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A n i m a t i o n  

A b s t r a c t  

Many  of the  p rob lems  of s imula t ing  and render ing 
complex  sys tems of non-r igid ob jec t s  can be min- 
imized by descr ibing the  geomet ry  and dynamics  
separa te ly ,  using represen ta t ions  op t imized  for ei- 
ther  one or the  other ,  and then  coupling these rep- 
resen ta t ions  together .  We descr ibe  a sys tem which 
uses po lynomia l  de format ion  mapp ings  to couple 
a v ib ra t i on -mode  ( "moda l " )  r epresen ta t ion  of ob- 
ject  dynamics  toge ther  wi th  volumetr ic  models  of 
ob jec t  geometry .  By use of such a hybr id  rep- 
resen ta t ion  we have been able to gain up  to two 
orders  of magn i tude  in efficiency, control  t empora l  
aliasing, and ob ta in  s imple,  closed-form solut ions 
to common (non-r igid)  inverse dynamics  problems.  
Fur ther ,  this  approach  to dynamic  s imula t ion  na t -  
ura l ly  lends i tself  to the  emphas is  and exaggera-  
t ion techniques used in t r ad i t i ona l  an imat ion .  

1 I N T R O D U C T I O N  

The  idea  of using compute r s  to  provide  in terac t ive  s imula-  
t ion of non-r igid ob jec t  dynamics  has been a ma jo r  goal  of 
compute r  graphics ,  s t a r t ing  with  Sketchpad  [13], Th ing lab  
[5], and  the  recent  profusion of new compute r  graphics  work 
on non-r igid dynamics  [4,7,14]. Our  pro jec t ,  which we have 
named  Thingwor ld  [10,11,12], was conceived as direct  de-  
scendant  of Ske tchpad  and Thing lab :  our goal is to use in- 
te rac t ive  dynamic  s imula t ion  of m u l t i b o d y  s i tua t ions  to aid 
in physical  design. In common  with  all previous a t t e m p t s  
at  achieving this  goal, we have been confronted with the  
problem tha t  the  huge compu ta t i ona l  expense  of calculat ing 
dynamic,  in te rac t ions  prevents  in te rac t ive  s imula t ion  except  
for l imi ted,  toy s i tua t ions .  Fur the rmore ,  to be real ly useful 
to a designer,  we mus t  also be  able to solve complex  inverse 
dynamics  problems,  per form dynamic  s imula t ions  for objec ts  
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defined by  large spline surfaces or by  cons t ruc t ive  solid ge- 
ometry,  and render  ob jec t s  wi thou t  undue  t empora l  aliasing 
- -  all of which are qui te  difficult with s t a n d a r d  techniques 
and representa t ions .  

In the  Thingwor ld  sys tem we have been able to minimize 
each of these problems  by descr ibing the  geometry  and dy- 
namics  separa te ly ,  using represen ta t ions  opt imized  for ei ther 
one or the  other ,  and then  coupling these representa t ions  
together  using deformat ion  mappings .  In our system dy- 
namic proper t ies  are descr ibed  by  modM anMysis, a method  
of breaking  non-r igid dynamics  down into the  sum of in- 
dependen t  v ib ra t ion  modes .  The  advan tage  of the  moda l  
approach  is t ha t  i t  b reaks  the  dynamics  problem into many  
small ,  i ndependen t  problems.  This  allows us to achieve a 
level of control  not  possible with the  massed  equat ions nor- 
mal ly  used in dynamic  s imula t ion .  As a consequence many  
common inverse dynamics  p rob lems  can be solved in closed 
form, and m a n y  t r ad i t i ona l  an ima t ion  techniques can be eas- 
ily au toma ted .  

Because formula t ions  for descr ibing non-r igid mot ion have 
been based  on point -wise  represen ta t ions  of shape,  the  de- 
tect ion and charac te r iza t ion  of collisions has always been a 
ma jo r  fract ion of the  compu ta t i ona l  cost in mu l t i body  sim- 
ula t ion sys tems.  Fur ther ,  ana ly t ic  models  of geometry  (e.g., 
fl-splines) cannot  be used because  there  has been no way to 
relate  analyt ica l ly-speci f ied  shape  to ob jec t  dynamics .  Be- 
cause the  Thingwor ld  sys tem descr ibes  non-rigid deforma- 
t ion in t e rms  of whole-body deformat ion  modes,  we can re- 
la te  ob jec t  dynamics  to ob jec t  shape  v ia  global  po lynomia l  
deformat ion  mappings .  This  allows us to couple non-rigid 
objec t  dynamics  wi th  analy t ic  models  of geomet ry  (in our 
case superquadr ics )  so tha t  we can more  efficiently and ac- 
cura te ly  character ize  the  forces p roduced  by  collisions. 

The  plan of this  paper  is to first present  shor t  descr ipt ion 
of the  moda l  me thod  for represent ing  and calcula t ing non- 
rigid objec t  dynamics .  We will then show how the modal  
represen ta t ion  can be modified to p roduce  great  gains in ef- 
ficiency, to reduce t empora l  aliasing, and to solve inverse dy- 
namics  problems.  We will then descr ibe how the  me thod  can 
be general ized to a r b i t r a r y  geometr ic  representa t ions ,  thus  
allowing more efficient and  accura te  de tec t ion  and charac-  
te r iza t ion  of objec t  collisions. Final ly ,  we will discuss how 
this  sys tem can be  a d a p t e d  to au toma t i ca l ly  produce  many  
of the  effects used in t r ad i t iona l  an imat ion .  
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2 M O D A L  D Y N A M I C S  

2.1 B a c k g r o u n d :  F in i t e  E l e m e n t  M e t h o d  
The finite e lement  me thod  (FEM)  is a technique for simu- 
la t ing the  dynamic  behavior  of an object .  In the  F E M  the 
cont inuous var ia t ion  of d i sp lacements  th roughout  an objec t  
is replaced by  a f inite number  of d i sp lacements  at so-called 
nodal  points .  Displacements  between nodal  poin ts  are in- 
t e rpo la t ed  using a smooth  funct ion.  Energy equat ions (or 
funct ionals)  can then be der ived  in te rms of the nodal  un- 
knowns and the resul t ing set of s imul taneous  equat ions can 
be i t e ra ted  to solve for d i sp lacements  as a function of im- 
pinging forces. In the dynamica l  case these equat ions  may  
be wri t ten:  

M ~  + DiL + K u  = f (1) 

where u is a an x 1 vector  of the (x, y, z) d i sp lacements  of the  
n nodal  points  re la t ive  to the  ob jec t s '  center  of mass, M,  D 
and K are an by 3n mat r ices  descr ibing the mass,  damping,  
and mate r ia l  stiffness between each poin t  within the body,  
and f is a 3n x 1 vector  describing the (x, y, z) components  
of the forces act ing on the nodes.  This  equat ion can be 
in te rp re ted  as assigning a cer ta in  mass  to each nodal  point  
and a cer ta in  ma te r i a l  stiffness between nodal  points ,  wi th  
damping  being accounted  for by dashpots  a t t ached  between 
the nodal  points .  The  damp ing  ma t r i x  D is often taken  to be 
equal  to s M  for some scalar  s; this is called mass damping .  

To calculate  the resul t  of applying some force f to the ob- 
ject  one discret izes the  equat ions  in t ime,  picking an appro-  
pr ia te ly  small  t ime step, solves this  equat ion for the new u, 
and i t e ra tes  unt i l  the sys tem stabil izes.  Direct  ( implici t)  so- 
lut ion of the dynamic  equat ions  requires inversion the K ma- 
trix, and is thus  computa t iona l ly  expensive.  Consequent ly  
explici t  Euler  me thods  (which are less s table ,  but  require no 
ma t r ix  inversion) are qui te  often applied.  

Even the explici t  Euler  me thods  are qui te  expensive,  be- 
cause the  matr ices  M,  D, and K are qui te  large: for in- 
s tance,  the  simplest 3-D parabol ic  e lement  produces  60 x 
60 matr ices ,  corresponding to the 60 unknowns in the  20 
nodal  poin ts  (xl, yi, zi) which specify the  element  shape.  In 
most  s i tua t ions  M,  D, and K are very much larger  than  60 x 
60, so t ha t  typica l ly  hundreds  or thousands  of very large ma- 
t r ix  mul t ip l ica t ions  are required for each second of s imula ted  
t ime.  For  more deta i l s  see references [4,7,14,15]. 

2.2 M o d a l  Analys is  
Because M,  D and K are normal ly  posi t ive definite sym- 
metr ic ,  and M and D are assumed to be re la ted by  a scalar  
t ransformat ion ,  Equat ion  1 can be t ransformed into 3n inde- 
pendent  differential  equat ions  by use of the  whitening t rans- 
form, which s imul taneous ly  diagonalizes M,  D, and K.  The  
whi tening t ransform is the solut ion to the  following eigen- 
value problem: 

)re = M -~ K ¢  (2) 

where A and ¢ are the  eigenvalues and eigenvectors of 
M - 1 K .  

Using the t r ans format ion  u = &ct we can re-wri te  Equa-  
t ion 1 as follows: 

¢ r M e h  + e T D ¢ ~  + 6T I-(¢~t = eT f (3) 
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Figure  1: (a) A cylinder,  (b) a l inear deformat ion  mode in 
response to compression,  (c) a l inear  deformat ion  mode  in re- 
sponse to accelerat ion,  (d) a quadra t i c  mode in response to a 
bending  force, (e) superpos i t ion  of bo th  l inear  and quadra t ic  
modes  in response to compression,  (f) superpos i t ion  of both  
l inear  and quadra t i c  modes  in response to accelerat ion.  

In this  equat ion qbTMq~, qbTD¢, and eTKq5 are d iagonal  ma- 
trices, so tha t  if  we let M = e T M ¢ ,  _D -~ e T D ¢ ,  R = eTKqb, 
and f = qbTf then we can wri te  Equat ion  3 as 3n indepen-  
dent  equat ions:  

Mifii + Digi + ~'iRi = fi  , (4) 

where/17//is the  i th diagonal  e lement  of ]17/, and so forth. Be- 
cause the modal  represen ta t ion  diagonal izes  these matr ices  
i t  may  be viewed as preconditioning the  mass  and stiffness 
matr ices ,  with the  a t t e n d a n t  advantages  of be t t e r  conver- 
gence and numer ica l  accuracy.  

W h a t  Equat ion  4 descr ibes  is the  t ime course of one of 
the ob jec t ' s  vibration modes,  hence the  name modal analy-  
sis [16]. The  cons tan t  3~ri is the general ized mass  of  mode i, 
tha t  is, i t  descr ibes  the  iner t ia  of this  v ibra t ion  mode.  Sim- 
ilarly, Di, a n d / ( i  descr ibe  the damping  and spring stiffness 
associa ted  with mode i, and fi is the  amoun t  of force cou- 
pled with this  v ib ra t ion  mode.  The  i th row of ~b descr ibes  the 
deformation the  objec t  experiences as a consequence of the 
force fi ,  and the eigenvMue hi is p ropor t iona l  to the na tu ra l  
resonance frequency of tha t  v ib ra t ion  mode.  

Figure  1 i l lus t ra tes  the  some of the  first and second order 
modes  of a cylinder.  F igure  l ( a )  shows the cyl inder  at rest,  
(b) shows the cyl inder  exper iencing a l inear  deformat ion  in 
response to a compress ive  force, (c) shows the cyl inder  expe- 
riencing a l inear shear deformat ion  in response to an accel- 
erat ing force, (d) shows a quadra t i c  deformat ion  in response 
to a cen t ra l ly -appl ied  (bending)  force, and (el and (f) show 
how bo th  the l inear  and second order  deformat ions  can be 
super imposed  to  p roduce  a more  accurate  s imula t ion  of the 
ob jec t ' s  response to the  compressive and accelerat ing forces 
shown in (b) and (c). 

To obta in  an accura te  s imula t ion  of the dynamics  of an 
ob jec t  one s imply  uses l inear  superpos i t ion  of these modes 
to de te rmine  how the ob jec t  responds  to a given force. Be- 
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cause Equat ion  4 can be solved in closed form, we have the 
result tha t  for objects composed of l inearly-deforming ma- 
terials ~he n o n - r i g i d  b e h a v i o r  ot" the  o b j e c t  in  r e s p o n s e  to 

an i m p u l s e  force  can be  s o l v e d  in d o s e d  f o r m  for  any  t i m e  

t. The solution is discussed in Section 5.1. In environments  
with more complex forces, however, analyt ic  solution be- 
comes cumbersome and so numerical  solution is preferred. 
Either explicit or implicit  solution techniques may be used 
to calculate how each mode varies with time. 

Non-linear materials  may be modeled by summing  the 
modes at the end of each time step to form the mater ial  
s t r e s s  s ta te  which can then be used to drive nonl inear  plastic 
or viscous mater ia l  behavior.  

3 U S I N G  T H E  M O D A L  M E T H O D  

Although the simple modal  method offers some benefits in 
terms of efficiency and stability, its main  advantage is tha t  
it allows us to control the computa t ion  in ways tha t  are ad- 
vantageous to various applications. In this section we detail 
some of the variat ions on the basic modal  method that  we 
have found to be part icularly useful. 

3.1 Increased Speed 
Modes associated with high resonance frequencies normally 
have little effect on object shape. This is because, for a 
fixed excitat ion energy, the displacement  ampl i tude  for each 
mode is inversely proport ional  to the square of the mode 's  
resonance frequency. Thus  a relatively accurate and more 
efficient s imula t ion  of an object ' s  dynamics  can be accom- 
plished by discarding the small-ampli tude,  high-frequency 
]nodes, and super imposing only the large-ampli tude,  low- 
frequency modes. We can determine which modes to discard 
by examining their associated eigenvalue, which is propor- 
t ional to the resonance frequency. 

The amoun t  of error in t roduced by discarding high- 
frequency modes can be checked by occasionally subs t i tu t ing  
the displacements  u produced by low-frequency modal  anal- 
ysis into the full equations.  When  significant error is found 
addit ional  modes can be added. Exactly which modes to 
add can be determined by a principal  components  analysis 
of the error residuals. 

One effect of discarding modes is, of course, to reduce the 
number  of equat ions that  must  be considered within each 
time step. However, because the m a x i m u m  allowable t ime 
step is inversely proport ional  to the highest resonance fre- 
quency in the system of equations,  a more impor t an t  effect 
of discarding high-frequency modes is tha t  we can use much 
larger t ime steps. In typical s i tuat ions  we have found that  
the savings from fewer equat ions and larger t imes steps can 
reduce computa t ion  t ime by up to two orders of magni tude,  
while at the same t ime producing a reasonably accurate, 
realistic-looking animat ion.  

3.1.1 N u m b e r  o f  m o d e s  r e q u i r e d  

For the sake of increased efficiency, our approach has been 
to model only as many  modes as are required. In a quick- 
and-dir ty  analysis - -  often sufficient during the initial  phase 
of a design - -  only r igid-body or r igid-body plus linear s train 
modes may be used, result ing in large computa t ional  savings. 

Later, more modes can be added to achieve any level of 
desired accuracy, al though at greater cost. 

We have found tha t  most commonplace mul t i -body inter- 
actions can be adequately modeled by use of only rigid-body, 
linear, and quadrat ic  s t ra in modes, as is shown in Figures 1 
and 2. Note tha t  this is n o t  t rue for bodies whose dimen- 
sions are quite disparate,  however it  is exactly these cases 
tha t  can be adequately t reated by either a one or two di- 
mensional  analysis, and thus are cases where the s tandard 
FEM is quite efficient. 

3 .1 .2  R e c o m p u t l n g  m a t r i c e s  a n d  m o d e s  

Normally, in either the finite element or modal  methods, 
the mass, damping,  and stiffness matrices are not  recom- 
puted at each time step. The use of fixed M, D, and K 
(or, equivalently, fixed modes) is well-justified as long as the 
material  displacements are small. The definition of "small," 
however, is quite different for different modes. Because the 
eigenvalue decomposit ion in Equat ion  2 performs a sort of 
pr incipal-components  analysis, it is the gross object shape 
(e.g., i ts low-order moments  of inert ia)  determine the low- 
frequency modes, which as a consequence are quite stable. 
High-frequency modes are much less stable because they are 
determined by the fine features of the object ' s  shape. 

In the s tandard  finite e lement  formulat ion the action of 
each mode is d is t r ibuted across the entire set of equations, 
so tha t  one must  recompute the mass and stiffness matri-  
ces as often as required by the very highest-frequency vi- 
bra t ion modes. When  these high-frequency modes are dis- 
carded the mass, damping,  and stiffness matrices need to be 
recomputed much less frequently - -  a large computa t ional  
savings. We have found, for instance,  tha t  in most anima- 
t ion sequences we can use a single, fixed set of low-frequency 
modes throughout  the entire s imulat ion.  

3 .1 .3  A n  e x a m p l e  

Figure 2 shows a example of comput ing  non-rigid dynamic 
interact ion:  a ball colliding with a two-by-four. As can be 
seen, the in teract ion and result ing deformations look realistic 
despite the use of only first and  second order modes. Perhaps 
the most impressive fact about  this example, however, is the 
speed of computat ion:  Using a Symbolics 3600 (with a speed 
of roughly one MIP),  it requires only one CPU second to 
compute  each second of s imulated time! 

3.2 Tempora l  Aliasing 

One impor t an t  side effect of discarding high-frequency 
modes is reduction in temporal  aliasing artifacts. A dy- 
namic s imulat ion using the s tandard  finite element method 
will produce very many small, high-temporal-frequency dis- 
placements.  This  is especially t rue for stiff materials.  To 
avoid temporal  aliasing artifacts these small displacements 
must  be accurately tracked (requiring a small t ime step), and 
then averaged over t ime to produce each image. Ill modal 
analysis these high frequency displacements  can be directly 
identified and discarded, thus reducing not  only the number  
of t ime steps required, but  also the need for t ime averaging 
in order to avoid temporal  artifacts. 
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Figure 2: A ball  colliding with a two-by-four 

(A) 

(B) 

(c) 

f i l  I ] I ~X\< ) 
\~X X i I l f l  

Figure  3: Low-order  deformat ion  modes  are visually similar 
when objec t s  have similar  low-order  momen t s  of iner t ia .  

3 .3  U s e  o f  A p p r o x i m a t e  M o d e s  

An objec t ' s  low-order  deformat ion  modes  can be thought  
of as the  pr incipal  componen t s  of the  ob jec t ' s  reper toi re  of 
non-rigid behavior .  These  modes  can be found by  solving the 
eigenvalue p rob lem of Equa t ion  2, however for visual izat ion 
purposes we have found tha t  it is sufficient to use fixed, pre- 
computed  deformat ion  modes  tha t  are pa ramete r i zed  only 
by the ob jec t ' s  low order  moments  of inert ia.  

This  is i l lus t ra ted  in F igure  3, which shows three objects  
colliding with a pos t  af ter  having been d ropped  from a few 
feet above the post .  F igure  3(a) shows the original,  unde- 
formed objects .  F igure  3(b) shows the collisions s imula ted  
using modes  compu ted  by solving Equat ion  2. In Figure  3(c) 
we have pJ:ecomputed the modes  of a rec tangula r  solid with 
approx imate ly  the  same moments  as the ob jec t  to be ani- 
mated.  These  p recomputed  deformat ion  modes  were then 
used in place of the ob jec t ' s  t rue  modes  in making the an- 
imat ion.  Despi te  use of p recomputed  modes  i t  can be seen 
tha t  the  collisions are visual ly very similar.  

A more accura te  var ia t ion on this theme is to use 20 nodal  
points  (i.e., a s imple 3-D parabol ic  e lement)  to approx imate  
the shape of the  objec t  to be animated.  Equat ion  2 can 
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be solved relat ively quickly for this  number  of nodal  points,  
and the result ing modes  will produce a reasonably  accurate  
s imulat ion.  Such shor tcu ts  to f inding an ob jec t ' s  modes  can 
produce  an i m p o r t a n t  savings in in te rac t ive  s imulat ion sys- 
tems such as Thingwor ld ,  where the  user f requent ly  changes 
each ob jec t ' s  s ta t ic  geometry.  

4 C O M B I N I N G  D Y N A M I C S  A N D  

A N A L Y T I C  G E O M E T R Y  

One problem with s t anda rd  non-r igid dynamica l  techniques 
is tha t  they  are based on use of a point -wise  representa t ion  
of geometry,  thus  forcing the  represen ta t ion  of geometry  and 
dynamics  to be ident ical .  As a consequence one cannot,  for 
instance,  specify detai ls  of geomet ry  wi thout  incurr ing large 
costs in calcula t ing dynamic  behavior ,  nor can one direct ly  
an imate  objec ts  defined by, for example ,  large spline patches  
or cons t ruc t ive  solid geometry.  The  fact  t ha t  the  same repre- 
senta t ion  must  be  nsed for bo th  geomet ry  and dynamics  thus 
has a large impac t  upon the  efficiency and accuracy of mult i -  
b o d y  s imulat ions,  where de ta i led  specif icat ion of geometry  
is required to obta in  accura te  de tec t ion  and charac ter iza t ion  
of collisions. 

We have been able to combine separa te  represen ta t ions  of 
dynamic  behavior  and geometr ic  form in order  to avoid these 
problems.  We have accomplished this by describing each 
mode  by an app rop r i a t e  po lynomia l  function,  and then us- 
ing global  deformat ion  techniques [3] to establ ish the corre- 
spondence  between dynamic  s t a t e  and geometr ic  s tate .  The  
result  is an efficient scheme for s imula t ing  non-r igid dynam-  
ics tha t  can be appl ied  in a unified manner  to ob jec t s  whose 
geomet ry  is defined using a wide range of techniques.  

To accomplish this,  we mus t  first realize t ha t  modes  may 
be classified by the complexi ty  of the associa ted deformat ion,  
e.g., as 0 th order  (rigid b o d y )  modes,  1 ~t order  ( l inear defor- 
mat ion)  modes,  2 n d  order  (quadra t i c  deformat ion)  modes,  
and so forth, as was i l lus t ra ted  by Figure 1. Thus  we can 
descr ibe  the deformat ion  associa ted with each mode  by use 
of po lynomia l  deformat ion  mappings  of the  appropr ia t e  de- 
gree. This  is accomplished by per forming a l inear  regression 
of a polynomial  with m terms in app rop r i a t e  powers of x, 
y, and z, agains t  the n t r iples  of a, y and z coefficients tha t  
compose  ¢i ,  a 3n x 1 vector  conta in ing the elements  of tile 
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i th row of ¢: 

= ( ~ ) - ~ 0 ~  , (5) 
where a is an m x 1 m a t r i x  of the  coefficients of the 
desired deformat ion  polynomial ,  ~ is an 3n x rn ma- 
t r ix  whose first column conta ins  the  elements  of u = 
(x l ,ya ,  zi,  x2, y2, z2, ...), and whose remaining  columns con- 
sist of the modif ied versions of u where the  x, y, a n d / o r  z 
components  have been raised to the  various powers,  e.g., 

Xl Z~ X l  Xl  . . .  

ya yl y~ yl ... 

Zl Z l  Zl  Z~ . . .  

z =  ~ d x~ ~ ... (6) 
Y2 Ys Y~ Y2 ... 
Z 2 Z 2 Z 2 Z~ .. .  

The quest ion of which po lynomia l  powers are the  appro-  
pr ia te  for a pa r t i cu la r  column of ¢ can be decided ei ther  
by inspect ion (not ing t ha t  the  order  of the  deformat ion is 
re la ted to the  associa ted eigenvalue),  or au tomat i ca l ly  by 
including all combina t ions  of powers of x, Y, and z (up to 
some l imit) ,  per forming the regression, and then discarding 
coefficients with negligible magni tude .  

The  resul t  is a po lynomia l  model  of the  uni t  ampl i tude  
deformat ion associated with mode  i. By s imply scaling this 
po lynomia l  deformat ion  according to the  mode ' s  ampl i t ude  
we can accura te ly  copy the effects of this  mode on the  ob- 
jec t ' s  shape.  By super impos ing  these deformat ions  we ob- 
tain an accurate  account ing  of the ob jec t ' s  non-rigid defor- 
mat ion.  

4 . 1  F a s t  C o l l i s i o n  C h a r a c t e r i z a t i o n  

In complex,  m u l t i - b o d y  s imula t ions  the  abi l i ty  to efficiently 
detect  and charac ter ize  collisions is ex t remely  i mpor t a n t .  
Unfor tunate ly ,  the  point -wise  represen ta t ions  used by the 
s t anda rd  F E M  are qui te  poor  at  this  task.  When  using 
a polygon represen ta t ion ,  for instance,  the  computa t iona l  
complexi ty  of collision detec t ion  is O ( n m )  opera t ions ,  where 
n is the number  of polygons  and m is the number  of poin ts  
to be considered after pruning  via  bounding  box calculat ions  
[91. 

In cont ras t ,  one can per form collision de tec t ion  re la t ively  
efficiently when employing  volumetr ic  represen ta t ions  (e.g., 
superquadr ics  [2,6,10]) by making  use of their  ins ide-outs ide  
function.  In our sys tem the basic volumetr ic  pr imi t ive  is a 
superquadr ic ,  which is m a p p e d  from its canonical  reference 
frame 1 to i ts three-space  posi t ion by  an afflne t ransforma-  
tion T. The  normal ized  ins ide-outs ide  funct ion D(x ,  y, z) for 
superquadr ics  is: 

D(x,  y, z) = [ ( ( z / a ~ U  ~ + ( y / a 2 U  ~' )¢'/¢~ + (z /an)  ~I¢~] ¢~ 
(7) 

where the posi t ion (z, y, z) is relat ive to the ob jec t ' s  canon- 
ical reference frame. The  basic opera t ion  for collision detec-  
tion, then,  is to take po in ts  (x, y, z) sampled  from the tes ted  
ob jec t ' s  surface, app ly  T -1 to conver t  them to the  canonical  

1The canonical  reference frame is when the ob jec t  has 
zero ro ta t ion ,  and is centered  at  (0, 0, 0) 

reference frame, and then subs t i tu t e  them into  the inside- 
outs ide  function.  When  the resul t  is less than  one the poin t  
is inside the  surface, if greater  then one the poin t  is outside.  
Thus ,  the  compu ta t iona l  complex i ty  is only O(m) ,  ra ther  
than  O(nm), where n and m are as before.  As with other  
represen ta t ions  [9], to find the  exact  po in t  in space- t ime at  
which contac t  between the two bodies occurred requires use 
of numer ica l  min imiza t ion  techniques,  where bo th  point  po- 
sit ion, T and Equat ion  7 are expressed as funct ions of time. 
In the Thingworld  system we have found tha t  the  abi l i ty  to 
per form fast collision de tec t ion  using volumetr ic  representa-  
t ions yields large compu ta t iona l  savings.  

4 . 2  A c c u r a c y  o f  C o l l i s i o n  C h a r a c t e r i z a t i o n  

A more subt le  but  pe rhaps  equal ly i m p o r t a n t  advantage  of 
being able to use analy t ic  represen ta t ions  in dynamic  simula- 
t ions is the  abi l i ty  to character ize  the collision surface more 
quickly and precisely. For  instance,  one difficult problem 
tha t  arises when using any discrete  t ime technique is tha t  
coll iding bodies  often in t e rpene t r a t e  during a t ime step. The 
depth ,  area  and shape of this  pene t r a t ion  de te rmines  tile re- 
pulsive force generated.  

W i t h  point -wise  (polygon)  represen ta t ions  it is difficult to 
de te rmine  the i n t e rpene t r a t i on  region, so t ha t  most  systems 
ignore the con tac t  area ' s  shape  and s imply  find the single 
po in t  (normal ly  a polygon ver tex)  tha t  first contac ted  the 
surface. As a consequence the ca lcula ted  force is often seri- 
ously in error. When  using ana ly t ic  representa t ions  of geom- 
etry, however, bo th  surface normal  and pr incipal  curvatures  
are readi ly  avai lable so tha t  good closed form approxima-  
tions to the  depth ,  area  and shape  of the  in te rpene t ra t ion  
region can be easily computed .  

5 T h e  R i g h t  C o n t r o l  K n o b s  

One of the most  i m p o r t a n t  aspects  of  any s imula t ion  or ani- 
ma t ion  sys tem is the abi l i ty  to cont ro l  the  behavior  of objects  
in a na tura l ,  intui t ive,  and convenient  manner :  in short,  the 
sys tem must  have the r ight  control  knobs. In s imula t ion  sys- 
tems such as Thingwor ld ,  one often needs to be able to solve 
s imple inverse dynamics  problems:  For instance,  to make 
something  j u m p  from here to there and land softly. In ani- 
ma t ion  sys tems the same requi rements  arise, but  in addi t ion 
one needs to be able to produce  pleasing but  non-physical ly-  
real is t ic  effects. In t r ad i t iona l  an imat ion  some of the most 
i m p o r t a n t  of these effects are called squash-and-s t re tch ,  an- 
t ic ipa t ion ,  and exaggera t ion  [8]. 

The  control  knobs  for these sorts  of things s imply don ' t  
exist with s t a n d a r d  approaches  to dynamic  s imulat ion.  Even 
simple inverse dynamics  problems,  for instance,  require solv- 
ing huge numer ica l  min imiza t ion  problems because all of dy- 
namical  equat ions  are closely coupled together .  Similarly, 
t r ad i t iona l  an imat ion  effects such as squash-and-s t re tch  can 
only be ob ta ined  by careful'ly j iggering mater ia l  proper t ies  
and externa l  forces as a function of objec t  posi t ion,  velocity, 
and so forth. 

The  s i tua t ion  is qui te  different when using modal  analysis,  
because  closed-form solut ions  exist  for each mode ' s  behav- 
ior as a funct ion of t ime,  and because  the  various modal  
behaviors  are independen t  of each other  so tha t  they  may 
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Figure 4: Damped vibration as a function of time. 

~ t  

be t reated separately. Further,  the low-order modes of an 
object seem to closely mimic many of the effects used in 
tradit ional animation.  

5 . 1  I n v e r s e  D y n a m i c s  

The t ime behavior of each mode in response to an impinging 
force is given by Equat ion 4. The generic solution to this 
equation is 

ui = A e  rl t  "t- B e  ~2t, 

for D ~ - 4 h ' i ~ 7 / i  > 0 ,  r l , r2  < 0  

el  = (A  + B t ) e  (Di /2~i ) t ,  
for D~ - 4KiJfL = 0, (8) 

ai = e ( D i / 2 ~ i ) t ( A  cos/~t + B sin/zt), 

for ~ = (4_~_~, - D~)I/~/2M~ > 0 

for the overdamped, critically damped, and underdamped 
cases,  w h e r e  

- D ,  ± VD~ - 4R, M, 
r l ,  r2 = 2M~ (9) 

and A and B depend on the initial conditions [1]. The third 
case, underdamped motion, occurs most commonly in me- 
chanical systems and is referred to as "damped vibration." 
To see this we let A = R c o s ~  and B = R s i n 8  in Equat ion 
8 to obtain 

~ = R e  - ( r < ' / 2 ~ m  cos(mr - 6) , (10) 

which is graphed in Figure 4. 
Thus, once we know the ampli tude and derivative of a 

mode at t ime zero, we can predict its behavior for all future 
times - -  or at least until an external  force adds or subtracts 
energy from the mode. In particular, given initial conditions 
fii(0) = X, ~i(0) = ~, and underdamped free oscillation, then 

I m \ 1/2 
C ~x ) ~  e [<'~/~'  c o s ( ~ t -  ~) (]]) ~,(t)  = x ~ + ( ~  + 

2Mi# ] 

where ~ = tan -1 [(X/X + Dix /2 t z ] f I i ) /X] .  Using this relation 
we can achieve a desired object shape at some time h by 
adjusting initial modal  ampli tude and velocity at t ime to. 
Similarly, we can specify the desired object shape at t imes to 
and h ,  and then solve for the force required to achieve those 

(A) 

(B) 

Figure 5: A t ime lapse i l lustration of a cylinder jumping and 
landing (a) with a hard thump, (b) softly. Time proceeds 
from left to right. 

constraints. Thus, Equat ion 11 can provide us with closed- 
form solutions to many common inverse dynamics problems. 
For closed-form solutions under other initial conditions see 
reference [1]. 

5.1.1 S o m e  E x a m p l e s  

Imagine that  we want a cylindrical solid to jump from 
point A to point  B, landing either softly or with a hard 
" thump".  Further,  imagine that  we wish to control the 
cylinder by changing only the characterist ics of i t 's  "mus- 
cles," i.e., by controlling the displacement and spring con- 
stant  associated with each deformation mode. The inverse 
dynamics problem, then, is to make sure that  the cylinder 
has the correct amount  of extension or compression at the 
point of landing so that  it can achieve the desired type of 
landing. 

The mathemat ics  for calculating a t ra jectory that  will 
take the cylinder from point A at t ime t = to to point B 
is well known. Tha t  calculation will also give us the time 
t = tl at which landing will occur, and the force vector 
finitial needed to achieve the jump.  If we idealize the ge- 
ometry and t ime course of how the cylinder pushes against 
point A, then we can use standard kinematics to determine 
how much the cylinder must "crouch" and tense it 's  "mus- 
cles" (i.e., what initial modal  displacements ~i (t0) and spring 
constants f f i ( to )  are required) in order to produce tile de- 
sired force vector. 

Producing a jump by use of the spring energies stored in 
the various modes will leave each of the modes in some state 
~i(t0 + e) = Xi, ~i(t0 + e) = )~i as the cylinder leaves the 
surface. The inverse dynamics problem is then to set the 
spring constants /~i(t) (for to < t < t l )  of the cylinder's 
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Figure 6: (a) Physical  squash-and-st re tch in a collision. 

"muscles" so that  the na tu ra l  oscillation of the cylinder ex- 
erts the desired motion-cancel ing force ffm~z on point  B at 
the appointed ins tan t  in t ime. 

To obtain ff~na* at t = tl we first determine what combi- 
nat ion of modal  ampli tudes  will exert the desired final force 
by comput ing 

fti(Q) = f i /~ r i (Q)  , (12) 

where f = eTffi,~al, and t h e -  "i(h) correspond to "tensing" 
the muscles for landing.  We then solve Equat ion 11 with the 
given values of * = h,  M., D .  ~,(t0) = X~, and 5~(*o) = 2~ 
in order to find a stiffness -h~i(~), to < t < tl ,  such that  aai(¢~) 
has the desired value. 2 Thus  Equat ion 11 provides a closed- 
form solution to such simple inverse dynamics  problems - -  
at least when we can idealize contact  geometry, friction, etc. 
Examples of jumps  computed in this manne r  are shown in 
Figure 5. 

In most s i tuat ions  of interest,  unfor tunately ,  the partic- 
ulars of geometry and friction are sufficiently complex and 
non-l inear  tha t  there is no dosed-form solution, so tha t  one 
must still employ the sort of constrained minimizat ion de- 
scribed in [17] to obta in  a solution. However, as these ex- 
amples i l lustrate,  by using Equat ion  11 it  appears tha t  the 
problem can be reduced from several thousand free param- 
eters to only a few dozen free parameters.  

5.2  C o n t r o l  o f  A n i m a t i o n  

The deformations caused by an object ' s  low-order vibrat ion 
modes correspond closely to the types of exaggeration and 
emphasis used in t radi t ional  animat ion.  Thus,  the ampli tude 
of these low-order modes provides the control knobs needed 
for such animat ion.  

A simple version of squash-and-s t re tch in collisions is 
well modeled by straightforward application of non-rigid dy- 
namic s imulat ion:  things do squash and stretch dur ing col- 
lisions, a shown in Figure 6. However, as applied in tradi-  
t ional animat ion ,  this not ion goes well beyond simply ob- 
ta ining physically-realistic deformations during a collision. 
It also occurs as a response to motion,  to acceleration, 
and even in response to emotional  states. By providing a 
"stretch/squash" control knob we can wire squashing-type 

2The h ' i ( h )  must  of course be large enough tha t  the 
modal  displacements  at ~ = tl (which are no larger than  
the displacements  at  t = to) generate sufficient energy. 

Figure 7: S t re tch ing/squashing  tied to velocity 

@ 
0 
® 

@ 
POSITION 

Figure 8: S t re tch ing/squashing  tied to speed minus  acceler- 
ation; t ime proceeds from top to bot tom.  

deformations directly to other parameters ,  bo th  physical and 
non-physical,  in order to obta in  interes t ing visual effects. 

Examples of this are shown in Figures 7, 8 and 9, where 
we have wired the "s t re tch/squash" knob to various physi- 
ca] properties. Figure 7 shows three objects moving at dif- 
ferent speeds. In this figure the ampli tude of the stretch- 
ing /squash ing  deformation is set equal the speed, so that  
as the object moves faster it becomes stretched out in the 
direction of motion.  

Figure 8 shows a t ime series where the s t re tch/squash 
deformation is equal to the speed minus  the acceleration, 
so tha t  an accelerating object "piles up" in ant icipat ion as 
the mot ion begins, and stretches out as the motion reaches 
steady state. 

Finally, Figure 9 shows three mushrooms with bo th  bend- 
ing and s t re tch ing/squashing  deformations tied to image z 
posit ion: as a consequence the mushrooms "wilt" from left 
to right. The same deformations could be tied to emotional  
state, for instance,  thus providing physical i l lustrat ion of a 
character 's  state of depression or elation. 
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Figure 9: Stretching/squashing to express emotional state. 

6 S U M M A R Y  

The idea of using computers to provide interactive simula- 
tion of non-rigid object dynamics has long been frustrated by 
the inability to efficiently calculate dynamic interactions, to 
solve inverse dynamics problems, to use geometry defined by 
splines or constructive solid geometry, and to avoid tempo- 
ral aliasing problems. We have been able to minimize each 
o[ these problems by developing new, hybrid methods for 
representing and calculating object dynamics in which "he 
object 's geometry and dynamics are described by sepa ate 
but yoked representations. The result is a system whk h is 
efficient at performing dynamic simulations, can be applied 
to a wide range of geometric models, and which is useful 
for implementing many of the techniques used in traditional 
animation. 
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