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Abstract

This paper presents an inverse kinematics system based on a learned
model of human poses. Given a set of constraints, our system can
produce the most likely pose satisfying those constraints, in real-
time. Training the model on different input data leads to different
styles of IK. The model is represented as a probability distribution
over the space of all possible poses. This means that our IK sys-
tem can generate any pose, but prefers poses that are most similar
to the space of poses in the training data. We represent the proba-
bility with a novel model called a Scaled Gaussian Process Latent
Variable Model. The parameters of the model are all learned auto-
matically; no manual tuning is required for the learning component
of the system. We additionally describe a novel procedure for inter-
polating between styles.

Our style-based IK can replace conventional IK, wherever it is
used in computer animation and computer vision. We demonstrate
our system in the context of a number of applications: interactive
character posing, trajectory keyframing, real-time motion capture
with missing markers, and posing from a 2D image.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; I.2.9 [Artificial Intelligence]:
Robotics—Kinematics and Dynamics; G.3 [Artificial Intelligence]:
Learning

Keywords: Character animation, Inverse Kinematics, motion
style, machine learning, Gaussian Processes, non-linear dimension-
ality reduction, style interpolation

1 Introduction

Inverse kinematics (IK), the process of computing the pose of a hu-
man body from a set of constraints, is widely used in computer an-
imation. However, the problem is inherently underdetermined: for
example, for given positions of the hands and feet of a character,
there are many possible character poses that satisfy the constraints.
Even though many poses are possible, some poses are more likely
than others — an actor asked to reach forward with his arm will
most likely reach with his whole body, rather than keeping the rest
of the body limp. In general, the likelihood of poses depends on
the body shape and style of the individual person, and designing
this likelihood function by hand for every person would be a dif-
ficult or impossible task. Current metrics in use by IK systems
(such as distance to some default pose, minimum mass displace-
ment between poses, or kinetic energy) do not accurately represent

email: keithg@cs.washington.edu, steve0@cs.berkeley.edu, hertz-
man@dgp.toronto.edu, zoran@cs.washington.edu. Steve Martin is
now at University of California at Berkeley.

the space of natural poses. Moreover, these systems attempt to rep-
resent all styles with a single metric.

In this paper, we present an IK system based on learning from
previously-observed poses. We pose IK as maximization of an ob-
jective function that describes how desirable the pose is — the op-
timization can satisfy any constraints for which a feasible solution
exists, but the objective function specifies how desirable each pose
is. In order for this system to be useful, there are a number of impor-
tant requirements that the objective function should satisfy. First, it
should accurately represent the space of poses represented by the
training data. This means that it should prefer poses that are “sim-
ilar” to the training data, using some automatic measure of similar-
ity. Second, it should be possible to optimize the objective function
in real-time — even if the set of training poses is very large. Third,
it should work well when there is very little data, or data that does
not have much redundancy (a case that leads to overfitting problems
for many models). Finally, the objective function should not require
manual “tuning parameters;” for example, the similarity measure
should be learned automatically. In practice, we also require that
the objective function be smooth, in order to provide a good space
of motions, and to enable continuous optimization.

The main idea of our approach is to represent this objective
function over poses as a Probability Distribution Function (PDF)
which describes the “likelihood” function over poses. Given train-
ing poses, we can learn all parameters of this PDF by the standard
approach of maximizing the likelihood of the training data. In or-
der to meet the requirements of real-time IK, we represent the PDF
over poses using a novel model called as a Scaled Gaussian Pro-
cess Latent Variable Model (SGPLVM), based on recent work by
Lawrence [2004]. All parameters of the SGPLVM are learned au-
tomatically from the training data, the SGPLVM works well with
small data sets, and we show how the objective function can be op-
timized for new poses in real-time IK applications. We additionally
describe a novel method for interpolating between styles.

Our style-based IK can replace conventional IK, wherever it is
used. We demonstrate our system in the context of a number of
applications:

• Interactive character posing, in which a user specifies a sin-
gle pose based on a few constraints;

• Trajectory keyframing, in which a user quickly creates an
animation by keyframing the trajectories a few points on the
body;

• Real-time motion capture with missing markers, in which
3D poses are computed from incomplete marker measure-
ments; and

• Posing from a 2D image, in which a few 2D projection con-
straints are used to quickly estimate a 3D pose from an image.

The main limitation of our style-based IK system is that it re-
quires suitable training data to be available; if the training data does
not match the desired poses well, then more constraints will be
needed. Moreover, our system does not explicitly model dynam-
ics, or constraints from the original motion capture. However, we
have found that, even with a generic training data set (such as walk-
ing or calibration poses), the style-based IK produces much more
natural poses than existing approaches.
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2 Related work

The basic IK problem of finding the character pose that satisfies
constraints is well studied, e.g., [Bodenheimer et al. 1997; Girard
and Maciejewski 1985; Welman 1993]. The problem is almost al-
ways underdetermined, meaning that many poses satisfy the con-
straints. This is the case even with motion capture processing where
constraints frequently disappear due to occlusion. Unfortunately,
most poses that satisfy constraints will appear unnatural. In the
absence of an adequate model of poses, IK systems employed in
industry use very simple models of IK, e.g., performing IK only on
individual limbs (as in Alias Maya), or measuring similarity to an
arbitrary “reference pose.” [Yamane and Nakamura 2003; Zhao and
Badler 1998]. This leaves an animator with the task of specifying
significantly more constraints than necessary.

Over the years, researchers have devised a number of techniques
to restrict the animated character to stay within the space of natural
poses. One approach is to draw from biomechanics and kinesiol-
ogy, by measuring the contribution of individual joints to a task
[Gullapalli et al. 1996], by minimizing energy consumption [Gras-
sia 2000], or mass displacement from some default pose [Popović
and Witkin 1999]. In general, describing styles of body poses is
quite difficult this way, and many dynamic styles do not have a
simple biomechanical interprepration.

A related problem is to create realistic animations from exam-
ples. One approach is to warp an existing animation [Bruderlin and
Williams 1995; Witkin and Popović 1995] or to interpolate between
sequences [Rose et al. 1998]. Many authors have described systems
for producing new sequences of movements from examples, either
by direct copying and blending of poses [Arikan and Forsyth 2002;
Arikan et al. 2003; Kovar et al. 2002; Lee et al. 2002; Pullen and
Bregler 2002] or by learning a likelihood function over sequences
[Brand and Hertzmann 2000; Li et al. 2002]. These methods create
animations from high-level constraints (such as approximate tar-
get trajectories or keyframes on the root position). In constrast,
we describe a real-time IK system with fine-grained kinematic con-
trol. A novel feature of our system is the ability to satisfy arbitrary
user-specified constraints in real-time, while maintaining the style
of the training data. In general, methods based on direct copying
and blending are conceptually simpler, but do not provide a princi-
pled way to create new poses or satisfy new kinematic constraints.

Our work builds on previous example-based IK systems [ElK-
oura and Singh 2003; Kovar and Gleicher 2004; Rose III et al.
2001; Wiley and Hahn 1997]. Previous work in this area has been
limited to interpolating poses in highly-constrained spaces, such as
reaching motions. This interpolation framework can be very fast
in practice and is well suited to environments where the constraints
are known in advance (e.g., that only the hand position will be con-
strained). Unfortunately, these methods require that all examples
have the same constraints as the target pose; furthermore, interpo-
lation does not scale well with the number of constraints (e.g., the
number of examples required for Radial Basis Functions increases
exponentially in the input dimension [Bishop 1995]). More impor-
tantly, interpolation provides a weak model of human poses: poses
that do not interpolate or extrapolate the data cannot be created, and
all interpolations of the data are considered equally valid (includ-
ing interpolations between very dissimilar poses that have similar
constraints, and extreme extrapolations). In constrast, our PDF-
based system can produce full-body poses to satify any constraints
(that have feasible solutions), but prefers poses that are most simi-
lar to the training poses. Furthemore, interpolation-based systems
require a significant amount of parameter tuning, in order to specify
the constraint space and the similarity function between poses; our
system learns all parameters of the probability model automatically.

Video motion capture using models learned from motion cap-
ture data is an active area of research [Brand 1999; Grauman et al.

2003; Howe et al. 2000; Ramanan and Forsyth 2004; Rosales and
Sclaroff 2002; Sidenbladh et al. 2002]. These systems are similar
to our own in that a model is learned from motion capture data, and
then used to prefer more likely interpretations of input video. Our
system is different, however, in that we focus on new, interactive
graphics applications and real-time synthesis. We suspect that the
SGPLVM model proposed in our paper may also be advantageous
for computer vision applications.

A related problem in computer vision is to estimate the pose
of a character, given known correspondences between 2D images
and the 3D character (e.g., [Taylor 2000]). Existing systems typi-
cally require correspondences to be specified for every handle, user
guidance to remove ambiguities, or multiple frames of a sequence.
Our system can estimate 3D poses from 2D constraints from just a
few point correspondences, although it does require suitable train-
ing data to be available.

A few authors have proposed methods for style interpolation in
motion analysis and synthesis. Rose et al. [1998] interpolate motion
sequences with the same sequences of moves to change the styles of
those movements. Wilson and Bobick [1999] learn a space of Hid-
den Markov Models (HMMs) for hand gestures in which the spac-
ing is specified in advance, and Brand and Hertzmann [2000] learn
HMMs and a style-space describing human motion sequences. All
of these methods rely on some estimate of correspondence between
the different training sequences. Correspondence can be quite cum-
bersome to formulate and creates undesirable constraints on the
problem. For example, the above HMM approaches assume that
all styles have the same number of states and the same state transi-
tion likelihoods. In contrast, we take a simpler approach: we learn
a separate PDF for each style, and then generate new styles by in-
terpolation of the PDFs in the log-domain. This approach is very
easy to formulate and to apply, and, in our experience, works quite
well. One disadvantage, however, is that our method does not share
information between styles during learning.

3 Overview

The main idea of our work is to learn a probability distribution func-
tion (PDF) over character poses from motion data, and then use
this to select new poses during IK. We represent each pose with
a 42-dimensional vector q, which consists of joint angles, and the
position and orientation of the root of the kinematic chain. Our
approach consists of the following steps:

Feature vectors. In order to provide meaningful features for
IK, we convert each pose vector to a feature representation y that
represents the character pose and velocity in a local coordinate
frame. Each motion capture pose qi has a corresponding feature
vector yi, where i is an index over the training poses. These fea-
tures include joint angles, velocity, and vertical orientation, and are
described in detail in Section 4.

SGPLVM learning. We model the likelihood of motion capture
poses using a novel model called a Scaled Gaussian Process Latent
Variable Model (SGPLVM). Given the features {yi} a set of motion
capture poses, we learn the parameters of an SGPLVM, as described
in Section 5. The SGPLVM defines a low-dimensional representa-
tion of the original data: every pose qi has a corresponding vector
xi, usually in a 3-dimensional space. The low-dimensional space
of xi values is called the latent space. In the learning process, we
estimate the {xi} parameters for each input pose, along with the
parameters of the SGPLVM model (denoted α , β , γ , and {wk}).
This learning process entails numerical optimization of an objec-
tive function LGP. The likelihood of new poses is then described by
the original poses and the model parameters. In order to keep the
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model efficient, the algorithm selects a subset of the original poses
to keep, called the active set.

Pose synthesis. To generate new poses, we optimize an ob-
jective function LIK(x,y(q)), which is derived from the SGPLVM
model. This function describes the likelihood of new poses, given
the original poses and the learned model parameters. For each new
pose, we also optimize the low-dimensional vector x. Several dif-
ferent applications are supported, as described in Section 7.

4 Character model

In this section, we define the parameterization we use for charac-
ters, as well as the features that we use for learning. We describe
the 3D pose of a character with a vector q that consists of the global
position and orientation of the root of the kinematic chain, plus all
of the joint angles in the body. The root orientation is represented
as a quaternion, and the joint angles are represented as exponential
maps. The joint parameterizations are rotated so that the space of
natural motions does not include singularities in the parameteriza-
tion.

For each pose, we additionally define a corresponding D-
dimensional feature vector y. This feature vector selects the fea-
tures of character poses that we wish the learning algorithm to be
sensitive to. This vector includes the following features:

• Joint angles: All of the joint angles from q are included. We
omit the global position and orientation, as we do not want
the learning to be sensitive to them.

• Vertical orientation: We include a feature that measures the
global orientation of the character with respect to the “up di-
rection,” (along the Z-axis) defined as follows. Let R be a
rotation matrix that maps a vector in the character’s local co-
ordinate frame to the world coordinate frame. We take the
three canonical basis vectors in the local coordinate frame,
rotate them by this matrix, and take their Z-components, to
get an estimate to the degree that the character is leaning for-
ward and to the side. This reduces to simply taking the third
row of R.

• Velocity and acceleration: In animations, we would like the
new pose to be sensitive to the pose in the previous time frame.
Hence, we use velocity and acceleration vectors for each of
the above features. For a feature vector at time t, the velociy
and acceleration are given by yt−yt−1 and yt−2yt−1 +yt−2,
respectively.

The features for a pose may be computed from the current frame
and the previous frame. We write this as a function y(q). We omit
the previous frames from the notation, as they are always constant
in our applications. All vectors in this paper are column vectors.

5 Learning a model of poses

In this section, we describe the Scaled Gaussian Process Latent
Variable Model (SGPLVM), and a procedure for learning the model
parameters from training poses. The model is based on the Gaus-
sian Process (GP) model, which describes the mapping from x val-
ues to y values. GPs for interpolation were introduced by O’Hagan
[1978], Neal [1996] and Williams and Rasmussen [1996]. For
a detailed tutorial on GPs, see [MacKay 1998]. We addition-
ally build upon the Gaussian Process Latent Variable Model, re-
cently poposed by Lawrence [2004]. Although the mathematical
background for GPs is somewhat involved, the implementation is
straightforward.

Kernel function. Before describing the learning algorithm, we
first define the parameters of the GP model. A GP model describes
the mapping between x values and y values: given some training
data {xi,yi}, the GP predicts the likelihood of a new y given a new
x. A key ingredient of the GP model is the definition of a kernel
function that measures the similarity between two points x and x′ in
the input space:

k(x,x′) = α exp
(

− γ
2
||x−x′||2

)

+δx,x′β−1 (1)

The variable δx,x′ is 1 when x and x′ are the same point, and 0
otherwise, so that k(x,x) = α + β−1 and the δx,x′ term vanishes
whenever the similarity is measured between two distinct variables.
The kernel function tells us how correlated two data values y and
y′ are, based on their corresponding x and x′ values. The parameter
γ tells us the “spread” of the similarity function, α tells us how
correlated pairs of points are in general, and β tells us how much
noise there is in predictions. For a set of N input vectors {xi}, we
define the N×N kernel matrix K, in which Ki, j = k(xi,x j).

The different data dimensions have different intrinsic scales (or,
equivalently, different levels of variance): a small change in global
rotation of the character affects the pose much more than a small
change in the wrist angle; similarly, orientations vary much more
than their velocities. Hence, we will need to estimate a separate
scaling wk for each dimension. This scaling is collected in a di-
agonal matrix W = diag(w1, ...,wD); this matrix is used to rescale
features as Wy.

Learning. We now describe the process of learning an SG-
PLVM, from a set of N training data points {yi}. We first compute
the mean of the training set: µ = ∑yi/N. We then collect the k-
th component of every feature vector into a vector Yk and subtract
the means (so that Yk = [y1,k−µk, ...,yN,k−µk]

T ). The SGPLVM
model parameters are learned by minimizing the following objec-
tive function:

LGP =
D
2

ln |K|+ 1
2 ∑

k
w2

kYT
k K−1Yk +

1
2 ∑

i
||xi||2 + ln

αβγ
∏k wN

k
(2)

with respect to the unknowns {xi},α,β ,γ and {wk}. This objective
function is derived from the Gaussian Process model (Appendix
A). Formally, LGP is the negative log-posterior of the model pa-
rameters. Once we have optimized these parameters, the SGPLVM
provides a likelihood function for use in real-time IK, based on the
training data and the model parameters.

Intuitively, minimizing this objective function arranges the xi
values in the latent space so that similar poses are nearby and the
dissimilar poses are far apart, and learns the smoothness of the
space of poses. More generally, we are trying to adjust all un-
known parameters so that the kernel matrix K matches the corre-
lations in the original y’s (Appendix A). Learning in the SGPLVM
model generalizes conventional PCA [Lawrence 2004], which cor-
responds to fixing wk = 1, β−1 = 0, and using a linear kernel. As
described below, the SGPLVM also generalizes Radial Basis Func-
tion (RBF) interpolation, providing a method for learning all RBF
parameters and for constrained pose optimization.

The simplest way to minimize LGP is with numerical optimiza-
tion methods such as L-BFGS [Nocedal and Wright 1999]. How-
ever, in order for the real-time system to be efficient, we would
like to discard some of the training data; the training points that
are kept are called the active set. Once we have optimized the un-
knowns, we use a heuristic [Lawrence et al. 2003] to determine
the active set. Moreover, the optimization itself may be inefficient
for large datasets, and so we use a heuristic optimization based on
Lawrence’s [2004] in order to efficiently learn the model parame-
ters and to select the active set. This algorithm alternates between
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Figure 1: SGPLVM latent spaces learned from different motion capture sequences: a walk cycle, a jump shot, and a baseball pitch. Points:
The learning process estimates a 2D position x associated with every training pose; plus signs (+) indicate positions of the original training
points in the 2D space. Red points indicate training poses included in the training set. Poses: Some of the original poses are shown along
with the plots, connected to their 2D positions by orange lines. Additionally, some novel poses are shown, connected by green lines to their
positions in the 2D plot. Note that the new poses extrapolate from the original poses in a sensible way, and that the original poses have been
arranged so that similar poses are nearby in the 2D space. Likelihood plot: The grayscale plot visualizes − D

2 lnσ2(x)− 1
2 ||x||2 for each

position x. This component of the inverse kinematics likelihood LIK measures how “good” x is. Observe that points are more likely if they
lie near or between similar training poses.

optimizing the model parameters, optimizing the latent variables,
and selecting the active set. These algorithms and their tradeoffs are
described in Appendix B. We require that the user specify the size
M of the active set, although this could also be specified in terms
of an error tolerance. Choosing a larger active set yields a better
model, whereas a smaller active set will lead to faster performance
during both learning and synthesis.

New poses. Once the parameters have been learned, we have a
general-purpose probability distribution for new poses. The objec-
tive function for a new pose parameterized by x and y is:

LIK(x,y) =
||W(y− f(x))||2

2σ2(x)
+

D
2

lnσ2(x)+
1
2
||x||2 (3)

where

f(x) = µ +YT K−1k(x) (4)

σ2(x) = k(x,x)−k(x)T K−1k(x) (5)

= α +β−1− ∑
1≤i, j≤M

(K−1
)i jk(x,xi)k(x,x j) (6)

and K is the kernel matrix for the active set, Y = [y1−µ, ...,yM−
µ]T is the matrix of active set points (mean-subtracted), and k(x) is
a vector in which the i-th entry contains k(x,xi), i.e., the similarity
between x and the i-th point in the active set. The vector f(x) is the
pose that the model would predict for a given x; this is equivalent to
RBF interpolation of the training poses. The variance σ 2(x) indi-
cates the uncertainty of this prediction; the certainty is greatest near
the training data. The derivation of LIK is given in Appendix A.

The objective function LIK can be interpreted as follows. Op-
timization of a (x,y) pair tries to simultaneously keep the y close
to the corresponding prediction f(x) (due to the ||W(y− f(x))||2
term), while keeping the x value close to the training data (due to

the lnσ2(x) term), since this is where the prediction is most reli-
able. The 1

2 ||x||2 term has very little effect on this process, and is
included mainly for consistency with learning.

6 Pose synthesis

We now describe novel algorithms for performing IK with SG-
PLVMs. Given a set of motion capture poses {qi}, we compute the
corresponding feature vectors yi (as described in Section 4), and
then learn an SGPLVM from them as described in the previous sec-
tion. Learning gives us a latent space coordinate xi for each pose yi,
as well as the parameters of the SGPLVM (α , β , γ, and {wk}). In
Figure 1, we show SGPLVM likelihood functions learned from dif-
ferent training sequences. These visualizations illustrate the power
of the SGPLVM to learn a good arrangement of the training poses
in the latent space, while also learning a smooth likelihood func-
tion near the spaces occupied by the data. Note that the PDF is not
simply a matter of, for example, Gaussian distributions centered at
each training data point, since the spaces inbetween data points are
more likely than spaces equidistant but outside of the training data.
The objective function is smooth but multimodal.

Overfitting is a significant problem for many popular PDF mod-
els, particularly for small datasets without redundancy (such as the
ones shown here). The SGPLVM avoids overfitting and yields
smooth objective functions both for large and for small data sets
(the technical reason for this is that it marginalizes over the space
of model representations [MacKay 1998], which properly takes into
account uncertainty in the model). In Figure 2, we compare with an-
other common PDF model, a mixtures-of-Gaussians (MoG) model
[Bishop 1995; Redner and Walker 1984], which exhibits problems
with both overfitting and local minima during learning1. In addi-

1The MoG model is similar to what has been used previously for learning
in motion capture. Roughly speaking, both the SHMM [Brand and Hertz-
mann 2000] and SLDS [Li et al. 2002] reduce to MoGs in synthesis, if we
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Gaussian components Log-likelihood

Figure 2: Mixtures-of-Gaussians (MoG). We applied conventional
PCA to reduce the baseball pitch data to 2D, then fit an MoG model
with EM. Although it assigns highest probability near the data set,
the log-likelihood exhibits a number of undesirable artifacts, such
as long-and-skinny Gaussians which assign very high probabilities
to very small regions and create a very bumpy objective function.
In contrast, the likelihood functions shown in Figure 1 are much
smoother and more appropriate for the data. In general, we find
that 10D PCA is required to yield a reasonable model, and MoG
artifacts are much worse in higher dimensions.

tion, using an MoG requires dimension reduction (such as PCA) as
a preprocess, both of which have parameters that need to be tuned.
There are principled ways to estimate these parameters, but they are
difficult to work with in practice. We have been able to get reason-
able results using MoGs on small data-sets, but only with the help
of heuristics and manual tweaking of model parameters.

6.1 Synthesis

New poses q are created by optimizing LIK(x,y(q)) with respect to
the unknowns x and q. Examples of learned models are illustrated
in Figure 1. There are a number of different scenarios for synthe-
sizing poses; we first describe these cases and how to state them as
optimization problems. Optimization techniques are described in
Section 6.2.

The general setting for pose synthesis is to optimize q given
some constraints. In order to get a good estimate for q, we also
must estimate an associated x. The general problem statement is:

argmin
x,q

LIK(x,y(q)) (7)

s.t. C(q) = 0 (8)

for some constraints C(q) = 0.
The most common case is when only a set of handle constraints

C(q) = 0 are specified; these handle constraints may come from a
user in an interactive session, or from a mocap system.

Our system also provides a 2D visualization of the latent space,
and allows the user to drag the mouse in this window, in order to
view the space of poses in this model. Each point in the window
corresponds to a specific value of x; we compute the corresponding
pose by maximizing LIK with respect to q. A third case occurs when
the user specifies handle constraints and then drags the mouse in
the latent space. In this case, q is optimized during dragging. This
provides an alternative way for the user to find a point in the space
that works well with the given constraints.

6.1.1 Model smoothing

Our method produces an objective function that is, locally, very
smooth, and thus well-suited for local optimization methods. How-

view a single frame of a sequence in isolation. The SHMM’s entropic prior
helps smooth the model, but at the expense of overly-smooth motions.

Figure 3: Annealing SGPLVMs. Top row: The left-most plot shows
the “unannealed” original model, trained on the baseball pitch. The
plot on the right shows the model retrained with noisy data. The
middle plot shows an interpolation between the parameters of the
outer models. Bottom row: The same plots visualized in 3D.

ever, distributions over likely poses must necessarily have many
local minima, and a gradient-based numerical optimizer can eas-
ily get trapped in a poor minima when optimizing LIK . We now
describe a new procedure for smoothing an SGPLVM model that
can be used in an annealing-like procedure, in which we search in
smoother versions of the model before the final optimization. Given
training data and a learned SGPLVM, our goal is to create smoothed
(or “annealed”) versions of this SGPLVM. We have found that the
simplest annealing strategy of scaling the individual model parame-
ters (for example, halving the value of β ) does not work well, since
the scales of the three α , β , and γ parameters are closely inter-
twined.

Instead, we use the following strategy to produce a smoother
model. We first learn a normal (unannealed) SGPLVM as described
in Section 5. We then create a noisy version of the training set, by
adding zero-mean Gaussian noise to all of the {yi} values in the
active set. We then learn new values α , β , and γ using the same
algorithm as before, but while holding {xi} and {wk} fixed. This
gives us new “annealed” parameters α ′, β ′, γ ′. The variance of the
noise added to data determines how smooth the model becomes.
Given this annealed model, we can generate a range of models by
linear interpolation between the parameters of the normal SGPLVM
and the annealed SGPLVM. An example of this range of annealed
models is shown in Figure 3.

6.2 Real-time optimization algorithm

Our system optimizes LIK using gradient-based optimization meth-
ods; we have experimented with Sequential Quadratic Program-
ming (SQP) and L-BFGS [Nocedal and Wright 1999]. SQP allows
the use of hard constraints on the pose. However, hard constraints
can only be used for underconstrained IK, otherwise the system
quickly becomes infeasible and the solver fails. The more general
solution we use is to convert the constraints into soft constraints by
adding a term ||C(q)||2 to the objective function with a large weight.
A more desirable approach would be to enforce hard constraints as
much as possible, but convert some constraints to soft constraints
when necessary [Yamane and Nakamura 2003].

Because the LIK objective is rarely unimodal, we use an
annealing-like scheme to prevent the pose synthesis algorithm from
getting stuck in local minima. During the learning phase, we pre-
compute an annealed model as described in the previous section. In
our tests, we set the noise variance to .05 for smaller data sets and
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0.1 for larger data sets. During synthesis, we first run a few steps of
optimization using the smoothed model (α ′, β ′, γ ′), as described in
the previous section. We then run additional steps on an interme-
diate model, with parameters interpolated as 1√

2
α + (1− 1√

2
)α ′.

The same interpolation is applied to β and γ . We then finish the
optimization with respect to the original model (α , β , γ). During
interactive editing, there may not be enough time to fully optimize
between dragging steps, in which case the optimization is only up-
dated with respect to the smoothest model; in this case, the finer
models are only used when dragging stops.

6.3 Style interpolation

We now describe a simple new approach to interpolating between
two styles represented by SGPLVMs. Our goal is to generate a new
style-specific SGPLVM that interpolates two existing SGPLVMs
LIK 0 and LIK 1. Given an interpolation parameter s, the new objec-
tive function is:

Ls(x0,x1,y(q)) = (1− s)LIK 0(x0,y(q))+ sLIK1(x1,y(q)) (9)

Generating new poses entails optimizing Ls with respect to the pose
q as well a latent variables x0 and x1 (one for each of the original
styles).

We can place this interpolation scheme in the context of the fol-
lowing novel method for interpolating style-specific PDFs. Given
two or more pose styles — represented by PDFs over possible poses
— our goal is to produce a new PDF representing a style that is “in
between” the input poses. Given two PDFs over poses p(y|θ0) and
p(y|θ1), where θ0 and θ1 describe the parameters of these styles,
and an interpolation parameter s, we form the interpolated style
PDF as

ps(y) ∝ exp((1− s) ln p(y|θ0)+ s ln p(y|θ1)) (10)

New poses are created by maximizing ps(y(q)). In the SGPLVM
case, we have ln p(y|θ0) = −LIK 0 and ln p(y|θ0) = −LIK 1. We
discuss the motivation for this approach in Appendix C.

7 Applications

In order to explore the effectiveness of the style-based IK, we tested
it on a few applications: interactive character posing, trajectory
keyframing, realtime motion capture with missing markers, and de-
termining human pose from 2D image correspondences. Examples
of all these applications are shown in the accompanying video.

7.1 Interactive character posing

One of the most basic — and powerful — applications of our sys-
tem is for interactive character posing, in which an animator can
interactively define a character pose by moving handle constraints
in real-time. In our experience, posing this way is substantially
faster and more intuitive than posing without an objective function.

7.2 Trajectory keyframing

We developed a test animation system aimed at rapid-prototyping
of character animations. In this system, the animator creates an an-
imation by constraining a small set of points on the character. Each
constrained point is controlled by modifying a trajectory curve. The
animation is played back in realtime so that the animator can im-
mediately view the effects of path modifications on the resulting
motion. Since the animator constrains only a minimal set of points,
the rest of the pose for each time frame is automatically synthesized
using style-based IK. The user can use different styles for different

Figure 4: Trajectory keyframing, using a style learned from the
baseball pitch data. Top row: A baseball pitch. Bottom row: A
side-arm pitch. In each case, the feet and one arm were keyframed;
no other constraints were used. The side-arm contains poses very
different from those in the original data.

parts of the animation, by smoothly blending from one style to an-
other. An example of creating a motion by keyframing is shown in
Figure 4, using three keyframed markers.

7.3 Real-time motion capture with missing mark-
ers

In optical motion capture systems, the tracked markers often dis-
appear due to occlusion, resulting in inaccurate reconstructions and
noticeable glitches. Existing joint reconstruction methods quickly
fail if several markers go missing, or they are missing for an ex-
tended period of time. Furthermore, once the a set of missing mark-
ers reappears, it is hard to relabel each one of them so that they
correspond to the correct points on the body.

We designed a real-time motion reconstruction system based on
style-based IK that fills in missing markers. We learn the style from
the initial portion of the motion capture sequence, and use that style
to estimate the character pose. In our experiments, this approach
can faithfully reconstruct poses even with more than 50% of the
markers missing.

We expect that our method could be used to provide a metric
for marker matching as well. Of course, the effectiveness of style-
based IK degrades if the new motion diverges from the learned
style. This could potentially be addressed by incrementally relearn-
ing the style as the new pose samples are processed.

7.4 Posing from 2D images

We can also use our IK system to reconstruct the most likely pose
from a 2D image of a person. Given a photograph of a person, a user
interactively specifies 2D projections (i.e., image coordinates) of a
few character handles. For example, the user might specify the lo-
cation of the hands and feet. Each of these 2D positions establishes
a constraint that the selected handle project to the 2D position indi-
cated by the user, or, in other words, that the 3D handle lie on the
line containing the camera center and the projected position. The
3D pose is then estimated by minimizing LIK subject to these 2D
constraints. With only three or four established correspondences
between the 2D image points and character handles, we can recon-
struct the most likely pose; with a little additional effort, the pose
can be fine-tuned. Several examples are shown in Figure 5. In
the baseball example (bottom row of the figure) the system obtains
a plausible pose from six projection constraints, but the depth of
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Frontal view Side view

Figure 5: 3D posing from a 2D image. Yellow circles in the front
view correspond to user-placed 2D constraints; these 2D constraints
appear as “line constraints” from a side view.

the right hand does not match the image. This could be fixed by
one more constraint, e.g., from another viewpoint or from temporal
coherence.

8 Discussion and future work

We have presented an inverse kinematics system based on a learned
probability model of human poses. Given a set of arbitrary alge-
braic constraints, our system can produce the most likely pose sat-
isfying those constraints, in real-time. We demonstrated this system
in the context of several applications, and we expect that style-based
IK can be used effectively for any problem where it is necessary to
restrict the space of valid poses, including problems in computer
vision as well as animation. For example, the SGPLVM could be
used as a replacement for PCA and for RBFs in example-based an-
imation methods.

Additionally, there are a number of potential applications for
games, in which it is necessary that the motions of character both
look realistic and satisfy very specific constraints (e.g., catching a
ball or reaching a base) in real-time. This would require not only
real-time posing, but, potentially, some sort of planning ahead. We
are encouraged by the fact that a leading game developer licensed
an early version of our system for the purpose of rapid content de-
velopment.

There are some limitations in our system that could be addressed
in future work. For example, our system does not model dynam-
ics, and does not take into account the constraints that produced the
original motion capture. It would also be interesting to incorporate
style-based IK more closely into an animation pipeline. For ex-
ample, our approach may be thought of as automating the process
of “rigging,” i.e., determining high-level controls for a character.
In a production environment, a rigging designer might want to de-
sign some of the character controls in a specific way, while using
an automatic procedure for other controls. It would also be use-
ful to have a more principled method for balancing hard and soft
constraints in real-time, perhaps similar to [Yamane and Nakamura
2003], because too many hard constraints can prevent the problem

from having any feasible solution.
There are many possible improvements to the SGPLVM learn-

ing algorithm, such as experimenting with other kernels, or select-
ing kernels automatically based on the data set. Additionally, the
current optimization algorithm employs some heuristics for conve-
nience and speed; it would be desirable to have a more principled
and efficient method for optimization. We find that the annealing
heuristic for real-time synthesis requires some tuning, and it would
be desirable to find a better procedure for real-time optimization.
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A Background on Gaussian Processes

In this section, we briefly describe the likelihood function used in
this paper. Gaussian Processes (GPs) for learning were originally
developed in the context of classification and regression problems
[Neal 1996; O’Hagan 1978; Williams and Rasmussen 1996]. For
detailed background on Gaussian Processes, see [MacKay 1998].

Scaled Gaussian Processes. The general setting for regres-
sion is as follows: we are given a collection of training pairs
{xi,yi}, where each element xi and yi is a vector, and we wish to
learn a mapping y = f (x). Typically, this is done by least-squared
fitting of a parametric function, such as a B-spline basis or a neu-
ral network. This fitting procedure is sensitive to a number of im-
portant choices, e.g., the number of basis functions and smooth-
ness/regularization assumptions; if these choices are not made care-
fully, over- or under-fitting results. However, from a Bayesian point
of view, we should never estimate a specific function f during re-
gression. Instead, we should marginalize over all possible choices
of f when computing new points — in doing so, we can avoid over-
fitting and underfitting, and can additionally learn the smoothness
parameters and noise parameters. Remarkably, it turns out that,
for a wide variety of types of function f (including polynomials,
splines, single-hidden-layer neural networks, and Gaussian RBFs),
marginalization over all possible values of f yields a Gaussian Pro-
cess model of the data. For a GP model of a single output dimension
k, the likelihood of the outputs given the inputs is:

p({yi,k}|{xi},α,β ,γ) =
1

√

(2π)N |K|
exp(−1

2
YT

k K−1Yk) (11)

using the variables defined in Section 5.
In this paper, we generalize GP models to account for different

variances in the output dimensions, by introducing scaling param-
eters wk for each output dimension. This is equivalent to defining
a separate kernel function k(x,x′)/w2

k for each output dimension2;
plugging this into the GP likelihood for dimension k yields:

p({yi,k}|{xi},α,β ,γ,wk) =
wN

k
√

(2π)N |K|
exp(−1

2
w2

kYT
k K−1Yk)

(12)
2Alternatively, we can derive this model as a Warped GP [Snelson et al.

2004], in which the warping function rescales the features as wkYk
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The complete joint likelihood of all data dimensions is
p({yi}|{xi},α,β ,γ,{wk}) = ∏k p({yi,k}|{xi},α,β ,γ ,wk).

SGPLVMs. The Scaled Gaussian Process Latent Variable Model
(SGPLVM) is a general technique for learning PDFs, based on re-
cent work Lawrence [2004]. Given a set of data points {yi}, we
model the likelihood of these points with a scaled GP as above,
in which the corresponding values {xi} are initially unknown —
we must now learn the xi as well as the model parameters. We
also place priors on the unknowns: p(x) = N (0;I), p(α,β ,γ) ∝
α−1β−1γ−1.

In order to learn the SGPLVM from training data {yi}, we
need to maximize the posterior p({xi},α,β ,γ,{wk}|{yi}). This
is equivalent to minimizing the negative log-posterior

LGP = − ln p({xi},α,β ,γ,{wk}|{yi}) (13)

= − ln p({yi}|{xi},α,β ,γ,{wk})(∏
i

p(xi))p(α,β ,γ)

=
D
2

ln |K|+ 1
2 ∑

k
w2

kYT
k K−1Yk +

1
2 ∑

i
||xi||2 + ln

αβγ
∏k wN

k

with respect to the unknowns (constant terms have been dropped
from these expressions).

One way to interpret this objective function as follows. Suppose
we ignore the priors p(x) and p(α,β ,γ), and just optimize LGP

with respect to an xi value. The optima should occur when ∂LGP
∂xi

=
∂LGP
∂K

∂K
∂xi

= 0. One condition for this to occur is ∂LGP
∂K = 0; similarly,

this would make LGP optimal with respect to all {xi} values and the
α , β , and γ parameters. If we solve ∂LGP

∂K = 0 (see Equation 15), we
obtain a system of equations of the form K = WYYT WT /D, or

k(xi,x j) = (W(yi−µ))T (W(y j−µ))/D (14)

The right-hand side of this expression will be large when the two
poses are very similar, and negative when they are very different.
This means that we try to arrange the x’s so that xi and x j are nearby
if and only if yi and y j are similar. More generally, the kernel ma-
trix should match the covariance matrix of the original data rescaled
by W/

√
D. The prior terms p(x) and p(α,β ,γ) help prevent over-

fitting on small training sets.
Once the parameters have been learned, we have a general-

purpose probability distribution for new poses. In order to define
this probability, we augment the data with a new pose (x,y), in
which one or both of (x,y) are unknown. Adding this new pose
to LGP, rearranging terms, and dropping constants yields the log-
posterior LIK (Equation 3).

B Learning algorithm

We tested two different algorithms for optimizing LGP. The first
directly optimizes the objective function, and then selects an active
set (i.e., a reduced set of example poses) from the training data.
The second is a heuristic described below. Based on preliminary
tests, it appears that there are a few tradeoffs between the two al-
gorithms. The heuristic algorithm is much faster, but more tied to
the initialization for small data sets, often producing x values that
are very close to the PCA initialization. The full optimization algo-
rithm produces better arrangements of the latent space x values —
especially for larger data sets — but may require higher latent di-
mensionality (3D instead of 2D in our tests). However, because the
full optimization optimizes all points, it can get by with less active
set points, making it more efficient at run-time. Nonetheless, both
algorithms work well, and we used the heuristic algorithm for all
examples shown in this paper and the video.

Active set selection. We first outline the greedy algorithm for
selecting the active set, given a learned model. The active set ini-
tially contains one training pose. Then the algorithm repeatedly
determines which of the points not in the active set has the highest
prediction variance σ 2(x) (Equation 5). This point is added to the
active set, and the algorithm repeats until there are M points in the
active set (where M is a limit predetermined by a user). For effi-
ciency, the variances are computed incrementally as described by
Lawrence et al. [2003].

Heuristic optimization algorithm. For all examples in this
paper, we used the following procedure for optimizing LGP, based
on the one proposed by Lawrence [2004], but modified3 to learn
{wk}. The algorithm alternates between updating the active set,
and the following steps: First, the algorithm optimizes the model
parameters, α , β , and γ by numerical optimization of LGP (Equa-
tion 2); however, LGP is modified so that only the active set are
included in LGP. Next, the algorithm optimizes the latent variables
xi for points that are not included in the active set; this is done by
numerical optimization of LIK (Equation 3). Finally, the scaling is
updated by closed-form optimization of LGP with respect to {wk}.
Numerical optimization is performed using the Scaled Conjugate
Gradients algorithm, although other search algorithms could also
be used. After each of these steps, the active set is recomputed.

The algorithm may be summarized as follows. See [Lawrence
2004] for further details.

function LEARNSGPLVM({yi})
initialize α ← 1,β ← 1,γ ← 1,{wk}← {1}
initialize {x} with conventional PCA applied to {yi}
for T = 1 to NumSteps do:

Select new active set
Minimize LGP (over the active set) with respect to α , β , γ
Select new active set
for each point i not in the active set do

Minimize LIK(xi,yi) with respect to xi.
end for
Select new active set
for each data dimension d do

wk←
√

M/(YT
k K−1Yk)

end for
end for
return {xi},α,β ,γ,{wk}

Parameters. The active set size and latent dimensionality trade-
off run-time speed versus quality. We typically used 50 active set
points for small data sets and 100 for large data sets. Using a long
walking sequence (of about 500 frames) as training, 100 active set
points and a 3-dimensional latent space gave 23 frames-per-second
synthesis on a 2.8 GHz Pentium 4; increasing the active set size
slows performance without noticably improving quality. We found
that, in all cases, a 3D latent space gave as good or better quality
than a 2D latent space. We use higher dimensionality when multiple
distinct motions were included in the training set.

C Style interpolation

Although we have no formal justification for our interpolation
method in Section 6.3 (e.g., as maximizing a known likelihood
function), we can motivate it as follows. In general, there is no
reason to believe the interpolation of two objective functions gives
a reasonable interpolation of their styles. For example, suppose we

3We adapted the source code available from
http://www.dcs.shef.ac.uk/∼neil/gplvm/
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represent styles as Gaussian distributions p(y|θ0) = N (y|µ0;σ2)
and p(y|θ1) = N (y|µ1;σ2) where µ0 and µ1 are the means of the
Gaussians, and σ 2 is the variance. If we simply interpolate these
PDFs, i.e., ps(y) = −(1− s)exp(−||y− µ0||2/σ2)− sexp(−||y−
µ1||2/2σ2), then the interpolated function is not Gaussian — for
most values of s, it has two minima (near µ0 and µ1). Howver,
using the log-space interpolation scheme, we get an intuitive re-
sult: the interpolated style ps(y) is also a Gaussian, with mean
(1− s)µ0 + sµ1, and variance σ 2. In other words, the mean lin-
early interpolates the means of the input Gaussians, and the vari-
ance is unchanged. A similarly-intuitive interpolation results when
the Gaussians have different covariances. While analyzing the SG-
PLVM case is more difficult, we find that in practice this scheme
works quite well. Moreover, it should be straightforward to interpo-
late any two likelihood models (e.g., interpolate an SGPLVM with
an MoG), which would be difficult to achieve otherwise.

D Gradients

The gradients of LIK and LGP may be computed with the help of the
following derivatives, along with the chain rule:

∂LGP

∂K
= K−1WYYT WT K−1−DK−1 (15)

∂LIK

∂y
= (WT W(y− f(x)))/σ 2(x) (16)

∂LIK

∂x
= −∂ f(x)

∂x

T
WT W(y− f(x))/σ 2(x)+ (17)

∂σ2(x)

∂x

[

D− ||W(y− f(x))||2
σ2(x)

]

/(2σ2(x))+x

∂ f(x)

∂x
= YT K−1 ∂k(x)

∂x
(18)

∂σ2(x)

∂x
= −2k(x)T K−1 ∂k(x)

∂x
(19)

∂k(x,x′)
∂x

= −γ(x−x′)k(x,x′) (20)

∂k(x,x′)
∂α

= exp
(

− γ
2
||x−x′||2

)

(21)

∂k(x,x′)
∂β

= δx,x′ (22)

∂k(x,x′)
∂γ

= −1
2
||x−x′||2k(x,x′) (23)

where Y = [y1− µ, ...,yN − µ]T is a matrix containing the mean-
subtracted training data.
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