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Abstract

There are many applications that demand large quantities of natural
looking motion. It is difficult to synthesize motion that looks nat-
ural, particularly when it is people who must move. In this paper,
we present a framework that generates human motions by cutting
and pasting motion capture data. Selecting a collection of clips
that yields an acceptable motion isa combinatorial problem that we
manage as a randomized search of a hierarchy of graphs. This ap-
proach can generate motion sequences that satisfy avariety of con-
straintsautomatically. The motions are smooth and human-looking.
They are generated in real time so that we can author complex mo-
tions interactively. The algorithm generates multiple motions that
satisfy a given set of constraints, allowing a variety of choices for
the animator. It can easily synthesize multiple motions that inter-
act with each other using constraints. This framework allows the
extensive re-use of motion capture data for new purposes.

CR Categories. 1.2.7 [Artificial Intelligence]: Problem Solv-
ing, Control Methods and Search—Graph and tree search strate-
gies1.3.7[COMPUTER GRAPHICS]: Three-Dimensional Graph-
ics and Realism—Animation

Keywords: Motion Capture, Motion Synthesis, Human motion,
Graph Search, Clustering, Animation with Constraints

1 Introduction

Motion is one of the most important ingredients of CG movies and
computer games. Obtaining realistic motion usually involves key
framing, physically based modelling or motion capture. Creating
natural 1ooking motions with key framing requireslots of effort and
expertise. Although physically based modelling can be applied to
simple systems successfully, generating realistic motion on a com-
puter is difficult, particularly for human motion. A standard so-
Iution is motion capture: motion data for an approximate skeletal
hierarchy of the subject is recorded and then used to drive a recon-
struction on the computer. This allows other CG characters to be
animated with the same motions, leading to realistic, “ human look-
ing” motions for use in movies or games. The biggest drawbacks
of motion capture are:

1. Most motion capture systems are very expensive to use, be-
cause the processistime consuming for actors and technicians
and motion data tends not to be re-used.

2. Itisvery hard to obtain motions that do exactly what the ani-
mator wants. Satisfying complex timed constraintsis difficult
and may involve many mation capture iterations. Examples
include being at a particular position at a particular time ac-
curately or synchronizing movement to a background action
that had been shot before.

In order to make motion capture widely available, the motion
data needs to be made re-usable. This may mean using previous
motion capture data to generate new motions so that certain re-
quirements are met, transferring motions from one skeletal config-
uration to another so that we can animate multiple figures with the
same motion without it looking “funny”, or changing the style of
the motion so that the directors can have higher level control over
the motion. There are three natural stages of motion synthesis:

1. Obtaining motion demands involves specifying constraints
on the motion, such as the length of the motion, where the
body or individual joints should be or what the body needs
to be doing at particular times. These constraints can come
from an interactive editing system used by animators, or from
acomputer game engine itself.

2. Generating motion involves obtaining a rough motion that
satisfies the demands. In this paper, we describe a technique
that cuts and pastes bits and pieces of example motions to-
gether to create such amotion.

3. Post processing involves fixing small scale offensive arti-
facts. An example would involve fixing the feet so that they
do not penetrate or slide on the ground, lengthening or short-
ening strides and fixing constraint violations.

In this paper, we present a framework that allows synthesis of
new motion data meeting awide variety of constraints. The synthe-
sized motion is created from example motions at interactive speeds.

2 Related Work

In the movie industry, motion demands are usually generated by
animators. However, automatic generation of motion demands is
required for autonomous intelligent robots and characters [Funge
et al. 1999]. An overview of the automatic motion planning can be
found in [Latombe 1999; O’ Rourke 1998].

Generating motion largely follows two threads: using examples
and using controllers. Example based motion synthesis draws on an
analogy with texture synthesis where a new texture (or motion) that
looks like an example texture (or motion example) needs to be syn-
thesized [Efros and Leung 1999; Heeger and Bergen 1995]. Pullen
and Bregler used this approach to create cyclic motions by sampling
motion signalsin a*“signal pyramid” [2000]. They also used asim-
ilar approach to fetch missing degrees of freedom in a motion from
a motion capture database [Pullen and Bregler 2002]. The sam-
pling can also be done in the motion domain to pick clips of mo-
tions to establish certain simple constraints [Lamouret and van de
Panne 1996; Schodl et a. 2000]. A roadmap of all the motion ex-
amples can be constructed and searched to obtain a desired motion



[Choi et a. 2000; Lee et al. 2002; Kovar et a. 2002]. The clips
in this roadmap can also be parameterized for randomly sampling
different motion sequences [Li et al. 2002]. The motion signals
can aso be clustered. The resulting Markov chain can be searched
using dynamic programming to find a motion that connects two
keyframes [Molina-Tanco and Hilton 2000] or used in a variable
length Markov model to infer behaviors [Galata et a. 2001] or di-
rectly sampled from to create new motions [Bowden 2000]. This
is similar to our work. However, our clustering method does not
operate on body configurations and our probabilistic search strat-
egy is more effective than dynamic programming as it will be ex-
plained below. Types of probabilistic search algorithms have also
been used in physically based animation synthesis [Chenney and
Forsyth 2000] and rendering [Veach and Guibas 1997]. Controller
based approaches use physical models of systems and controllers
that produce outputs usually in the form of forces and torques as a
function of the state of the body. These controllers can be designed
specifically to accomplish particular tasks[Brogan et a. 1998; Hod-
gins et a. 1995] or they can be learned automatically using statis-
tical tools [Grzeszczuk and Terzopoulos 1995; Grzeszczuk et a.
1998; Mataric 2000].

The motion data can also be post processed to fix problems such
as feet diding on the ground or some constraints not being satis-
fied [Gleicher 1998; Lee and Shin 1999; Popovic 1999; Rose et al.
1996]. This usually involves optimization of a suitable displace-
ment function on the motion signal. Different body sizes move ac-
cording to different time scal es, meaning that motion cannot simply
be transferred from one body size to another; modifying motions
appropriately is an interesting research problem [Hodgins and Pol-
lard 1997].

3 Synthesis as Graph Search

We assume there is a set of N motion sequences forming our
dataset, each belonging to the same skeletal configuration. Every
motion is discretely represented as a sequence of frames each of
which has the same M degrees of freedom. Thisis required to be
able to compare two motions and to be able to put clips from dif-
ferent motion sequences together. We write the i’th frame of s'th
motion asss;.

3.1 Motion Graph

The collection of motion sequences could be represented as a di-
rected graph. Each frame would be anode. There would be an edge
from every frame to every frame that could follow it in an accept-
able splice. In this graph, there would be (at least) an edge from
the k'th frame to the k + 1'th frame in each sequence. This graph
is not a particularly helpful representation because it is extremely
large — we can easily have tens of thousands of nodes and hun-
dreds of thousands of edges — and it obscures the structure of the
sequences.

Instead, we collapse al the nodes (frames) belonging to the same
motion sequence together. This yields a graph G where the nodes
of G areindividual motion sequences and there is an edge from s to
t for every pair of frames where we can cut froms tot. Since edges
connect frames, they are labelled with the frames in the incident
nodes (motion sequences) that they originate from and they point to.
We also assume that the edgesin G are attached a cost value which
tells us the cost of connecting the incident frames. If cutting from
one sequence to another along an edge introduces a discontinuous
moation, then the cost attached to the edge is high. Appendix A
introduces the cost function that we used. The collapsed graph still
has the same number of edges.

For an edge e from s; to t;, let fromMotion(e) = s,
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Figure 1: We wish to synthesize human motions by splicing to-
gether pieces of existing motion capture data. This can be done by
representing the collection of motion sequences by a directed graph
(top). Each sequence becomes a node; there is an edge between
nodesfor every framein one sequence that can be spliced to aframe
in another sequence or itself. A valid path in this graph represents a
collection of splices between sequences, as the middle shows. We
now synthesize constrained motion sequences by searching appro-
priate paths in this graph using arandomized search method.

toMotion(e) =t, fromFrame(e) = i, toFrame(e) = j and cost(e)
be the cost associated with the edge (defined in Appendix A). In
this setting, any sequence of edgese, - --en where toMotion(e;) =
fromMotion(e; ;) and toFrame(e;) < fromFrame(e, ), Vi,
1<i < nisavalid path and defines alegal sequence of splices. (fig-
urel).

3.2 Constraints

We wish to construct paths in the motion graph that satisfy con-
straints. Many constraints cannot be satisfied exactly. For example,
given two positions, there may not be any sequence of frames in
the collection that will get us from the first position to the second
position exactly. We define hard constraints to be those that can
(and must) be satisfied exactly. Typically, ahard constraint involves
using a particular frame in a particular time slot. For example, in-
stead of considering all valid paths, we can restrict ourselves to
valid paths that pass through particular nodes at particular times.
This way, we can constrain the moving figure to be at a specific
pose at a specific time. This enables us to search for motions such
as jumping, falling, or pushing a button at a particular time.

A soft constraint cannot generally be met exactly. Instead we
score sequences using an objective function that reflects how well
the constraint has been met and attempt to find extremal sequences.
One example is the squared distance between the position of the
constraint and the actual position of the body at the time of the
constraint. Example soft constraints include:

1. Thetotal number of frames should be a particular number.



2. The motion should not penetrate any objects in the environ-
ment.

3. The body should be at a particular position and orientation at
aparticular time.

4. A particular joint should be at a particular position (and
maybe having a specific vel ocity) at a specific time.

5. The motion should have a specified style (such as happy or
energetic) at a particular time.

Finding paths in the motion graph that satisfy the hard con-
straints and optimize soft constraints involves a graph search. Un-
fortunately, for even asmall collection of motions, the graph G has
alarge number of edges and straightforward search of thisgraph is
computationally prohibitive. The main reason is the need to enu-
merate many paths. There are, in general, many perfectly satisfac-
tory motions that satisfy the constraints equally well. For example,
if wereguire only that the person be at one end of aroom at frame 0
and near the other end at frame 5000, unless the room is very large,
there are many motions that satisfy these constraints.

4 Randomized Search

The motion graph istoo hard to search with dynamic programming
as there are many valid paths that satisfy the constraints equally
well. There may be substantial differences between equally valid
paths — in the example above, whether you dawdle at one side of
the room or the other is of no significance. This suggests summa-
rizing the graph to a higher level and coarser presentation that is
easier to search. Branch and bound algorithms are of no help here,
because very little pruning is possible.

In order to search the graph G in practical times, we need to do
the search at a variety of levels where we do the large scale mo-
tion construction first and then “tweak” the details so that the mo-
tion is continuous and satisfies the constraints as well as possible.
Coarser levels should have less complexity while allowing usto ex-
plore substantially different portions of the path space. In such a
representation, every level is a summary of the one finer level. Let
G «— G" «— G" « ...« G" « G be such ahierarchical represen-
tation where G’ isthe coarsest level and G isthe finest. We will first
find apath in G’ and then push it down the hierarchy to apathin G
for synthesis.

4.1 Summarizing the Graph

All the edges between two nodes s and t can be represented in a
matrix Py. The (i, j)'th entry of Py contains the weight of the
edge connecting s; to t; and infinity if there is no such edge. In
the appendix A, we give one natural cost function C(s;,t J-) for edge
weights. We now have:

Py — C(s,tj) if thereisanedgefroms; tot;
(Pe)ij =1 o otherwise.

The cost function explained in section A causesthe P matricesto
have non-infinite entries to form nearly elliptical groups (figure 2).
Thisis due to the fact that if two frames are similar, most probably
their preceding and succeeding frames also look similar.

In order to summarize the graph, we cluster the edges of G.
We now have G/, whose nodes are the same as the nodes of G,
and whose edges represent clusters of edges of G in terms of their
fromFrame and toFrame labels. We require that, if thereis a cut
between two sequences represented by an edge between two nodes
in G, there be at least one edge between the corresponding nodesin
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Figure 2: Every edge between two nodes representing different mo-
tion clips can be represented as a matrix where the entries corre-
spond to edges. Typicaly, if there is one edge between two nodes
in our graph, there will be several, because if it islegal to cut from
one framein the first sequence to another in the second, it will usu-
aly also be legal to cut between neighbors of these frames. This
means that, for each pair of nodes in the graph, there is a matrix
representing the weights of edges between the nodes. The i, j’'th
entry in this matrix represents the weight for a cut from the i'th
framein thefirst sequenceto the j’th framein the second sequence.
The weight matrix for the whole graph is composed as a collection
of blocks of this form. Summarizing the graph involves compress-
ing these blocks using clustering.

G'. If this were not the case, our summary would rule out potential
paths. In order to insure that this condition holds and because the
graphisvery large, we cluster edges connecting every pair of nodes
in G separately. We cluster unconnected edge groups of G from the
P matrices (defined between every pair of nodes) using k-means

[Bishop 1995]. The number of clusters is chosen as Wm

for each group where the axis lengths refer to the ellipse that fits to
the cluster (obtained through Principal Component Analysis).

The nodes of G’ are the same as the nodes of G. The edges con-
necting nodesin G’ are cluster centersfor clusters of edges connect-
ing corresponding nodesin G. The centers are computed by taking
the average of the edgesin terms of fromFrame, toFrame and cost
values. At this point, every edgein G’ represents many edgesin G.
We would like to have a tree of graph representations whose root
is G/, and whose leaves are G. We use k-means clustering to split
each cluster of edgesin half at each intermediate level and obtain
ahierarchical representation G’ «— G” «+ G « ... «— G" « G for
the original graph G. Thisis an instance of Tree-Structured Vector
Quantization [Gersho and Gray 1992].

Thus, in our summarized graph G’, each edge is the root of a
binary tree and represents all the edges in close neighborhood in
terms of the edge labels. Note that the leaf edges are the edges in
the original graph and intermediate edges are the averages of all the
leaf edges beneath them. A pathin G represents a sequence of clips;
so does a path in G, but now the positions of the clip boundaries
are quantized, so there are fewer paths.

4.2 Searching the Summaries

While searching this graph, wewould like to be able to generate dif-
ferent alternative motions that achieve the same set of constraints.
During the search, we need to find paths close to optimal solutions
but do not require exact extrema, because they are too hard to find.
Thismotivates arandom search. We used thefollowing search strat-

egy:



1. Start with aset of n valid random “seed” pathsin the graph G’
2. Score each path and score al possible mutations
3. Where possible mutations are:

(@) Delete some portion of the path and replace it with 0 or
1 hops.

(b) Delete some edges of the path and replace them with
their children

4. Accept the mutations that are better than the original paths
5. Include afew new valid random “seed” paths

6. Repeat until no better path can be generated through muta-
tions

Intuitively the first mutation strategy replacesaclip with a (hope-
fully) better one and the second mutation strategy adjusts the de-
tailed position of cut boundaries. Since we start new random “ seed”
paths at every iteration, the algorithm does not get stuck at alocal
optimum forever. Section 4.2.2 explains these mutations in more
detail.

Hard constraints are easily dealt with; we restrict our search to
paths that meet these constraints. Typically hard constraints specify
the frame (in a particular node) to be used at a particular time. We
do this by ensuring that “seed” paths meet these constraints, and
mutations do not violate them. Thisinvolves starting to sample the
random paths from the hard constraint nodes and greedily adding
sequences that get us to the next hard constraint if any. Since the
path is sampled at the coarse level, a graph search can also be per-
formed between the constraint nodes. At every iteration we check
if the proposed mutation del etes a motion piece that has a hard con-
straint in it. Such mutations are rejected immediately. Note that
here we assume the underlying motion graph is connected. Section
4.2.1 explains the constraints that we used in more detail.

Notice that this algorithm is similar to MCMC search (a good
broad reference to application of MCMC is [Gilks et al. 1996]).
However, it is difficult to compute proposal probabilities for the
mutations we use, which are strikingly successful in practice.

This is an online algorithm which can be stopped at anytime.
This is due to the fact that edges in intermediate graphs G’ ---G"
also represent connections and are valid edges. Thus we do not
have to reach the leaf graph G to be able to create a path (motion
sequence). We can stop the search iteration, take the best path found
so far, and create a motion sequence. If the sequence is not good
enough, we can resume the search from where we left off to get
better paths through mutations and inclusion of random paths. This
allows an intuitive computation cost vs. quality tradeoff.

4.2.1 Evaluating a Path

Since during the search all the paths live in a subspace implied by
the hard constraints, these constraints are always satisfied. Given
asequence of edgese, - - -ep, we score the path using the imposed
soft constraints. For each constraint, we compute a cost where the
cost isindicative of the satisfaction of the constraint. Based on the
scores for each of the constraints, we weight and sum them to create
afinal score for the path (The S function in equation 1). We aso
add the sum of the costs of the edges along the path to make surewe
push the search towards paths that are continuous. The weights can
be manipulated to increase/decrease the influence of a particular
soft constraint. We now have an expression of the form:

n
S(ey---€n) =Wc* D, COSt(;) + Wy +F +wyxB+w;*J (1)
i=1
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Figure 3: The two mutations are: deleting some portion of the path
(top-left, crossed out in red) and replacing that part with another set
of edges (top-right), and deleting some edges in the path (bottom-
left) and replacing del eted edges with their children in our hierarchy
(bottom-right)

Where we,w,w, and w jae weights for the quality (continuity)
of the motion, how well the length of the motion is satisfied, how
well the body constraints are satisfied and how well the joints con-
straints are defined. We sel ected these weights such that an error of
10 frames increases the total score the same amount as an error of
30 centimetersin position and 10 degreesin orientation. The scores
F, B and J are defined as:

1. F: For the number of frame constraints, we compute the
squared difference between the actua number of frames in
the path and the required number of frames.

2. B: For body constraints, we compute the distance between
the position and orientation of the constraint versus the ac-
tual position and orientation of the torso at the time of the
constraint and sum the squared distances. The position and
orientation of the body at the constraint times are found by
putting the motion pieces implied by the subsequent edges
together (figure 1). This involves taking all the frames of
motion toMotion(e;) between frames fromFrame(e,, ;) and
toFrame(e;) and putting the sequence of frames starting from
where the last subsequence ends or from the first body con-
straint if there is no previous subsequence. Note that we re-
quire that we have at least two body constraints enforcing the
position/orientation of the body at the beginning of the syn-
thesized motion (so that we know where to start putting the
frames down) and at the end of the synthesized motion. The
first body constraint is always satisfied, because we aways
start putting the motions together from the first body con-
straint.

3. J: For joint constraints, we compute the squared distance be-
tween the position of the constraint and the position of the
congtrained joint at the time of the constraint and sum the
squared distance between the two. To determine the configu-
ration of the body at the time at which the constraint applies,
we must assemble the motion sequence up to the time of the
congtraint; in fact, most of the required information such as
the required transformation between start and end of each cut
is already available in the dataset.

4.2.2 Mutating a Path

We implemented two types of mutations which can be performed
quickly on an active path.
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Figure 4: In the synthesized motion, discontinuities in orientation
are inevitable. We deal with these discontinuities using a form of
localized smoothing. At the top left, a discontinuous orientation
signal, with its discontinuity shown at the top right. We now con-
struct an interpolant to this discontinuity, shown on the bottom right
and add it back to the original signal to get the continuous version
shown on the bottom left. Typically, discontinuities in orientation
are sufficiently small that no more complex strategy is necessary.

1. Replacea sequence by selecting two edges e; and €it where
0 < j < n-—i, deleting all the edges between them in the
path and connecting the unconnected pieces of the path us-
ing one or two edges in the top level graph G’ (if possible).
Since in the summarized graph, there are relatively fewer
edges, we can quickly find edges that connect the two un-
connected nodes by checking all the edges that go out from
toMotion(e;), and enumerating all the edges that reach to
fromMotion(e; . j) and generate a valid path. Note that we
enumerate only 0 or 1 hop edges (1 edge or 2 edge connec-
tions respectively).

2. Demoting two edges to their children and replacing them
with one of their children if they can generate a valid path.
Doing this mutation on two edges simultaneously allows us
to compensate for the errors that would happen if only one of
them was demoted.

We check every possible mutation, evaluate them and take the best
few. Since the summary has significantly fewer edges than the orig-
inal graph, this step is not very expensive. If a motion sequence can-
not generate a mutation whose score is lower that itself, we decide
that the current path is a local minimum in the valid path space and
record it as a potential motion. This way, we can obtain multiple
motions that satisfy the same set of constraints.

4.2.3 Creating and Smoothing the Final Path

We create the final motion by taking the frames between
toFrame(e;) and fromFrame(e,,) from each motion
toMotion(e;) where 1 <i < n (figure 1). This is done by ro-
tating and translating every motion sequence so that each piece
starts from where the previous one ended. In general, at the
frames corresponding to the edges in the path, we will have CO
discontinuities, because of the finite number of motions sampling
an infinite space. In practice these discontinuities are small and
we can distribute them within a smoothing window around the
discontinuity. We do this by multiplying the magnitude of the
discontinuity by a smoothing function and adding the result back to
the signal (figure 4). We choose the smoothing domain to be +30
frames (or one second of animation) around the discontinuity and
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Figure 5: Body constraints allow us to put “checkpoints” on the
motion: in the figure, the arrow on the right denotes the required
starting position and orientation and the arrow on the left is the re-
quired ending position and orientation. All constraints are also time
stamped forcing the body to be at the constraint at the time stamp.
For these two body constraints, we can generate many motions that
satisfy the constraints in real-time.

Figure 6: We can use multiple “checkpoints” in a motion. In this
figure, the motion is required to pass through the arrow (body con-
straint) in the middle on the way from the right arrow to the left.

0 f<d-s
1 f—d+sy2
1 d—s<f<d
f)={ 2] 5
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0 f>d+s

as the smoothing function that gives the amount of displacement
for every frame f, where d is the frame of the discontinuity and
s if the smoothing window size (in our case 30). To make sure
that we interpolate the body constraints (i.e. having a particular
position/orientation at a particular frame), we take the difference
between the desired constraint state, subtract the state at the time
of the constraint and distribute this difference uniformly over the
portion of the motion before the time of the constraint. Note that
these “smoothing” steps can cause artifacts like feet penetrating or
sliding on the ground. However, usually the errors made in terms
of constraints and the discontinuities are so small that they are un-
noticeable.

4.3 Authoring Human Motions

Using iterative improvements of random paths, we are able to syn-
thesize human looking motions interactively. This allows interac-
tive manipulation of the constraints. This is important, because mo-
tion synthesis is inherently ambiguous as there may be multiple mo-
tions that satisfy the same set of constraints. The algorithm can find
these “local minimum” motions that adhere to the same constraints.
The animator can choose between them or all the different motions



Figure 7: In addition to body constraints, joint constraints can be
used to further assign “checkpoints” to individual joints. In this
figure, the head of the figure is also constrained to be high (indicated
by the blue line), leading to a jumping motion.

can be used to create a variety in the environment. Since the al-
gorithm is interactive, the animator can also see the ambiguity and
guide the search by putting extra constraints (figure 6).

Currently, we can constrain the length of the motion, the body’s
position and orientation at a particular frame (figure 5,6), a joint
(e.g. head, hand) to a particular state at a particular frame (figure
7), or constrain the entire body’s pose at a particular frame (fig-
ure 8). Notice that we can synthesize multiple interacting motions
independently using hard constraints (figure 9); we simply select
the poses, position and orientation at which the figures interact and
this framework fills in the missing motion, in a sense, interpolat-
ing the constraints. These are only a few of the constraints that
can be implemented. As long as the user specifies a cost function
that evaluates a motion and attaches a score that is indicative of the
animator’s satisfaction with the path, many more constraints can
be implemented. For example, if the motions in our database are
marked with their individual stylistic attributes, we can also con-
strain the style of the desired motion by penalizing motions that do
not have the particular style. In a computer game environment, we
can constrain the synthesized motion to avoid obstacles in the envi-
ronment. In such a case, body position/orientation constraints can
also come from an underlying path planner. Thus, given high level
goals (such as going from point A to point B, say) human looking
motions can be generated automatically.

5 Results

We have presented a framework that allows interactive synthesis of
natural looking motions that adhere to user specified constraints.
We assess our results using four criteria. Firstly, the motion looks
human. Secondly, the motions generated by the method do not
have unnatural artifacts such as slipping feet on the ground or jerky
movement. Third, the user specified constraints are satisfied, i.e.
the motion passes through the required spot at the required time,
or the character falls to a particular position (figure 8). Finally,
motions are generated interactively — typically depending on the
quality of the path desired, an acceptable 300 frame motion is found
in between 3 and 10 seconds on an average PC (Pentium Il at 800
Mhz). This speed allows interactive motion authoring. For exam-
ple, we generated the real-time screen captures in the attached video
using a dataset of 60-80 unorganized, short (below 300 frames
each) motion capture fragments. The average precomputation time
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Figure 8: Using hard constraints, we can force the figure to perform
specific activities. Here, we constrain the end of the motion to be
lying flat on the ground at a particular position/orientation and time.
Our framework generates the required tipping and tumbling motion
in real-time.

required for this many motions (computing the motion graph) is 5
hours on the same computer. On average, the results shown in the
video contain 3-30 motion pieces cut from the original motions.

This framework is completely automatic. Once the input mo-
tions are selected, the computation of the hierarchic motion graph
does not require any user intervention and the resulting representa-
tion is searched in real-time.

For many kinds of constraints the motion synthesis problem is
underconstrained; there are many possible combinations of motion
pieces that achieve the same set of constraints. Randomized search
is well suited to find many different motions that satisfy the con-
straints. On the other hand, some constraints, may not be met by
any motion. In this case, randomized search will try to minimize
our objective motion and find the “closest” motion. For example, if
the user asks for 100 meters in 5 seconds, the algorithm will tend
to put fast running motions together but not necessarily satisfying
the constraints. Similarly, if the set of motions to begin with do
not form a connected graph, the algorithm will perform searches
confined to the unconnected graphs. If there are hard constraints
in different unconnected components, we will not even be able to
find starting seed paths. From this perspective, the selection of the
database to work with is important. In our system, we used 60-100
football motions that have a strong bias towards motions that run
forward. However, as the attached video suggest, the randomized
search has no problem finding rare motions that turn back to satisfy
the constraints. The motion databases that we used were unorga-
nized except that we excluded football warming up and tackling
motions unless they were desired (figure 9).

The randomized search scales linearly as a function of the
database size with a very small constant. We have tried datasets
of 50-100 motions without a noticeable change in the running time
of the algorithm. The linearity in the running time comes from the
linear increase in the number of alternative mutations at every step.
Note that as the database size gets larger, the constant T (Appendix
A) that is used to create the edges can get lower since more mo-
tions mean that we expect to find better connections between mo-
tions, decreasing the number of edges. This will lead to a sublinear
increase in the running time.

The framework can work on any motion dataset: it can be created
by traditional key framing, physically based modelling or motion
capture. For example, we can take the motion data for “Woody” —
who may well have been key-framed, from “Toy Story” and create
new “Woody” motions automatically. The framework is also appli-



cable to non-human motion synthesis. For example, this framework
can be used to generate control signals for robots to achieve a par-
ticular task by generating the motion graph for previously known
motion-control signal pairs. During the synthesis we can not only
synthesize the final robot motion but also the associated control sig-
nals that achieve specific goals. Since the generated motions are
obtained by putting pieces of motions in the dataset, the resulting
motions will also carry the underlying style of the data. This way,
we can take the motion data for one character, and produce more
motions with the intrinsic style of the character.

6 Future Work

During the construction of the final motion, better ways of smooth-
ing between adjacent motions could be used to improve realism
[Popovic 1999]. Using better post processing, motions could also
be synthesized on non-uniform surfaces which the current frame-
work cannot handle. Additional post processing may involve phys-
ically based modelling to make sure the synthesized motions are
also physically correct.

Automatic integration of higher level stylistic constraints could
be incorporated into the framework, avoiding the arduous job of
labelling every motion with the intrinsic style by hand. By analyz-
ing patterns in the motion dataset, we might also infer these styles
or obtain higher level descriptions [Brand and Hertzmann 2001].
The synthesized motions are strictly bound to the motions that were
available in the original dataset. However, it is conceivable that the
motions that are very close to the dataset could also be incorporated
in the synthesizable motions using learned stylistic variations.

The integrity of the original dataset directly effects the quality
of the synthesized motion. For example, if the incoming motion
dataset does not contain any “turning left” motions, we will not be
able to synthesize motions that involve “turning left”. An automatic
way of summarizing the portions of the “possible human motions”
space that have not been explored well enough by the dataset could
improve the data gathering and eventually the synthesized motions.
This could also serve as a palette for artists: some portions of the
precomputed motion graph can be paged in and out of memory de-
pending on the required motion. For example, the animator could
interactively select the motions that need to be used during the syn-
thesis, and only the portion of the motion graph involving the de-
sired motions could be loaded. This would give animators a tool
whereby they can select the set of motions to work with in advance
and the new motions will be created only from the artist selected
set. Furthermore this encourages comprehensive re-use of motion
data.
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A Appendix: Similarity Metric

We define the torso coordinate frame to be the one where the body
stands centered at origin on the xz plane and looks towards the pos-
itive z axis. Any point p in the torso coordinate frame can be trans-

formed to the global coordinate frame by T (s;) + R/(S\i) -p, where
T (s;) is the 3 x 1 translation of the torso and R(s;) is the 3 x 1 rota-

—

tion of the torso and R(s;) represents the rotation matrix associated
with the rotation.

We wish to have a weight on edges of the motion graph (section
3.1) that encodes the extent to which two frames can follow each
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other. If the weight of an edge is too high, it is dropped from the
graph. To compute the weight of an edge, we use the difference
between joint positions and velocities and the difference between
the torso velocities and accelerations in the torso coordinate frame.

Let P(s;) be a 3 x n matrix of positions of n joints for s; in torso
coordinate frame. Equation 2 gives us the difference in joint posi-
tion and body velocity.

Ds,t, = [(P(s) =P(t;)) (IT(sp)=[T(tpD" (R(s) = R(tDT ()
We then define the normalizing matrices O and L in equation 3
and 4.

O = maxg;(|Dg ¢ Dss;.,|) 3)

L= maxs,i(‘DgIsi Dgi,sm ) 4
Then the cost function function in equation 5 is used to relate s;
tot..
j

C(s;.t;) =trace(Dy y, MO*lD;tJ_ + DghthL*ngItj) (5)
Where diagonal (n+2) x (n+2) matrices M and T are used
to weight different joints differently. For example, position differ-
ences in feet are much more noticeable than position differences of
hands because the ground provides a comparison frame. We have
found M and T matrices empirically by trying different choices.
Unfortunately, defining a universal cost metric is a hard problem.
The metric defined above produces visually acceptable results.
Using this cost metric, we create edges from s; to t where

C(sj,tj) < 7. Foran edge e from s; to t;, we set cost(e) = C(s;,t;).
T is a user specified quality parameter that influences the number of
edges in G. We have fixed this value so that cuts created between
motions along the edges do not have visible artifacts. Note that an
error that is visible on a short person may not be visible on an ex-
tremely large person. Thus, in theory, the weights must be adjusted
from person to person. However, in practice, possible size variation
of adult people is small enough that we used the same weights for
different people without creating a visible effect.
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