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Figure 1: Stampede! Ten thousand skinned mesh animations (SMAs) synthesized in graphics hardware at interactive rates. All SMAs are
deformed using only traditional matrix palette skinning with well-chosen nonrigid bone transforms. Distant SMAs are simplified.

Abstract

We extend approaches for skinning characters to the general setting
of skinning deformable mesh animations. We provide an automatic
algorithm for generating progressive skinning approximations, that
is particularly efficient for pseudo-articulated motions. Our con-
tributions include the use of nonparametric mean shift clustering of
high-dimensional mesh rotation sequences to automatically identify
statistically relevant bones, and robust least squares methods to de-
termine bone transformations, bone-vertex influence sets, and ver-
tex weight values. We use a low-rank data reduction model defined
in the undeformed mesh configuration to provide progressive con-
vergence with a fixed number of bones. We show that the resulting
skinned animations enable efficient hardware rendering, rest pose
editing, and deformable collision detection. Finally, we present nu-
merous examples where skins were automatically generated using
a single set of parameter values.

CR Categories: I.6.8 [SIMULATION AND MODELING]: Types
of Simulation—Animation;
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1 Introduction

Animating articulated characters such as virtual humans is a funda-
mental operation in computer graphics and interactive applications.
Techniques for rigging character skins by weighting vertices to an

associated skeleton, or by interpolating example deformations, are
widely used in video games and the computer animation indus-
try. There are numerous reasons for their popularity: most skin-
ning approaches are conceptually easy to understand and apply;
they are capable of approximating interesting character shapes; and
skinning can be hardware-accelerated on almost every commod-
ity graphics card. However, the application of character skinning
approaches has been almost entirely limited to objects with user-
defined skeletons and rigid bones.

In this paper, we show that skinning techniques can also be used
to automatically skin deformable mesh animations, without any
need for specifying skeletons or bones. By estimating proxy
bone transformations and vertex weights for deformable shape se-
quences, we produce skinned animations that approximate the orig-
inal deformable animation. Note that we do not estimate a hier-
archical kinematic skeleton, nor are there reconfigurable joint an-
gles. Skinned meshes provide an approximate articulated mapping
from undeformed to deformed geometry at all animation frames,
and we further encode displacement corrections to provide pro-
gressive convergence. The resulting skinned animations support
hardware-accelerated rendering on commodity graphics hardware.
We present several examples of mesh animations that can be com-
piled to run on existing graphics hardware, including interactive
examples involving millions of animated mesh triangles (see Fig-
ure 1). In addition to fast hardware rendering, skinned mesh ani-
mations provide a deformable shape parameterization that can aid
subsequent processing: displacement mapping the skin’s reference
mesh results in modifications to the entire animation; the animation
skin can be used for straight-forward level-of-detail (LOD) gener-
ation; and the skinned models define local reference frames that
can be used to orient bounding volume hierarchies for reduced-
coordinate collision detection algorithms [James and Pai 2004]. In
summary, we show that a simple animation skinning technique can
provide a familiar hardware-accelerated rendering format for mesh
animations, as well as enable efficient animation processing.



2 Related Work

Character skinning has a long history in graphics, and related tech-
niques have been used extensively to provide intuitive animation
controls. We refer the reader to the related work section of [Lewis
et al. 2000] for a nice summary. Most closely related to our work are
several “skinning by example” approaches, that use input character
poses to generate approximate and/or progressive skinning approx-
imations. A key difference is that our input mesh examples are not
required to have any skeletons, nor associated bone transforms.

Pose space deformation [Lewis et al. 2000] comprises one such
family of approaches wherein character shapes (or local frame
corrections) are interpolated as a function of character pose (see
also [Allen et al. 2002]). For hardware rendering, EigenSkin is an
approach for generating a compact pose space deformation model
for complex shapes, such as a hand [Kry et al. 2002]. In that work,
the reduced basis is generated by employing sensitivity analysis
to move each joint in the hand independently, about a number of
key hand poses, in order to infer the spatial structure of the hand
displacement fields as a function of hand pose. A displacement
correction model was then compressed in the rest pose to exploit
redundancy. The resulting articulated reduced model included dis-
placements and normals, and exhibited significant rank-reduction
(much better than PCA on articulated data sets), but required a
priori knowledge of joints and skinning weights. In comparison,
our approach applies to general mesh animations as opposed to
poseable articulated characters (see Figure 2).

Figure 2: One of 27 hand poseswith core
bone triangles for 17 estimated bones (ε =
0.05). Although our method can skin mesh se-
quences with pre-existing skeletons (§5), it’s
strength lies in optimizing non-hierarchical
bone transforms for each frame (§4), and
avoiding pose space interpolation of progres-
sive skin corrections (§6).

In contrast to pose space methods, simpler kinematic models, such
as commonlinear blend skinning(c.f. single-weight enveloping
(SWE), skeletal subspace deformation (SSD), etc.), can be fit to
mesh examples, and do not require runtime data interpolation.
Mohr and Gleicher [2003] estimated single-weight skins with rigid
character bones, with provisions made for adding additional bones,
and they also estimated vertex weights, but without nonnegativity
constraints. Multi-weight enveloping (MWE)[Wang and Phillips
2002] provides better approximations than SWE, but at the cost of
12 weights/vertex/bone, instead of 1 weight/vertex/bone in SWE.
Although we only use 1 weight/bone/vertex, our nonrigid affine
bone transformations allow bones to squash and stretch to better
approximate the mesh sequence. Like other approaches, MWE re-
quires manual intervention to paint on bone influences, whereas our
skin estimation approach is automatic.

Animation compression approaches have been explored in the last
half decade [Lengyel 1999; Briceño et al. 2003; Guskov and Kho-
dakovsky 2004], including PCA compression of shapes [Sloan et al.
2001], animations [Alexa and M̈uller 2000; Karni and Gotsman
2004], and parameterized animation compression [Hakura et al.
2000]. The goal of our approach is not animation compression per
se, but rather hardware-accelerated rendering using a very simple
and common vertex shader technique calledmatrix palette skin-
ning [Lindholm et al. 2001]. Our skinned mesh animations are
intended to produce skinned approximations with a large num-
ber of bone transforms (to support efficient hardware rendering).
Nevertheless, our approximations can be quite good (even with-
out using our articulated data reduction), so that our animation
compression is quite competitive. Nevertheless, incremental cod-

ing approaches, such as [Gupta et al. 2002; Ibarria and Rossignac
2003], can be better suited to compression, and could be combined
with our approach. Multi-resolution methods [Guskov and Kho-
dakovsky 2004] provide powerful decorrelation tools, but involve
multi-resolution mesh reparameterization that can be difficult for
models with complex base domains, e.g., our high-genus bridge
example.

Finally, special data structures exist for representing and display-
ing mesh animations [Shamir et al. 2000], however for real-time
rendering, the bottleneck is often data transfer to the graphics card.
Our approach avoids this bottleneck by having a single-weighted
mesh resident in graphics hardware, and only sending a few hun-
dred floats of bone transforms to hardware each frame.

3 Skinning Mesh Sequences

We seek to construct a vertex skinning transform,T = (Ti), that
approximates a sequence of input meshes. A key point is that the
mesh sequences we approximate do not have predefined bone trans-
formations, and therefore we must first estimate proxy bone trans-
forms before estimating vertex weights.

Let the sequence ofSmeshes have deformed vertex positionsP =
(p1,p2, . . . ,pS), wherept ∈ R

3N for N vertices. For convenience,
we will refer to the indext as “time,” even though the sequence
may not have a time interpretation. Given these meshes, we seek a
skinning transformationTt at each sequence step,t, that transforms
the undeformed rest pose points, ˜p, to approximatept :

pt ≈ Tt p̃, t = 1. . .S, (1)

with similar equations possible for vertex normals. We use linear
blend skinning, where the transform for vertexi is

Tt
i = ∑

b∈Bi

wibT̄t
b, (2)

but where the transforms̄Tt
b need not be rigid. In the following

sections, we first show how to compute robust estimates of proxy
bone transformations,̄Tt

b, for our otherwise skeleton-free meshes
(§4), and then (in§5) we estimate the skin’s vertex-bone dependen-
cies,Bi , and corresponding vertex bone weights,wib. Note that if
T̄t

b are already given, e.g., by a kinematic skeleton model, one may
proceed directly to Section 5.

4 Identifying Near-Rigid Structures using
Mean Shift on Rotation Sequences

Our first goal is to estimate proxy bone transformations{T̄t
b} for

the mesh sequence. Our insight is that clustering triangles with sim-
ilar rotation sequences reveals the near-rigid structure of the mesh
animation. For reasons discussed in detail in§4.2, we use a non-
parametric clustering approach based on the mean shift algorithm
(see [Cheng 1995; Comaniciu and Meer 2002] for details). Note
that the goal of this bone estimation section is not to partition the
mesh into near-rigid components, but rather to estimate bone trans-
formations{T̄t

b} for the mesh sequence.

4.1 Triangle Rotation Sequences

We estimate the near-rigid structure by identifying statistically sig-
nificant rotation sequences of the mesh triangles. The rotation of
triangle j at instantt relative to its rest configuration is computed



using the Polar Decomposition [Shoemake and Duff 1992; Golub
and Loan 1996], which is also common in large deformation kine-
matics (see [Etzmuss et al. 2003; Müller and Gross 2004]).

Let the indices of the triangle’s vertices bei1, i2, and i3, then the
3×3 nonorthogonal orientation matrix of trianglej at timet is Ot

j =

[~v21~v31 n̂] where~vab = (pt
ia −pt

ib) andn̂= (~v21×~v31)/‖~v21×~v31‖2.
Similarly, let the nonorthogonal orientation matrix of rest trianglej

beÕ j . From the triangle’s deformation gradientF t
j = Ot

j

(

Õ j
)−1

∈

R
3×3 (at timet), we extract the intrinsic triangle rotation,Rt

j , using
the polar decomposition,Ft

j = Rt
jW

t
j (see Figure 3). HereWt

j ∈

R
3×3 is the symmetric right stretch matrix that stretches the triangle

before it is rotated.

Figure 3: Triangle rotation sequencesas estimated using the polar de-
composition. Rotation sequences represent each triangle motion as a high-
dimensional point for subsequent mean shift clustering to estimate near-
rigid components.

Given the sequence of 3×3 relative rotation matrices for trianglej,
we construct a point ind = 9Sdimensions,z j ∈ R

9S, composed of
concatenated rotation sequence vectors,

z j =
(

vec(R1
j ), . . . , vec(RS

j )
)

(3)

where vec(R) : R
3x3 → R

9 converts the row-ordered 3×3 rotation
matrix, R, to a row-major 9-vector. We now estimate the statisti-
cally important near-rigid components by carefully clustering the
triangle rotation sequence points,{z j}.

4.2 Mean Shift Clustering of Rotation Sequences

To estimate proxy bone transformations we seek to find (a) triangles
that have similar rotation sequence pointsz, and also to discover (b)
the number of different proxy bones required to resolve rotation se-
quence differences to some tolerance. Triangles can be partitioned
using any number of clustering algorithms, but the quality of the
resulting clusters for arbitrary skinning problems is unclear. Also,
finding the right number of clusters for a certain skinning error can
be cumbersome, e.g., using k-means clustering where “k” must be
specified by the user. Given that we want to automatically skin a
wide variety of input mesh sequences, we desire a robust clustering
approach for estimating bone components.

Background on Mean Shift Clustering: Given a list ofn
points, z j ∈ R

d, the fixed bandwidth mean shift algorithm con-
structs the sample point estimator (density function),

f (z) =
1
n

n

∑
j=1

k

(

∥

∥

∥

∥

z− z j

h

∥

∥

∥

∥

2
)

, (4)

whereh is the bandwidth of some spherically symmetric kernel
function, k(·). The gradient of this density functionf (z) is then
efficiently computed and used in a hill climbing process to map
each input point,z j , to the nearest stationary point, ¯z j , of the den-
sity function (see Figure 4). For robust nonparametric clustering,
these resulting modes, ¯z j , can be used to select cluster shapes using
basins of attraction, and can therefore have very nontrivial shapes–
unlike k-means clustering where points are simply assigned to the

nearest cluster center. The single bandwidth parameter,h, allows
the number of clusters to be chosen in terms of a length scale in the
input point space.

Figure 4:Mean shift clustering of 2D points(images courtesy of [Comani-
ciu and Meer 2002]c©IEEE 2002) (Left) Input 2D points, with color-coded
cluster output; note the interesting oblong cluster shapes. (Right) Related
density field, with trajectories from the mean shift gradient ascent algo-
rithm. Red dots indicate the final mode centers used for proximity-based
classification of mean-shifted points.

Why Choose Mean Shift for Bone Estimation? The mean
shift clustering algorithm (see [Cheng 1995; Comaniciu and Meer
2002]) has many attractive features for bone estimation for skin-
ning. First, mean shift clustering isrobust to outliers, unlike k-
means clustering which can be corrupted by a few bad points when
computing each cluster’s mean position. Robust approaches to
compute averages are common when handling noisy real-world
data, e.g., [Jones et al. 2003]. For bone estimation, robustness is im-
portant because mesh sequences can have many triangles with inde-
pendent and/or atypical motions, such that their rotation sequence
z points are statistical outliers.

Second, mean shift allows the number of clusters to be specified in-
directly in terms of a physical scaling parameter,h, related to how
different triangle rotations must be in order to belong to different
bones. Specifically, we define asingle intuitive rotation tolerance
parameter, ε, such thath≡ 9Sε for anS-mesh sequence, and mean
shift automatically determines the correct number of clusters. In
fact, except where stated explicitly,we skinned all examples in this
paper using a single parameter value: ε = 0.05. With this single
parameter value, we found that mean shift identified characteris-
tic clusters of various number, size and shape for all examples (see
Figure 6), supporting our claim that the method automatically pro-
duces reasonable results without excessive parameter tuning. Fur-
thermore, we found that values aroundε = 0.05 tend to extract the
most bones that would be useful, and decreasingε does not tend
to produce statistically significant clusters. In practice, fewer bones
may be desired, e.g., for real-time rendering, andε can be increased
to reduce bones, at the cost of increasing skinning error.

Figure 5:Number of bones,B,
versusε (horse example) shows the
tendency to reduce bones with in-
creasing rotation tolerance,ε. We
observe thatε =0.05 identifies use-
ful near-rigid bones structure to
skin almost all examples.
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One practical complication for mean shift clustering of rotation se-
quences represented as points ind = 9S dimensions, is that effi-
cient multidimensional range searching is required to find closest
neighbors of a point to evaluate (4). Consequently, we recommend
the approach taken by [Georgescu et al. 2003], wherein locality-
sensitive hashing (LSH) is used for fast approximate nearest neigh-
bor searches, and we use their publicly available mean shift imple-
mentation (see reference for website).



Associating Triangles to Core Bones: Given the input
points{z j}, andh, the output of the mean shift clustering algorithm
is each triangle’s mean-shifted point, ¯z j , andB statistically signifi-
cant modes,{z̃b}

B
b=1 associated withB discovered bones. Triangle

j can then be associated with the bone whose mode ˜zb is closest
to their mean-shifted point, ¯z j , with filtering performed for outlier
points that are very far from statistically significant modes. In our
implementation, we only assign triangles to their closest bone if
D j ≡ ‖z̃b− z̄ j‖1 < h/4, andlet Tb denote the core bone triangles
strongly associated with bone b. The total fraction of triangles as-
sociated with bones is denoted as thenear-rigid fraction,η ∈ (0,1]
(ε = 0.05 assumed hereafter), and are displayed as colored (non-
black) triangles (see Figure 6). Finally, mesh sequences with higher
η values tend to yield better skinning approximations.

4.3 Estimating Rigid Bones

Mean shift helps identify the number of bones,B, and the core tri-
angles{Tb}

B
b=1 most strongly associated with each of theB bones.

It remains to estimate the average rotation of the core bone trian-
gles,Tb, at each mesh sequence,t. Unfortunately, the cluster mode
centers,{z̃b}

B
b=1, are just vectors inR9S, and the extracted 3× 3

matrix sequences are not even rotation matrices ofSO(3), and are
therefore unsuitable for direct use as proxy bone rotations.

To estimate bone rotations, we use a convenient result by
Moakher [2002], who proves that a meaningfulaverage rotation
can be computed as the arithmetic meanR̄of triangle rotations, fol-
lowed by the unique projection ontoSO(3) given by the unique po-
lar factor in the polar decomposition of̄R [Golub and Loan 1996].
This average rotation is meaningful provided that det(R̄) > 0. In
practice, we observe that this latter condition is satisfied when
ε � 1 for h = ε9S. For very largeε choices, det(R̄) > 0 is not
guaranteed, e.g., if̄R is the average of all mesh triangle rotations
whenB= 1. We use the area-weighted average triangle rotation,
which is also easy to compute [Moakher 2002]. Finally, we note
that averages of spherical quantities, such as quaternions, have been
discussed in the graphics community for some time (see [Buss and
Fillmore 2001]).

Lastly, given the rotation matrix for boneb at time,t, the transla-
tion component of the bone transformationT̄t

b is estimated using
an area-weighted least squares fit to the motion of the centroids of
the core bone triangles,Tb.

4.4 Estimating Flexible Bones

Unlike in character animation where bones are clearly rigid skeletal
components, there is no reason that our bones can not flex at each
frame. Since much greater accuracy can be achieved with flexi-
ble bones, and mesh sequences are free to define “bones” as they
wish, we advocate flexible bones in our implementation. Mathe-
matically, instead of representing each bone transformT̄ by a ro-
tation/translation pair,(R,v), we instead use(F,v) whereF = RW
is a 3×3 matrix involving a stretch in addition to a rotation, andv
is a (different) translation. Given the core bone triangles,Tb, we
use least squares to estimate the flexible bone transform sequence
(Ft ,vt) that minimizes the distance from triangle centroids of the
mesh sequence, and the reference model transformed using(F,v).
This minimization can be done independently for each frame, and
each bone, and the details are provided in Appendix A.

Discussion: Given that we prefer flexible bones, one might
wonder why we clusterR whenF is ultimately required. Why not

clusterF sequences? The answer is that when a triangle is used to
estimate anF = RW matrix, the right stretch tensor,W, involves an
incomplete observation of pre-stretch normal to the undeformed tri-
angle. Consequently, triangles of different orientation will estimate
differentF matrices, even if they undergo the same spatial stretch
and rotation. Therefore, rotations are a more suitable quantity to
use to estimate near-rigid components with clustering.

5 Skin Estimation

Given a mesh sequence and matching proxy bone transformations,
{T̄t

b}, we now show how to estimate which bones can influence
each vertex, and what the corresponding vertex weights are. We
stress that the skin estimation procedure (in this section) accepts as
input arbitrary bone transforms, such as those of a kinematic skele-
ton model, and is in no way restricted to mean shift bone estimation.

5.1 Estimating Bone Influences

Let Bi be thevertex-bone influence setcontaining bone indices that
influence vertexi. In our implementation themaximum number
of per-vertex bones,β , is specified by the user, since it depends
on the intended application. For example, in hardware rendering
it is favorable to keep the number of bones per-vertex relatively
small, e.g.,β = 4. Specifying the bones that influence each vertex
is traditionally a task often performed by 3D artists, e.g., by so-
called painting bone weights on a mesh. Assigning bones to each
Bi influence set can be a difficult discrete model selection problem
since it is often constrained by the maximum number of bones per
vertex,β , or conditions on smoothness of the resulting mesh.

We use a simple but effective model selection approach that picks
the bestβ bones for vertexi that have the smallest square errors
when used to individually predict deformed positions. Specifically,
boneb’s sum of squared errors, when predicting vertexi’s position
sequence, is

γbi = ∑
t=1...S

‖pt
i − T̄t

bp̃i‖
2
2, b = 1. . .B. (5)

Becauseγ is only dependent on spatial quantities, bone influence
sets also tend to have coherent spatial variations.

5.2 Estimating Vertex Weights

Given vertex-bone influence sets,{Bi}, the associated weights are
computed using a least squares approach. Least squares is often
used for vertex weight estimation in “skinning by example” ap-
proaches, e.g., [Wang and Phillips 2002; Mohr and Gleicher 2003].

Weights are constrained by the mesh sequence approximation equa-
tions,Tt p̃ = pt , which results in the over-constrained system ofS
equations withB = |Bi | unknowns,

∑
b∈Bi

(T̄t
bp̃i)wib = pt

i , t = 1. . .S, (6)

which is of the form

A(i)w(i) = b(i), i = 1. . .N, (7)

where forN vertices we haveN different matrix problems. Addi-
tionally, we would like to enforce the affine constraint,

∑
b

wib = 1, (8)



dance snake horse camel elephant bridge
Figure 6:Estimation of near-rigid bones and vertex weights:(Top) Reference triangle mesh of mesh sequence. (Middle) Estimated bones using mean shift
classification of triangle rotation sequences into clusters. All examples use mean shift parameter,ε = 0.05. Here black denotes statistical outliers that are
typically nonrigid triangles, e.g., shoulders (dance), floppy tails (camel), or bending joints. (Bottom) Vertex weighting to bones (TSVD weights).

which could be done using constrained least squares. However, for
reasons that will become clear shortly, in our implementation we
will just consider the augmented system,

[

cA(i)

1. . .1

]

w(i) =

(

cb(i)

1

)

⇔ Ã(i)w(i) = b̃(i), (9)

wherec= 1/‖b(i)‖2 is a scaling parameter, and the last row of ones
has been added to account for (8).

Weight Over-Fitting: Direct solution of (7) (whenA is nonsin-
gular) can result in weights with potentially large positive and neg-
ative values. This is often referred to as over-fitting. Over-fitting
can produce the best weights for the mesh sequence, and is ade-
quate if only that mesh sequence is to be displayed. However, if
the skinned model is to be able to approximate new poses (using
new transforms), or support progressive corrections (as in§6), or
allow rest pose editing (see Figure 15), or be simplified, then large
(negative) weights should be avoided.

Computing Vertex Weights: We solve (9) using two different
types of least squares methods:

1. TSVD: For cases where over-fitting is allowed, we solve
(9) using Truncated Singular Value Decomposition (TSVD),
truncating singular values, e.g., at 10−5‖Ã(i)‖2, to avoid se-
vere ill-conditioning. Higher thresholds can reduce over-
fitting, but negative weights still occur at practical thresholds.

2. NNLS: To limit over-fitting and avoid regularization parame-
ters entirely, we recommend positive vertex weights obtained
by solving the nonnegative least squares (NNLS) problem,

Solve Ã(i)w(i) = b̃(i) subject to w(i) ≥ 0. (10)

We use the efficient NNLS iterative solution approach
of [Lawson and Hanson 1974]. Because of the nonnegativ-
ity constraint, positive weights tend to be sparse. In general,
we can bound negative weights,w(i) ≥−δ ≤ 0 by substituting
w(i) = (w̃(i) −δ ) into (9), and solving the modified problem

Solve Ã(i)w̃(i) = b̃(i) + Ã(i)δ subject to w̃(i) ≥ 0. (11)

Figure 7: Plot of sorted vertex
weights computed using TSVD and
NNLS (chicken example). TSVD al-
lows negative weights that can lead
to over-fitting. NNLS optimiza-
tion provides a simple, efficient, and
parameter-free way to get positive
vertex weights that avoid over-fitting.
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Finally, we always normalize(wib)b∈Bi
by its sum to ensure (8),

with the resulting correction being negligible in all of our exam-
ples. Note that by not using the affine constraint (8) to eliminate
one weight variable from the matrix equation (7) (as in [Mohr and
Gleicher 2003]), we avoid preferential treatment of individual bone
weights during TSVD or NNLS solves. These weights are com-
pared in Figures 7 and 8.

Figure 8:Over-fitting comparison of TSVD and NNLS vertex weights:
(Left) Core triangles; (Middle) Weights computed using NNLS have a sim-
ilar coloration to the core triangles since their weights are nonnegative;
(Right) Significant over-fitting is observed with TSVD weights since they can
use large negative values to better approximate the data. Note: bone colors
are weighted by vertex weights, so exaggerated colors indicate over-fitting
(also see TSVD weights in Figure 6).

6 Progressive Skin Corrections

Skinned animations may provide sufficient accuracy for many ap-
plications, however, they can always be improved by increasing the
number of bones (same as decreasingε). Another way of improv-
ing accuracy is by using data reduction to progressively add correc-
tive displacements and normals. These two approaches, increasing



bones or corrections, provide complementary improvements, with
the latter being possible at runtime.
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Figure 9:Skin correctionsare defined in the rest pose.

We use an approach analogous to EigenSkin [Kry et al. 2002]
where the displacement and normal corrections are added in the
rest configuration of the mesh prior to applying the skin transfor-
mation (see Figure 9). Related approaches also appear in the liter-
ature (see [Lewis et al. 2000]). Given the sequence of mesh points
pt , and their skinned approximations,Tt p̃, we obtain a sequence
of S reference-frame displacement corrections,((Tt)−1pt − p̃),
that we perform data reduction on to obtain the representation,
((Tt)−1pt − p̃) = Ũq̃t . Although any data reduction can be used,
we use TSVD to generate a progressive approximation that con-
verges to the exact mesh sequence as the rank of the displacement
basisŨ is increased (see Figure 10). This amounts to the articulated
shape model,

pt = Tt(p̃+ Ũq̃t), t = 1. . .S. (12)

where a tilde denotes pre-transform quantities defined in the unde-
formed configuration of the mesh (see Figure 9). Similar equations
exist for normals (c.f. [Kry et al. 2002]),

n = F−T(ñ+ Ñq̃n), or n = F(ñ+ Ñ′q̃′n). (13)

As an alternative to progressive normal approximations, we can
also use progressive approximations to other deformable appear-
ance models. For example, in our implementation, we generate
diffuse Precomputed Radiance Transfer (PRT) [Sloan et al. 2002]
for SMAs (and translating ground planes). This is done by com-
puting PRT transfer vectors for each mesh, then either computing
TSVD of transfer vectors (as in [James and Fatahalian 2003]), or
non-negative matrix factorization (NMF) [Lee and Seung 2000] of
pre-lit vertex colors, to produce a low-rank, deformable, illumi-
nation approximation that can be efficiently computed in a vertex
shader. Results are shown in Figure 1 for NMF-factorized, de-
formable, monochromatic PRT.

7 Results

Results for our examples are summarized in Table 1. Preprocess
timings for are unoptimized, and were generated on an Intel Pen-

Exact Rank 0 NNLS Rank 1 NNLS
Figure 10: Progressive displacement corrections:(Left) Exact camel
mesh in a non-reference pose; (Middle) The uncorrected NNLSskinned
model already provides a good resemblance (B= 29, β = 4, affine bones);
(Right) One displacement correction removes the majority of distortion.

Exact Rank 7 NNLS Rank 7 TSVD {Tb}

Figure 11: Over-fitting impedes corrections: (Left) An extreme frame
(#273) from the “Chicken Crossing” animation; (MidLeft) our approxi-
mation (B= 22, β = 4, affine bones) with NNLS weights and only 7 dis-
placement corrections is almost indistinguishable; (MidRight) approxima-
tion with TSVD weights suffers from over-fitting, and exhibits unpredictable
displacement artifacts (see spike near beak). (Right) Corebone triangles.
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Figure 12: Animation error with increasing bones, B for horse model
(flexible bones, NNLS weights,β = 4). (Left) Percent relative position er-
ror, E, as a function of bones, B, shown for Rank 0 and Rank 5 corrections.
While increasing the number of bones can improve accuracy, we observe
that skin corrections are typically more effective when thenear-rigid struc-
ture is resolved, e.g., at B=29bones (ε =0.05), or left alone at B=1. Note
that the B=1 case is similar to the PCA compression approach of Alexa and
Müller [2000]. (Right) The RMS unit normal error as a functionof B.

tium 4 (2.0 GHz) processor with 1 GB RAM. Mean shift clustering
clearly dominates all preprocess times, but is still under an hour
in the worst case (ironically, the elephant example). Although the
computational complexity of the approach isO(nSB) for n trian-
gles,S frames, andB bones, the memory complexity isO(nS) for
näıve in-core implementations, and can be inconvenient for large
animations.

Animation compression is not our ultimate goal, however
SMAs can provide compact approximations for quasi-articulated
models. Results are shown in Figures 12 and 13, and Table 1.

Hardware implementation of SMAs is trivial given that any
existing vertex program for matrix palette skinning can be used.
Interactive performance can be achieved for very large scenes on
an NVIDIA GeForce 6800 GT (see Figure 1). Mesh levels of de-
tail are produced using mesh simplification with additional vertex
attributes [Garland and Heckbert 1998] for skinning weights, dis-
placement corrections, PRT coefficients, etc. (see Figure 14).

Comparison to vertex buffer objects: We compare the
performance of our hardware-accelerated SMAs to an optimized
OpenGL mesh sequence renderer based on Vertex Buffer Objects
(VBO); each frame, the array of vertex positions and normals are
transferred to static VBO memory, and then drawn as indexed
geometry. Our test scene is composed of 1500 SMAs (499 camels,
483 elephants, and 518 horses) and involves 71.5 million triangles.
The brute-force VBO approach (0.35 Hz) is more than six times
slower than hardware-skinned SMAs with display lists (2.1 Hz).
Also, SMAs can avoid excessive mesh storage, and the bottleneck
of sending millions of triangles across our (8X) AGP bus.



Model Frames,S Vertices,N Triangles,n tmeanShi f t tskin Bones,B η E(Rigid,TSVD) E(Rigid,NNLS) Compress E(Flex,TSVD) E(Flex,NNLS) Compress

ball 100 5552 11100 3.0 min 0.6 min 1 1.00 0.78 (0.00) 0.78 (0.00) 72.7 0.0002(0) 0.0002 (0) 71.2
snake 121 9179 18354 8.0 min 1.3 min 27 0.98 0.20 (0.10) 0.24 (0.10) 38.2 0.12 (0.06) 0.17 (0.06) 32.2
dance 181 7061 14118 9.1 min 1.4 min 21 0.93 1.21 (0.29) 1.34 (0.29) 50.4 0.65 (0.17) 0.77 (0.18) 40.3
bridge 30 135304 240316 7.2 min 4.6 min 14 0.92 20.3 (0.16) 27.1 (0.15) 12.8 12.1 (0.10) 17.6 (0.05) 12.8
camel 48 21887 43814 18.1 min 1.2 min 23 0.88 7.76 (0.98) 8.17 (0.93) 19.6 3.11 (0.54) 4.43 (0.54) 18.9
elephant 48 42321 84638 46.2 min 2.4 min 25 0.85 10.6 (2.81) 12.5 (1.78) 20.0 4.80 (1.01) 6.22 (0.85) 19.6
horse 48 8431 16843 2.8 min 0.6 min 30 0.84 8.10 (1.46) 8.90 (1.38) 17.6 3.62 (0.59) 4.53 (0.53) 15.9
chicken 400 3030 5664 5.9 min 1.3 min 22 0.83 0.69 (0.20) 0.84 (0.17) 43.9 0.39 (0.57) 0.45 (0.14) 28.7
hands 26 1753 3470 0.1 min 0.1 min 17 0.79 2.63 (0.64) 2.78 (0.62) 8.9 2.50 (0.59) 2.63 (0.56) 7.9

elasticCow 204 2904 5804 2.4 min 0.7 min 18 0.41 2.82 (1.54) 3.27 (1.55) 38.6 3.09 (1.94) 3.18 (2.02) 27.6
clothHorse 53 8431 16843 7.1 min 0.6 min 6 0.13 41.7 (15.3) 44.1 (0.88) 21.9 28.1 (–) 30.3 (0.74) 21.3
flag(ε=.05) 200 6906 13436 8.2 min 1.6 min 32 0.42 21.2 (7.12) 21.5 (5.93) 44.5 26.0 (147) 26.6 (38.9) 33.1
flag(ε=.10) 200 6906 13436 14.0 min 2.4 min 100 (0.92) 2.26 (1.26) 2.39 (1.25) 22.0 1.49 (1.67) 1.58 (1.78) 14.4

Table 1:SMA statistics for models sorted by near-rigid fraction,η . Includes precomputation time for mean shift (tmeanShi f t) and model skinning (tskin) with
β = min(4,B). We report approximation errors in terms of percent distortion, E = 100%∗ ‖P−Papprox‖F/‖P−PtimeAverage‖F (as in [Karni and Gotsman
2004]) for the four possible combinations of Rigid/Flexible bones with TSVD/NNLS weights. In addition to uncorrected skin error, we also report error for
a rank-10 displacement correction model (in brackets); we underline the optimal model for the uncorrected and rank-10 cases. The general trend is that for
models with a lot of near-rigid structure (highη), flexible bones are always better, with TSVD weights typically better when no corrections are used (rank
0), but NNLS weights better with corrections–a sign of TSVD over-fitting. For highly deformable models (η <0.5), rigid bones become more favorable than
flexible bones, probably because the latter over-fit at lowη values. Finally, overall compression (Compress) of uncorrected skins tends to favor 7-float rigid
bones (quaternion + translation) instead of 12-float flexible bones for sequences with larger SB values.
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Figure 13: Progressive approximations: “Chicken Crossing” animation
(B= 22 bones atε = 0.05) shown for increasing displacement correction
rank. Flexible bones with NNLS weights provide the best overall SMA ap-
proximation, with passable low-rank (even zero-rank) approximations that
make them suitable for efficient hardware rendering. Their stable displace-
ment correction behavior is in contrast to flexible bones with TSVD weights,
which has irregular convergence (also see Figure 11). For comparison, we
plot (blue curve) the PCA approximation of Alexa and Müller [2000] (B=1
flexible bone) which requires much higher rank to achieve similar accuracy,
e.g., rank 37 (B=1) is comparable to the rank 7 (B=22), NNLS, flexible
bone approximation shown in Figure 11. Note that the B=1 approach can
provide better overall compression for long low-rank animations than the
frame-heavy B=22case, but it is inconvenient for hardware rendering.

Figure 14:SMA Simplification: (Left) Rest pose horse (16843 triangles)
and simplification (2100 triangles); (Right) horses in skinned pose (flexible
bones, NNLS weights,β =4).

Rest pose editing: SMAs allow displacement edits applied to
the reference mesh to be automatically applied to all animation
meshes. The displacement edits are defined in the local frame of
reference so that they orient correctly as the mesh is animated. See
Figure 15 and our video for an example. We use weights computed
with NNLS solves to avoid over-fitting that would make rest pose
editing less intuitive.

Figure 15:Rest Pose Editing:(Left) Reference mesh before edit; (Middle)
Displacement edited reference mesh; (Right) Animated poseusing skinned
mesh with displacement edit applied (flexible bones, NNLS weights,β =4).

Highly deformable models: We observe that the near-rigid
triangle fraction,η , (ε =0.05) provided by mean shift reliably in-
dicates models with sufficient near-rigid structure for skinning to
be successful. Datasets with lowη values tend to indicate highly
deformable models for which skinned approximations tend to be
inefficient. Examples include a collapsing cloth horse (η = 0.12;
see Figure 16), or a flag flapping in the wind (η = 0.42; see Fig-
ure 16). One characteristic problem, is that highly deformable re-
gions, such as the flapping flag edge, lack sufficient near-rigid struc-
ture for skinning (see Figure 17) unless extremely many bones are
used. It appears that datasets withη(ε = 0.05) values below 0.5
are non-robust candidates for skinning, and that progressive skin
corrections can be expected to perform no better (and often much
worse) than direct data reduction methods.

Deformable collision detection can also be accelerated for
SMAs by exploiting the articulated mesh parameterization. By par-
titioning mesh triangles into regions most strongly associated with
each rigid bone, we can build rigid local frames of reference for
each bone’s mesh region. By computing the displacement correc-
tion modelU(b)q(b) for boneb’s triangle’s vertices, we can con-
struct a Bounded Deformation Tree [James and Pai 2004] on each
region (see Figure 18). The method is effective because building
BD-Trees on local mesh regions can exploit the local frame of ref-
erence and simpler resulting deformation models. Such approaches



{Tb} Weights Rank 0 NNLS Rank 5 NNLS Exact

Figure 16:Skinning highly deformable animations, such as a collapsing
cloth horse, are particularly hard since the distribution of estimated core
bone triangles (far left) can be too sparse (smallη = 0.12). In general,
highly deformable animations yield unpredictable SMA approximations of-
ten no better than direct data reduction.

ε =0.05 ε =0.10 Rank 0 NNLS
(flat shading)

Rank 0 NNLS
(Rank 3 normals) Exact

Figure 17: A flapping flag has deficient bone structure atε = 0.05, but
is reasonably approximated by 100 bones (ε = 0.10). Non-smooth SMA re-
constructions are typical of highly deformable animations, but can be partly
hidden using normal corrections, or data-driven appearance models.

can reduce bounding volume hierarchy updating costs, e.g., in phys-
ical simulations (see Figure 18).

Figure 18:SMA Collision Processing:(Top) Bounded Deformation Trees
can be precomputed on near-rigid components (or any desirable mesh par-
titioning) to provide output-sensitive collision detection for SMAs; (Bottom)
SMA collisions driving a physical simulation.

8 Summary

We have presented an automatic method for constructing skinned
mesh approximations to parametrically coherent mesh sequences.
Our experiments indicate that (a) mean shift clustering of triangle
rotation sequences is a robust estimator of near-rigid mesh struc-
ture, and (b) nonrigid affine bone transformations combined with
positive vertex weights (computed using nonnegative least squares
(NNLS)) lead to accurate approximations for examples with suf-
ficient near-rigid structure (e.g.,η > 0.7). The resulting skinned

models tend to avoid over-fitting, making their reconstructions sta-
ble under small displacement modifications introduced by progres-
sive displacement corrections, SMA simplification, and rest pose
editing. Finally, the method is well-suited to real-time hardware
rendering of mesh animations of quasi-articulated phenomena, such
as those shown in Figure 1, and skinned animations can be used
with output-sensitive collision detection methods for deformable
models.
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Appendix

A Flexible Bones using Least Squares
For completeness, we provide equations to estimate boneb’s affine
transform,T̄b = (F,v), for a given mesh sequence instance. We
defineT̄ as the transform that minimizes the triangle area-weighted
sum over all core bone triangles,Tb, of the squared position errors
between transformed reference centroids,T̄bc̃, and the deformed
centroids,c. Specifically, we minimize

Φ = ∑
i∈Tb

ai‖ci −Fc̃i −v‖2
2 = ∑

i,x
ai(cix −∑

y
Fxyc̃iy −vx)

2 (14)

wherex,y = 1,2,3. Taking the derivatives ofΦ w.r.t the 12 un-
knowns,Fxy and vx, and setting each to zero, leads to 12 sparse
equations in 12 unknowns,

∑
iz

ai c̃izc̃iyFxz+(∑
i

ai c̃iy)vx = ∑
i

aicixc̃iy, x,y = 1,2,3;

∑
iz

ai c̃izFxz+(∑
i

ai)vx = ∑
i

aicix, x = 1,2,3,

wherez is summed over the three components. The(F,v) solu-
tion is the optimal flexible bone in an area-weighted least-squares
sense.
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