in the meshing literatures.

2.1 Linear triangulations
Linear unstructured meshing in 2D is an old problem (e.g., [MacNeal
1949]1 or [Frederick et al. 1970]). There have been many papers,
surveys and books written on this topic (e.g., [Cheng et al. 2012;
Shewchuk 2012]). Existing works can be broadly categorized by their
primary methodology and corresponding strengths and weaknesses.
Advancing front methods generate a triangle mesh by growing

a mesh in a flood-filling manner, typically growing inward from
a given boundary [George 1971; Peraire et al. 1987; Sadek 1980].
While attractive because initial triangles placed near the starting
regions can be high-quality and boundary-preservation is often
trivial, the mesh quality typically gets progressively worse as the
front continues. This culminates in a slew of issues when multiple
fronts meet, where bad triangles are hard to avoid.
Grid/Quad-tree methods are in some sense a complement to ad-

vancing front methods. These methods begin with a grid of high-
quality triangles everywhere and then adjust triangles near the
domain boundary [Baker et al. 1988; Bern et al. 1994; Yerry and
Shephard 1983]. The methods are fast and can obtain good aver-
age quality since most triangles in the interior will have perfectly
regular shape. However, these methods struggle to achieve accu-
rate boundary preservation without sacrificing worst-case quality at
boundary triangles.

Delaunay methods are arguably the most widely used, in particu-
lar, the open source Triangle program by Shewchuk [1996]. Based
on rigorous and well understood theory (e.g., [Aurenhammer 1991;
Aurenhammer et al. 2013; Cheng et al. 2012; Shewchuk 1999]), tri-
angulations boast good mathematical properties stemming from all
or most triangles fulfilling the local Delaunay criteria. Categoriza-
tions of Delaunay methods generally split according to how they
deal with one-dimensional line segment constraints. Conforming
methods iteratively add points along constraints to pure Delaunay
triangulation until each segment is covered by a union of Delaunay
edges. While the number of necessary inserted points is bounded
(e.g., Bishop [2016] proved byO(n2.5) for an n-vertex input segment
graph), the output meshes can be prohibitively over-dense near
input features.

To avoid over-refinement, a preprocessing guided by a user toler-
ance could be done to merge or re-align problematic features before
applying conforming Delaunay [Busaryev et al. 2009]. In contrast,
constrained methods relax the Delaunay requirement for input seg-
ments. This relaxation prevents an explosion in the vertex count, but
introduces difficulty maintaining quality and robustness near fea-
tures. We compare directly to the Delaunay triangulation libraries
Triangle [Shewchuk 1996] and CGAL [Boissonnat et al. 2002], both
of which implement conforming and constrained methods.

Improvement methods attempt to increase the aggregate or worst-
case quality of triangles in an existing mesh by local connectivity
changes or vertex displacements [Canann et al. 1996, 1993; Lipman
2012]. The Optimal Delaunay Triangulation family choose a metric
that harmonizes with Delaunay methods and their duality with

1 In his PhD thesis, MacNeal [1949] physically created a triangle mesh on drawing
paper and, by measuring angles with a protractor, solved the 2D Poisson equation using
the now famous cotangent formula.
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Voronoi diagrams [Chen and Xu 2004]. While strategies exist to en-
courage thesemethods to huge input domain boundaries [Alliez et al.
2005; Feng et al. 2018], they require a good, boundary-preserving
initial starting point and generally do not support internal features.
Our method follows the strategy of Hu et al. [2018] to create such
an initial starting point for boundary and internal linear or curved
features. We optimize the conformal AMIPS energy [Fu et al. 2015;
Rabinovich et al. 2017] to measure and improve mesh quality.

2.2 Curved Triangulations
While linear meshes are predominant, curved meshes see frequent
use in visual computing [Bargteil and Cohen 2014; Mezger et al.
2009] and engineering analysis [Bertrand et al. 2014a,b; Xue et al.
2005]. Meshes with curvilinear triangles offer a higher-order bound-
ary approximation, enabling higher-accuracy simulations for smaller
meshes [Babus̆ka and Guo 1992, 1988; Bassi and Rebay 1997; Hughes
et al. 2005; Luo et al. 2001; Oden 1994; Sevilla et al. 2011; Zulian
et al. 2017]. To the best of our knowledge, all existing methods
for constructing curved triangulations begin by creating a linear
triangulation and then curve triangles to align with a curvilinear
feature/boundary constraints. Our method is no exception.

Also to the best of our knowledge, all existing methods have been
tested on small collections of comparatively simple models, and
none of them can handle real-world, imperfect models (see Section
5.3 for our study on robustness of linear meshing methods, which
are strictly simpler than high order methods). Our method is the
first that has been tested on tens of thousands of real-world inputs.

Direct methods split features into shorter curves and then create
incident triangles on the interior of the domain (similarly to linear
advancing front methods) [Dey et al. 1999] or directly fit or snap
high-order nodes of a curved mesh (based on minimum distances)
[Ghasemi et al. 2016]. The curved triangles are represented using
Lagrange polynomials, [Dey et al. 1999], quadratic or cubic Bézier
polynomials [George and Borouchaki 2012; Lu et al. 2013; Luo et al.
2002], or NURBS [Engvall and Evans 2017]. To capture the high-
order curve or surface, while most techniques assume an isometric
mapping between each element of the linear mesh and the corre-
sponding high-order piece by evenly interpolating the parameters of
linear vertices for high-order nodes, [Shephard et al. 2005; Sherwin
and Peiró 2002] take into account the anisotropic property of the
to-be-curved region to compute the high order node parametric
positions accordingly.
Deformation methods start with a linear mesh and elevate the

degree of triangles to (so far, straight) high-order finite elements.
By treating the triangulated domain as an elastic object, the mesh is
deformed to curve triangles to match the input features. Different
physical models have been employed, such as linear [Abgrall et al.
2012, 2014; Dobrzynski and El Jannoun 2017] and non-linear [Moxey
et al. 2016; Persson and Peraire 2009; Poya et al. 2016] elasticity.

Distortion Metric, Inversion, and Intersections. Optimization meth-
ods are usually used as a post-processing step to attempt to untangle
the inverted triangles created during the curving process and to
improve their quality. Inverted triangles can be identified by ex-
tending the notion of area [Knupp 2000] to high-order function
geometric maps [Engvall and Evans 2018; Johnen et al. 2013; Poya

et al. 2016; Roca et al. 2012]. Various untangling strategies have been
proposed, including geometric smoothing and connectivity modi-
fications [Cardoze et al. 2004; Dey et al. 1999; Gargallo Peiró et al.
2013; George and Borouchaki 2012; Lu et al. 2013; Luo et al. 2002;
Peiró et al. 2008; Shephard et al. 2005]. The mesh is then improved
by optimizing various quality measures [Dobrzynski and El Jan-
noun 2017; Geuzaine et al. 2015; Karman et al. 2016; Roca et al. 2012;
Ruiz-Gironés et al. 2017, 2016a,b; Stees and Shontz 2017; Toulorge
et al. 2016; Ziel et al. 2017]. However, none of these methods can
guarantee to produce an inversion-free curved mesh.
A different approach [Persson and Peraire 2009; Ruiz-Gironés

et al. 2017] consists of initializing the optimization from a feasi-
ble inversion-free mesh, and preventing flips during deformation.
Our method follows this approach, but unlike previous methods we
do not sacrifice input feature preservation. Another issue is mesh
overlaps due to intersections of curved boundary segments (not
necessarily incurring flipped triangles). To the best of our knowl-
edge, our method is the first to deal with this problem explicitly
(Section 3.1).

Representations of curved meshes vary: B-spline, implicit func-
tions, and subdivision surfaces are typical high-order surface rep-
resentations [Bruno and Pohlman 2003]. A few works assume the
input being either an implicit function and fit B-spline patches
[Peiró et al. 2008], or a linear boundary only and then try to ob-
tain the high-order domain through the optimization of a linear
mesh according to physical boundary conditions [Feng et al. 2018;
Moxey et al. 2016; Poya et al. 2016; Ruiz-Gironés et al. 2017; Ziel et al.
2017]. The majority of the proposed works focus on polynomials,
Bézier, and B-splines with a low degree (usually quadratic and cubic)
[Dey et al. 1999; George and Borouchaki 2012; Geuzaine et al. 2015;
Johnen et al. 2013; Lu et al. 2013; Luo et al. 2002; Peiró et al. 2008;
Toulorge et al. 2013]. While Engvall and Evans [2017] show that
exactly capturing NURBS patches is possible, their curved meshing
algorithm is only applicable to clean CAD models, i.e. orientable,
watertight, manifold, and without intersections, which are rare in
practice. To the best of our knowledge, [Ruiz-Gironés et al. 2016b]
is the first attempt on 2d meshing curved inputs with interior gaps.
Since imperfect geometries are commonplace [Beall et al. 2003],
all the existing curved meshing techniques are impractical in an
automatic pipeline.
Curved Triangle Meshing Software. There are few 2D meshing

software supporting curved triangles. To the best of our knowledge,
the only ones available are in the Matlab Partial Differential Equa-
tion Toolbox [MATLAB Partial Differential Equation Toolbox 2018],
GMSH [Geuzaine and Remacle 2009], and NekTar++ [Cantwell et al.
2015; Turner et al. 2018]. However, all of them have strict input
requirements which are rarely met by vector drawings in the wild.
Matlab only supports a CSG tree of circles, ellipses, and rectangles,
greatly limiting its applicability. GMSH and NekTar++ both tar-
get the tessellation of domains specified in STEP format, using the
OpenCASCADE engine to create initial linear triangle meshes on
the interior of a parametric patch. Neither supports open or self-
intersecting curves, which are extremely common (in our dataset,
this accounts for 99.95% of the inputs).
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(a) (b) (c) (d) (e)

Fig. 3. Overview of the pipeline of our algorithm. The input piecewise-Bézier curves (a) are split at inflection points (black) and at optimal position to limit the
total curvature (b), and finally all intersections are removed (c). This concludes the feature preprocessing and the features are first linearly meshed (d) and
finally a curved mesh is obtained (e).

3 METHOD
Our curvilinear meshing algorithm (Figure 3) is divided into three
stages: (1) analysis, filtering, and rounding of the input features (Sec-
tion 3.1), (2) generation of a piece-wise linear initialization (Section
4.1), and (3) quality optimization and curving (4.2). The three stages
are designed to work together, but can be used independently: for
example, step (1) could be used as preprocessing for other linear
triangle meshing pipelines to increase their robustness by sanitizing
invalid inputs.

3.1 Input preprocessing and output
Commonly used 2D meshing algorithms and software make strong,
often implicit assumptions about the quality of the input, usually
requiring no self-intersection, no degeneracy, and no small angle be-
tween intersecting segments. However, these conditions are rarely
met in real-world data, and their violation often results in either a
meshing failure or over-refinement in the affected regions (Figure 2).
In both cases, it might not be possible to solve PDEs in these domains,
which then requires manual interaction to clean up the problematic
regions. A possible solution is using a meshing tolerance [Hu et al.
2018; Mandad et al. 2015], i.e. allowing a controlled geometric er-
ror in the created mesh: if the tolerance is sufficiently large, these
algorithms will automatically remove small features, preventing
over-refinement and numerical problems due to imperfections in
the input. However, this comes at the cost of approximating the
input, which is particularly problematic around straight features,
which might become jaggy (Figure 4).

We propose a different approach: we analyze the input curves to
identify a subset (primary feature curves) that can be represented
with a curved triangle mesh with a user-desired target edge-length l ,
and approximate the rest (secondary feature curves) with a piecewise
linear mesh within an ϵ meshing tolerance.

Input Description. Our input is a feature soup F = {P,C} of 2D
isolated points (P) and 2D cubic Bézier curves (C) representing the
features of the scene. The parameters of the primitives are provided
in double floating points.
We obtain the input feature soups by converting a subset of the

SVG 2.0 standard (points, circles, ellipses, curves, and straight lines)
into their cubic Bézier representation (replacing circles and ellipses

Fig. 4. Traditional meshing tolerance may lead to jaggy boundary even
in simple configurations (left). Preserving features removes the problem
(right).

with the Bézier approximation used by Adobe Illustrator) and we
output our results in the gmsh format [Geuzaine and Remacle 2009].
Next, we define primary and secondary feature curve sets. The

algorithms for obtaining these are described in Section 4. The pri-
mary feature curve set satisfies two conditions: bounded curvature
and µ-separation.

Bounded Curvature. Let lm be the user-controlled minimal edge
length of the final mesh. Now consider a circle with curvature higher
than 2/lm : since a triangle of this size cannot fit inside the circle
it will be impossible to represent such a feature without refining
more than what the user prescribed. We thus discard all the parts of
curves whose local curvature is higher than 2/lm , and denote these
new feature set as Fl .

µ-separation. Ideally, we would like to preserve all features in Fl .
However, this might be impossible if wewant to represent the output
at a given resolution. A counterexample is simple to construct: take
as input two parallel segments at a distance d . A triangle mesh that
exactly represents both segments must contain at least one triangle
between them, and the area of this triangle will tend to 0 as d tends
to 0, leading to a possible inversion of the triangle due to floating
point rounding errors. Similarly, two feature endpoints that are
at a distance d between each other will force the insertion of two
vertices in the final mesh, corresponding to the two endpoints, that
are also at a distance d . As d tends to zero, rounding errors might flip
triangles that are in the neighbourhood. Even if we could somehow
perturb the floating point coordinates to prevent inversions, the
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quality and size of these triangles will make the resulting mesh
unusable for most downstream applications.

To avoid this problem, we formally identify these cases defining
a local validity condition for sets of planar curves.

Definition 3.1. Let F ∈ R2 be a collection of planar piecewise
Bézier curves. The µ-separated set Fµ , is the subset of Fl , such that
for any point p on a feature f , the µ ball centered at p contains only
a single connected component of f and no other feature curves or
connected components of f .

This definition ensures that no pair of points in the µ-separated set
Fµ can be closer than µ, except if they belong to the same curve and
are connected by a part of the curve fully contained inside a µ ball.
For convenience, we will refer to Fµ as the primary features, and its
complement F \ Fµ , i.e. the parts of features that have been filtered
out because of their high curvature or because of the µ-separation,
as secondary features.

The parameters µ (feature envelope) and lm ( minimal edge length)
control the desired level of approximation: a small µ will lead to
denser meshes with more features tagged as primary and preserved
more accurately in the final mesh (Figure 6). Similarly, a small ϵ
(boundary envelope, Section 4.1) will produce secondary feature
which better approximate the input secondary curves. We also use a
numerical tolerance ϵm to account for rounding errors in the control
points of the input curves.

Output Description. The output of our algorithm is a valid trian-
gular mesh of a bounding box containing all input curves. Its edges
are line segments or cubic Bézier curves, satisfying the following
properties: (1) the edges do not intersect each other or the boundary
of the bounding box, and (2) the edges in one-to-one correspondence
with the primary features are within µ distance from their assigned
feature (Section 4). While we do not have any formal guarantee on
the preservation or approximation of the secondary features (Fig-
ure 3 (e) green edges), our algorithm strive to preserve them if the
resolution allows and if they are not too close to primary features
(which are given priority).

The coordinates of the output mesh vertices and control points for
the curved edge are represented in double floating point representa-
tion. We use cubic Bézier curves for the edges since they can induce
volumetric geometric map defined with cubic Lagrange triangles
which, restricted to edges, correspond to the Bézier curve. We decide
to use Lagrange bases for the map, since they are ubiquitously used
in curved meshing applications and are supported by most FEM
systems [Abaqus 2018; Ansys 2018; Geuzaine and Remacle 2009].
Note that, during our optimization we not only produce curved

meshes but also try to produce a bijective geometric map expressed
with Lagrange bases. Our algorithm could be adapted to produce
curved meshes with NURBS edges, which would allow to reproduce
ellipses and circles exactly; we leave this extension as a future work.

3.2 Mesh Quality for Triangle Curving.
Our algorithm is based on a necessary and sufficient condition on the
mesh quality (minimal angle) of a linear mesh, that ensures that its
edges can be bent into Bézier curves without self-intersections. We
will use this condition as a criteria to guide the discrete resampling
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Fig. 5. Notation for Lemma 3.2, Lemma 3.3, and Theorem 3.4.

of the input curves, which will be used to create an initial linear
triangle mesh.

Lemma 3.2. Let c(t), t ∈ [0, 1], be a cubic Bézier curve with control
points c0, c1, c2, c3, no self-intersection, and constant-sign curvature
less than π , i.e. no inflection points (Figure 5, left). Then, for any
t ∈ [0, 1], c(t) is on the same side of line segments [c0, c1] and [c2, c3].

Proof. Because of the constant-sign curvature, the rotation of
the vector c ′(t) is always positive (or negative) prohibiting the curve
to change direction. Additionally, since the curvature is less than
π , the two segments [c0, c1] and [c2, c3] are in the same side of the
line passing trough [c0, c3]. Therefore, for the curve to cross the
edge [c0, c1] and match the tangent at the end point it requires to a
full turn which can be only achieved with a self intersection since
degree 3 Bézier cannot spiral. [c2, c3] follows by symmetry. □

Lemma 3.3. Let c(t), t ∈ (0, 1) be a cubic Bézier curve with control
points c0, c1, c2, c3, without self-intersection, constant-sign curvature
(no inflection points), and total curvature α strictly smaller than π
(Figure 5, middle). Then the signed angles between the vectors ®c0, c3
and ®c0, c1 and ®c2, c3 and ®c0, c3 turns in opposite directions, and are
smaller than α .

Proof. The fact that two angles between the segments turn in
opposite directions follows from Lemma 3.2: any point on the curve
is on the right (and left side) of the tangent and in particular the
intersection between the segments [c3, c1] or [c0, c2]. Finally, since
the total curvature is the integral of the curvature (which is constant-
sign) is smaller than α , any tangent angles is smaller than α , and in
particular the two at the endpoints which correspond to the angles
∠c1c0c3 and ∠c0c3c2. □

Theorem 3.4. Let ABC be a triangle with minimal angle α , and
c(t), t ∈ (0, 1) be a cubic Bézier curve with control points A,c1,c2,B, no
self-intersection, constant-sign curvature and total curvature α strictly
smaller than π (Figure 5, right). Then c(t) does not intersect the edges
AC and CB, for any t ∈ {0..1}.

Proof. Since that quadrilateral is contained in the triangle ABC,
it follows that the curve will not intersect it. □

Theorem 3.4 provides a direct connection between linear mesh
quality (measured as the minimal angle over the triangles of a linear
mesh) and the maximal turning angle of the feature curve assigned
to one of linear mesh edges. We will fix a minimal angle α = 10
degrees that the meshing algorithm will optimize for, and refine
the input features to ensure that the angle between the tangents
at the endpoints and corresponding edges does not exceed α . Note
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that this condition is only necessary but not sufficient to ensure a
positive Jacobian of the Lagrangian geometric map assigned to the
triangle, and it is thus only a very effective heuristic (Section 5).

4 FEATURE PROCESSING FOR CURVED MESHING
We introduce an algorithm to compute primary and secondary fea-
tures from the set F of input features. This algorithm uses standard
double floating point precision. The algorithm has six parameters:
µ the feature envelope (distance between primary features), ϵ the
boundary envelope (desired accuracy for secondary features, de-
scribed below), ϵm (small number used to account for roundoff
errors), α (desired minimal angle in the target mesh), l (desired
edge length of the target mesh), and lm (minimal edge length of the
target mesh). In our experiments, we use µ =1e-3d , ϵ = 2µ, ϵm =
1e-8, α = 10 degrees, l = d/20, and lm =1e-4d with d the diagonal
of the bounding box. It first splits the feature curves into elemen-
tary pieces (discrete curve sections) discarding some not satisfying
primary feature constraints, and then classifies the remaining ones.

Removal of Degenerate Curves. We convert all degenerate curves
which have all their control points too close together (i.e., contained
in a circle of radius ϵm ), into a feature point computed as the average
of the control points. The rationale behind this choice is that any
such curve will be too small to be represented with a mesh of target
resolution and we thus opt to represent it as a single point in the
output mesh.
We also identify all Bézier curves corresponding to straight seg-

ments by least-square fitting a line to the control points, andmarking
them as straight if the sum of distances of the control points to the
line is smaller than ϵm . These features are replaced by line segments
to avoid numerical problems in the next steps and to simplify the
point to feature queries.

Inflection Point Split. We split each curve ci ∈ C at its inflection
points, decomposing it into at most three curves with constant-sign
curvature, which is a crucial property required by Theorem 3.4. The
inflection points are computed explicitly by finding the parametric
coordinates for which the curvature changes sign

κ∥c ′(t)∥3 = det(c(t)′, c(t)′′) = 0, (1)

and ensuring that c(t)′ , 0.

Total Curvature Split. While each part of the curve has constant-
sign curvature by construction, its total curvature is not bounded,
potentially creating self-intersections in the curving step (Theorem
3.4). We thus recursively subdivide the curves until the turning
number is smaller than 180 degrees to prevent self-intersections
(Theorem 3.4). The optimal splitting point, which halves the total
curvature, corresponds to the point in which the tangent is the aver-
age of the two endpoints tangents. This condition can be formulated
as a quadratic equation in t

det
(
c ′(0) + c ′(1)

2
, c ′(t)

)
= 0.

Note that when the angle between c ′(0) and c ′(1) is larger than π ,
we need to use minus the average tangent.

"
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Fig. 6. Effect of the feature envelope µ and boundary envelope ϵ on the
closeup (white circle in the middle) of an input mesh (center). The larger µ
and ϵ (top right corner) are, the less primary (red) and secondary (green)
features the final mesh will have. By enlarging µ (y-axis from bottom to top)
more primary features will be present in the final result. A similar effect is
obtained by enlarging ϵ (x -axis from left to right).

Curve Resampling. We discretize the resulting curves by sampling
them recursively, splitting them in half at each step, until two condi-
tions are satisfied: (1) the segments are shorter than the user-desired
target edge length l and (2) the polyline approximation is within µ
distance from the Bézier curve. From now on, each curve section
will be denoted with the term discrete curve section.

Primary and Secondary Feature Tagging. We now compute a dis-
crete version of a µ-separated soup of features, directly using the
polyline approximating the curves. We greedily traverse all the
discrete curve sections, and for each one we mark it as primary,
check the µ-separated condition, and discard conservatively all the
segments that violate it, marking them as secondary. The output of
this stage is a valid µ-separated set features.

Secondary Feature Simplification. A second pass is used to prune
close secondary features: every pair of feature endpoints closer
than µ corresponding to secondary features are collapsed at their
barycenter. This step is not strictly necessary, but it dramatically re-
duces the number of triangles generated by the BSP subdivision step,
improving the running times in challenging models with thousands
of self-intersections.

4.1 Linear Meshing
Similarly to many existing curved meshing algorithms (Section
2), we create an initial valid linear mesh and then curve its edges
to match the feature curves. However, our pipeline differs from
existing approaches: (1) we interleave mesh curving and quality
mesh improvement and (2) we never allow the curved triangles
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Fig. 7. Effect of the targeted edge length l on the output mesh.

to get inverted, i.e. we keep the Jacobian of their geometric map
positive.

Generation of a Valid Linear Triangle Mesh. To construct an initial
linear triangle mesh, we implement a 2D version of the TetWild
algorithm proposed in [Hu et al. 2018] , trivially adapting all the
steps to their 2D counterparts, which are both simpler and much
more efficient than the volumetric version. We thus denote our
algorithm as TriWild.
We use the same hybrid geometric kernel proposed in [Hu et al.

2018], using rational coordinates to avoid numerical problems in the
first phase, and rounding them to floating point coordinates during
quality optimization. The algorithm requires a parameter ϵ to control
the size of boundary envelope. In Figure 6, we compared the results
of different combinations of envelope ϵ and feature envelope µ. The
influence of targeted edge lengths l and minimal edge length lm on
final output is shown in Figure 7. For the sake of brevity, we describe
here the extensions required to handle the input curved features
and we refer to [Hu et al. 2018] for the complete description of the
algorithm.

Feature Invariants. Similarly to TetWild, TriWild preserves two
invariants during the mesh generation and optimization: (1) sec-
ondary feature edges need to stay within the ϵ envelope, and (2)
triangles cannot be inverted. We add two additional invariant for
the primary feature edges: (3) the integrated curvature of the part
of the parametric curve associated with every triangle edge must be
smaller than α , and (4) primary feature vertices are allowed to only
move on the curve. We simply discard all operations that violate
any invariant, and we use our preprocessing (Section 3.1) to ensure
that the invariants hold for the initial triangle mesh generated after
BSP subdivision.

Feature Handling. TriWild iterates between four local operations
for mesh improvement: (1) edge splitting, (2) edge collapsing, (3)
edge swapping, and (4) vertex smoothing. Their behaviour and
implementation are identical to their 3D counterpart in TetWild.
The only exceptions are the vertices and edges corresponding to
primary features: (1) when a feature edge is split, we place the
inserted vertex in the middle of the parametric curve attached if
it does not introduce inverted triangles, otherwise we place it in
the middle of the linear edge, (2) when we collapse edges involving
an endpoint of a curve, we always keep the endpoint in the same
position, (3) we disallow swaps on primary and secondary feature
edges, and (4) we restrict smoothing of vertices attached to a feature
to lie on the feature itself (Appendix A). During all the operations,

Fig. 8. The green vertex prevents the new orange point in the feature to
move to the curve without creating inverted triangles (first image). We
un-mark it so it is free to move (second feature) until is pushed away and
the feature vertex is snapped to its feature (last image).

we explicitly keep track of the parametric position of all the vertices
lying on primary features.

Vertex Projection. While unconditionally robust, triangle meshing
using a BSP subdivision has the unfortunate side effect of potentially
refining some of the edges corresponding to input features. This is
problematic if the features are curved, since the inserted vertices will
lie close, but not exactly on the feature. We thus add an additional
step in the mesh improvement that moves every feature vertex as
close as possible to its assigned feature (Figure 8) to enforce the
fifth invariant. For each such vertex, we compute the closest point
on the feature (Appendix B), and move as close as possible to it,
while not violating any of the 3 invariants above. These vertices are
not allowed to move further away from their closest point on the
features. As the vertices move toward their target position, the rest
of the mesh follows them since the smoothing operations strive to
keep the quality high, eventually allowing these vertices to snap to
the feature. While rare, it is possibly that some vertices in the region
between the linear and the curved feature (Figure 8) cannot move
due to Invariant (1). We thus delete the tagging for any secondary
feature in these areas to allow the primary feature vertices to be
snapped.

Termination Criteria. The quality optimization terminates when
the minimal angle of the mesh is larger than α or the AMIPS en-
ergy is smaller than 10 (default value of TetWild), which is a good
heuristic for curving the linear triangles (Theorem 3.4). Note that
this condition does not guarantee that the elements will not be
inverted during curving, but makes it less likely. We also stop the
optimization if the maximum of iterations is reached. We have ex-
perimentally observed that for most models it is possible to stop the
optimization prematurely, without affecting the quality in notice-
able ways, and we thus used lower thresholds (10 degrees, AMIPS
energy 30, max 80 iterations) for the large scale stress tests to reduce
the overall running time at the cost of mesh quality.

4.2 Curvilinear Mesh Optimization
The result of the previous stage is a linear mesh which edges are
assigned to a primary feature and which vertices have the corre-
sponding parametric values. We now aim to construct a per-triangle
bijective geometric map expressed in Lagrange form which, re-
stricted to edges, corresponds to the curve. This curvilinear mesh
optimization iteratively warps the edges of the linear mesh while op-
timizing its quality with local operations. Note that our optimization
only bends the feature edges.

ACM Trans. Graph., Vol. 38, No. 4, Article 52. Publication date: July 2019.



52:8 • Hu, Y. et al

0%
2%
4%
6%
8%

1e−08 1e−05 1e−02

Fig. 9. Maximal least square fitting error with respect to d on a log scale.

Splitting and Curving. To simplify all operations applied on a
curved mesh, we split every triangle with more than one edge as-
signed to a curved feature until it has only one edge. We assign the
cubic Lagrangian geometric map

д(x ,y) =
9∑
i=0

vi ℓi (x ,y)

(see Appendix C for the definition of ℓi (x ,y)) to each triangle with
a feature edge (the first 3 vi are the vertices of the triangle) and we
compute its coefficients vi by evaluating the curve c(t) at 1/3 and
2/3 for the curved edge. For the remaining two linear edges, we
sample them linearly, and use the average first 9 vi for the position
of the central node. This procedure is not guaranteed to produce
a valid geometric map due to 2 reasons: (1) the solution might not
exist (avoiding intersections between the boundary segments of a
Lagrangian triangle is not a sufficient condition to ensure an overall
positive Jacobian), and (2) even if it exists it might not be in the
simple form we just described. We thus skip problematic triangles in
this stage (assigning them a linear geometric map) and we improve
the quality of the mesh further, increasing the probability that the
geometric map fit will produce a bijective map.

Curved Mesh Optimization. The mesh quality is improved us-
ing the same local operations used in Section 4.1, but with less
constraints, since it is not necessary anymore to enforce the total
curvature invariant. Since the mesh is now using a non-linear geo-
metric map, the Jacobian is no longer constant in each triangle, and
checking for validity is more expensive [Geuzaine et al. 2015]. Note
that each operation on a curved triangle potentially modifies the
curved edges and requires to update the Lagrange coefficients vi to
always match the associated feature.

Termination Criteria and Least Squares Fitting. The optimization
terminates when the user-controlled quality threshold is achieved
(AMIPS Energy 20), or after a user-controlled number of iterations
(default 10) is reached. If there are curved triangles which are still
impossible to curve exactly using the simple Lagrange basis (i.e.,
the Jacobian of the geometric mapping is negative), we do a best-
effort and fit them only in a least square sense by optimizing for the
Lagrangian coefficientsvi that best approximate the boundary curve
(minimize the distance between the two curves) under the constraint
of having a positive Jacobian. This happens to 44.7% meshes of all
our outputs and 0.18% faces per mesh (those with fitting) in average.
The overall max error in our experiments is 6.99e-2d (mean 1.87e-5d ,
std 6.99e-4, Figure 9), indicating a faithful reproduction of the input
features.

Fig. 10. Random selected examples of curved meshes obtained with our
method on the Openclip dataset.

5 RESULTS
We implemented our algorithm in C++, using Eigen [Guennebaud
et al. 2010] for linear algebra routines. The source code of our refer-
ence implementation is available at https://github.com/wildmeshing/
TriWild. The experiments were performed on cluster nodes with 2
Xeon E5-2690v4 2.6GHz CPUs and 250GB memory, each with 64GB
of reserved memory, and allowed for a maximum running time of
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Fig. 11. Timing of our curved pipeline on a log scale.

6 hours. To test our curved mesh generation we crawled 19,686
SVG images from openclipart.org, a free SVG image repository. For
each SVG image we extract the set of features F which are used
in our algorithm. Figure 10 shows some examples of the created
curved meshes. Within the time limit of 6 hours we successfully
created 19,685 curved meshes with only one failure due to large
input size. Figure 11 summarizes the running time of our curved
pipeline. Since we always reject operations (included the fitting)
introducing inverted elements, the only possible failure is inherited
by TetWild: some vertices might fail to be rounded into floating
points. However, this never happened in our experiments.

5.1 Applications
The main application of meshing is simulation, which aims to solve
a partial differential equation (PDE) for an unknown function u
defined over a domain Ω subject to some boundary constraints. The
role of the function u depends on the application, for instance in
elasticity it is displacement, while for fluids it is velocity. One of
the typical numerical methods to solve PDEs is the finite element
method (FEM). As the name suggests, the first essential step of a FEM
consist of meshing the domain (thus creating the triangles) which
can be done with both linear or curved meshes. In fact, for FEM
simulations, one requires only a bijective map from the reference
triangle (unit right-angle triangle) to the actual physical triangle,
without any assumptions about the linearity of the map. Changing
the geometric order of the triangles (e.g., from linear to cubic) only
changes the local assembler but not affects the size and sparsity
of the final linear system. In fact, it only requires a slightly higher
quadrature order, leading to similar performance as linear triangles.

The main advantage of high order geometries is that we can use
coarse meshes, which leads to faster simulations, without introduc-
ing any geometrical error on the boundary description. We now
demonstrate the effectiveness of our curved meshes for different
applications using different PDEs. We focus our applications to stan-
dard PDEs used in graphics, and remark that other more complex
equations might benefit more from high-order geometries [Bassi
and Rebay 1997]. All experiments are done on cubic meshes (the
geometric map used is cubic Lagrange polynomials) with quadratic
Lagrange polynomials as basis functions to represent the solution.
When we compare against meshes with straight edges, we replace
the cubic geometric map with a linear one. We stress that replacing
the linear geometric map with a cubic one produces systems with
exactly the same size and sparsity, the only difference are the entries
of the matrices, which are slightly more expensive to compute for
the high-order map.

Fig. 12. Example of diffusion curves for a linear (top left) and curved (top
right) mesh. The bottom left is the input and the bottom right is the curved
output.

Laplacian. The simplest, and by far the most popular in graphics,
PDE is the Laplace equations

∆u = f , u = д for x ∈ ∂Ω,

where ∂Ω is the boundary of the domain. A popular graphics appli-
cation of such equation is diffusion curves [Boyé et al. 2012; Orzan
et al. 2008]. A set of curves is augmented with 2 colors, one on the
left and one on the right. The final image is generated by diffusing
the colors from the input colored curves. In other words, the mesh
is cut open along the curves, the left and right colors play the role of
boundary conditions, and the solution is the color at every pixel. We
generate a curved mesh with our method from the annotated curves
in [Orzan et al. 2008] and run the diffusion simulation with and
without curved triangles, Figure 12. We clearly see that, at the same
resolution, the curved mesh provides a superior result, avoiding
approximation artifacts on the diffusion curves. The runtime for the
linear mesh is 0.074s, and switching to cubic geometric map only
adds 0.016 seconds.

Bi-Laplacian. For many graphics applications, the Bi-Laplacian
equation is preferred since it produces smoother results around the
boundary.

∆2u = 0, u = д for x ∈ ∂Ω,
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Fig. 13. Example of inflation on a linear (middle) and curved (right) mesh
of the same resolution, the input mesh is shown in the (left).

To solve this PDE we require mixed finite elements [Monk 1987]
or C1 basis functions [Boyé et al. 2012], we opted for the former
since it is simpler to implement. Among many application of the bi-
Laplacian, we picked surface inflation [Joshi and Carr 2008; Sýkora
et al. 2014]. The idea is elegant: the mesh is fixed at the curves (zero
boundary conditions) and a force is applied to the curves to “lift” the
mesh. We follow the Rèpousse [Joshi and Carr 2008] construction
but instead of using the curvature to inflate we use a constant value.
Figure 13 shows the results for the same mesh with and without
curved triangles: similarly as before, the curved mesh do not exhibit
any visible artifacts, and the runtime is only slightly (0.2%) higher
for the curved mesh.

Elasticity. In Figure 14, we study the difference of an elastic defor-
mation using the Neo-Hookean elasticity model, where the stress σ
relationship is not linear with respect to the displacement u:

−div(σ [u]) = f σ [u] = µ(F [u] − F [u]−T ) + λ ln(det F [u])F [u]−T ,

where F [u] = ∇u + I and λ, µ are material parameters. Note that
due to the non-linearity of the PDE, the solution method requires
a non-linear solver such as the Newton method. We use a simple
setup, a square domain with a circular hole in the middle is hanged
on the top (zero Dirichlet) and gravity is applied. Even in the context
of non-linear PDE the overhead of curved triangles is negligible
(curved 0.0975s, linear 0.0857s) and curved meshes produce results
closer to the ground truth solution computed on a dense mesh,
Figure 14.

Stokes. The final applicationwe consider is fluid simulation, where
we are looking for the fluid velocity u of a fluid. We solve the Stokes
equation

−µ∆u + ∇p = 0
−divu = 0,

Gravity

Fig. 14. Example of elastic deformation of linear (second figure) and curved
(third figure) triangles. A solution on a dense mesh is also provided for
reference (fourth figure). Note how the curved mesh provides a much more
accurate solution than the linear mesh, especially around the hole. The
coarse mesh used in both simulations is shown in the first figure. The color
shows the y-displacement.

Fig. 15. Example of Stokes fluid simulation for small circular obstacles (left)
for linear (right top) and curved (right bottom) triangles. The color shows
the norm of the velocity of the fluid, and the lines are the stream lines.

where p is the pressure and µ is the viscosity of the fluid. The
experiment consists of a pipe filled with small circular obstacles
with a fluid passing through (Figure 15 left), a setup used for studying
cancer cell migration within interstitial tissues [Panagiotakopoulou
et al. 2016]. In other words, we have a constant non-zero boundary
condition on the left and right side of the domain (in and out flow
velocities) and zero velocity on the rest of the boundary (i.e., the
top and bottom, and the obstacles). Figure 15 shows a close-up of
the results of the simulation for curved and linear meshes. Because
of the poor approximation of the linear mesh, the behaviour of the
fluid is asymmetric and unnatural. While simulation on linear mesh
takes 2.65s, it takes 2.70s on curved mesh where the difference is
small.

5.2 Comparison with Curved Meshers
To the best of our knowledge only three existing available soft-
ware allow to generate curved meshes that preserve input curve
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Matlab Our

Fig. 16. Comparison between Matlab (left) and our (right) mesh for a simple
set of ellipses.

features: the Matlab PDE toolbox [MATLAB Partial Differential
Equation Toolbox 2018], GMsh [Geuzaine and Remacle 2009], and
NekTar++ [Cantwell et al. 2015]. The main difference between these
software and our solution is that they require a CSG tree (Matlab) or
a boundary curve which clearly defines an interior domain (GMsh,
NekTar++). With these solutions it is impossible to mesh a set of
open input curves, thus limiting the applications, for instance dif-
fusion curves or inflation (Section 5.1) would be impossible. We
manually created 2 simple examples and provided a representative
comparison to one method for each category.

Matlab. According to the Matlab documentation2, the 2D mesh-
ing package exploits constructive solid geometry (CSG), which uses
a set of solid blocks: square, rectangle, circle, ellipse, and polygon.
This short list of primitives limits the applications considerably,
for instance it is not possible to represent even closed polybezier
curves. Another major limitation of the toolbox is that it supports
only linear and quadratic triangles, leading, for instance, to poor
approximations of circular arcs. To test Matlab we setup a simple ex-
ample, a unit square with 3 ellipses curves added (Appendix D) and
produced the SVG for our method, Figure 16. Note that our method
constructs a dense high-quality mesh around the high-curvature tip
of the ellipse while Matlab resorts to large low quality triangles.
While constructing this example we discover 2 problems in the

Matlab mesher: if we shrink the last ellipse first semi-axis from 0.055
to 0.54 it produces an error and cannot generate any valid output;
by shrinking it even more it goes in infinite loop, while our method
is unaffected by these changes.

GMsh. GMsh requires the curves to define a closed domain. Since
GMsh exactly reproduces the input boundaries, it overrefines near
the defects (Figure 17). Additionally, it relies on an “untangling”
strategy: it first generates a possibly invalid curved mesh, and then
tries to “un-invert” the triangles. For the example in Figure 17, the
untangling fails and the mesh still contains 19 inverted triangles,
making it unsuitable for FEM simulations.

5.3 Linear Meshing Comparison
Our algorithm can be used to robustly generate traditional linear
triangles meshes, by simply loading a collection of points and line
segments, and marking all the segments as secondary features (Sec-
tion 4). We compare extensively with two popular open source 2D

2https://www.mathworks.com/help/pde/geometry.html

GMsh Our

Fig. 17. Comparison of creating a curved cubic mesh for a puzzle piece
with GMsh (left) and our method (right). GMsh mesh contains 19 inverted
triangles, whereas ours has none and it can be directly used in downstream
applications.
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Fig. 18. The success rate of generating a triangulation over the raw, cleaned
and snap rounded Openclipart data set.

meshing libraries, implementing the current state of the art trian-
gulation algorithms: Triangle [Shewchuk 1996] and CGAL’s 2D
Triangulation module [Boissonnat et al. 2002]. Both libraries are
capable of taking a set of (potentially intersecting) segments as con-
straints and generating either a constrained Delaunay triangulation
(CDT) or a conforming Delaunay triangulation (RDT) as output.
We compare our results with both CDT and RDT results generated
by these libraries on three sets of input: (1) raw input, (2) cleaned
input, and (3) snapped input. Raw input contains piece-wise linear
approximations of 19,686 SVG images crawled from openclipart.org
The clean input is obtained by (1) removing duplicated vertices,
(2) removing duplicated edges, and (3) removing degenerate edges.
Note that intersecting segments are not fixed in the cleaning process,
since all methods supports them. Lastly, the snapped input is the
output of iteratively snap rounding [Goodrich et al. 1997] the raw
input using ϵ as the pixel size. For linear comparison, we limit the
maximum computing resources for each input to 1 hour running
time and 16 GB memory.

Success Rate. The first, and simplest, metric is to check if the
algorithm successfully generated a non-empty output. Figure 18
compares all methods on the three types of inputs. For snapped
inputs (where there is no intersections), all methods succeeds nearly
100%. However on cleaned inputs, RDT from both CGAL and Tri-
angle fails due to the presence of intersecting segments. Only our
approach and CGAL CDT are robust enough against the rampant
presence of intersecting and degenerate segments from the raw in-
put. It is interesting to observe that the single model that produces
invalid output with Triangle RDT is not the same one that produces
an invalid output for CGAL RDT.
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Fig. 19. The total running time of all triangulation algorithms.

Figures 19 and 20 shows the total running time and the total
number of triangles generated by all methods on all three sets of
inputs. Although slower, our algorithm along with CGAL’s CDT are
the only methods not requiring input preprocessing to be robust.
Note that the preprocessing step can be very expensive (Figure
21) and will likely dominate the running time when paired with a
triangle meshing algorithm that requires clean input. Note that all
timing plots are using logarithmic scale for x-axis.

Correctness and Quality. Table 1 lists the number of invalid trian-
gulations generated by each method, i.e. triangulation containing
one or more inverted triangles. We use exact predicates to check
for triangle inversions [Shewchuk 1997]. Our algorithm generates
inversion-free triangulation for all inputs, while both Triangle and
CGAL produce invalid outputs occasionally. Figure 22 illustrates one
of the many triangulation quality measures [Shewchuk 2002]: min
edge to max edge ratio. Our algorithm produces more well-shaped
triangles than CDT, but slightly worse that RDT. The number (Fig-
ure 20) and quality (Figure 22) of the triangles generated by our
method is mostly independent from the preprocessing done to the
input, suggesting that our algorithm is stable to small perturbation
in the input. This is not the case for other methods, which exhibit
major differences in both number of elements and quality.

6 LIMITATIONS AND CONCLUDING REMARKS
We introduce an algorithm to create curved triangular meshes pre-
serving features from a large collection of real-world SVG drawings.
We demonstrated that our algorithm supports many applications in
computer graphics, and compares favorably against existing trian-
gle meshers, producing coarser meshes due to its native ability to
filter out small scale features that are smaller than a user-controlled
epsilon.
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Fig. 20. Comparison of the number of triangles generated by each method
on a log scale.
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Fig. 21. The running time of two preprocessing algorithms we used. Note
that snap rounding is much more expensive than triangulation in general.

Table 1. Total Number of Failed Results for All Methods.

Triangle CGAL Ours*
CDT RDT CDT RDT

raw 16010 (67) 17806 (1) 3743 (3585) 12945 (1) 13 (0)
cleaned 645 (24) 3329 (0) 524 (457) 3560 (0) 83 (0)
snapped 5 (0) 5 (0) 5 (0) 38 (0) 5 (0)

Note: The failure refers to no output or output with inverted triangles. Numbers in
parenthesis represent the number of output triangulations that contains inversions.
*While our algorithm occasionally timed out due to limited computing resources, we
have validated that it can always succeed with a larger epsilon and 64G memory.

The main limitation of our algorithm is that it does not guarantee
to exactly preserve intersections between curves. While our current
algorithm produces visually pleasing results in these cases, wewould
like to explore the use of an exact Bezier arrangement [Wein et al.
2018] of the input features, to address this issue. A second interesting
direction for future work is the creation of meshes with geometric
maps of arbitrary degree or with rational Bezier edges, able to
exactly reproduce circular arcs. While extending our algorithm will
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Fig. 22. Edge ratio distribution on 1,000 randomly sampled outputs for each
method.

require minor modifications, their use in FEM is unclear, since there
are no standard elements that reproduce them. Compared to other
linear triangle meshers, our algorithm is around 10 times slower. We
believe that parallelization of the mesh optimization stage would
provide a noticeable performance boost.

We expect our contribution and our reference implementation to
have a large impact in computer graphics and mechanical engineer-
ing, by considerably lowering the efforts required to build curved
(and linear) meshes and use them for FEM simulations.
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A CURVED AMIPS
Let E(x ,y) be the traditional AMIPS energy which is minimized
using Newton method, thus we requires gradient and hessian of
E. For the smoothing on the features the minimization becomes
univariate:

min
t ∈(0,1)

E(c(t)).

We now need gradient and hessian of E(c(t))with respect to t which
can be easily obtained by the chain rule:

E ′(c(t)) = ⟨(∇E)(c(t)), c ′(t)⟩,

and

E ′′(c(t)) = (c ′(t))T HE ((c(t)) c
′(t) + ⟨(∇E)(c(t)), c ′′(t)⟩.

Note that since E(c(t)) : R→ R the gradient and hessian are scalars
(while for E(x ,y) : R2 → R they are tensorial).

B POINT CUBIC BEZIER DISTANCE
The parametric value t⋆ of the closest point to p in the curve c can
be find as

t⋆ = argmin
t ∈(0,1)

∥c(t) − p∥2,

which, by the first order condition leads to the following equation
d
dt

∥c(t) − p∥2 = 0.

Since c(t) is a polynomial of order 3, the squared norm becomes of
order 6, which implies that the first order condition equation is of
order 5. Therefore it can be written as

d
dt

∥c(t) − p∥2 = at5 + bt4 + ct3 + dt2 + et + f = 0.

Fining roots of this polynomial is a challenging task, which we solve
by computing the eigenvalues λi , i = 0, . . . , 4 of the 5×5 companion
matrix

M =

©«
0 0 0 0 f /a
1 0 0 0 e/a
0 1 0 0 d/a
0 0 1 0 c/a
0 0 0 1 b/a

ª®®®®®¬
.

For each real eigenvalue λi we compute ∥c(λi ) − p∥2 and select t⋆
as the λi with smallest distance in the interval 0, 1. If no λi are in
interval, we know that t⋆ will be either zero or one, which can be
decided by evaluating the distance from the endpoints. Note that
we opted for this solution for simplicity, a more efficient alternative
is Bezier clipping [Sederberg and Nishita 1990].

C CUBIC LAGRANGE BASES
The ten Lagrange bases are defined as

ℓ0 = −
1
2
(3y − 1 + 3x )(y − 1 + x )(3y − 2 + 3x ) ℓ1 =

1
2
x (9x2 − 9x + 2)

ℓ2 =
1
2
y(9y2 − 9y + 2) ℓ3 =

9
2
x (x + y − 1)(3x + 3y − 2)

ℓ4 = −
9
2
x (3x2 + 3xy − 4x − y + 1) ℓ5 =

9
2
xy(3x − 1)

ℓ6 =
9
2
xy(3y − 1) ℓ7 = −

9
2
y(3xy − x + 3y2 − 4y + 1)

ℓ8 =
9
2
y(x + y − 1)(3x + 3y − 2) ℓ9 = −27xy(x + y − 1)

D MATLAB EXPERIMENT SETUP
The Matlab experiment consists of:

• a unit square at the origin
• an ellipse centered at (0.25, 0.25) with semiaxes 0.2 and 0.15
• an ellipse centered at (0.5, 0.75) with semiaxes 0.4 and 0.15
• an ellipse centered at (0.8, 0.5) with semiaxes 0.055 and 0.4.

The four primitives are just added.
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