
~ Computer Graphics, Volume 22, Number 4, August 1988

l ,

Space t ime Cons t r a in t s

Andrew Witkin
Michael Kass

Schlumberger Palo Alto Research
3340 Hillview Avenue, Palo Alto, CA 9~30~

A b s t r a c t
Spacetime constraints are a new method for creating char-
acter animation. The animator specifies what the char-
acter has to do, for instance, "jump from here to there,
clearing a hurdle in between;" how the motion should be
performed, for instance "don't waste energy," or "come
down hard enough to splatter whatever you land on;" the
character's physical structure--the geometry, mass, con-
nectivity, etc. of the parts; and the physical resources,
available to the character to accomplish the motion, for
instance the character's muscles, a floor to push off from,
etc. The requirements contained in this description, to-
gether with Newton's laws, comprise a problem of con-
strained optimization. The solution to this problem is a
phyJically valid motion satisfying the "what" constraints
and optimizing the "how" criteria. We present as exam-
pies a Luxo lamp performing a variety of coordinated mo-
tions. These realistic motions conform to such principles of
t radit ional animat ion as anticipation, squash-and-stretch,
follow-through, and timing.

K e y w o r d s - - Animation, Constraints

I. I n t r o d u c t i o n
Computer animat ion has made enormous strides in the
past several years. In particular, Pixar 's Luzo, Jr. [13]
marked a turn ing point as perhaps the first computer-
generated work to compete seriously with works of tra-
ditional animat ion on every front. Key among the reasons
for Luzo, .)'r. 's success is that it was made by a talented
animator who adapted the principles of traditional anima-
t ion to the computer medium. Luzo, Jr., in large measure,
is a work of tradit ional animat ion that happens to use a
computer to render and to interpolate between keyframes.
John Lasseter speUed this out clearly in his presentation to

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

Siggraph '87 [12]. Although £uzo, Jr. showed us that the
team of animator , keyframe system, and renderer can be
a powerful one, the responsibility for defining the motion
remains almost entirely with the animator.

Some aspects of an imat ion--personal i ty and appeal,
for example---will surely be left to the animator 's artistry
and skill for a long time to come. However, many of the
principles of animat ion are concerned with making the
character's motion look real at a basic mechanical level
that ought to admit to formal physical t reatment. Con-
sider for example a jump exhibiting anticipation, squash-
and-stretch, and follow-through. Any c rea tu re - -human or
l a m p - - c a n only accelerate its own center of mass by push-
ing on something else. In jumping, the opportuni ty to con-
trol acceleration only exists during contact with the floor,
because while airborne there is nothing to push on. Antici-
pat ion prior to takeoff is the phase in which the needed mo-
men tum is acquired by squashing then stretching to push
off against the floor. Follow-through is the phase in which
the momen tum on landing is absorbed.

Such physical arguments make nice poJt hoe explana-
tions, but can physics be brought to bear in creating the
complex active motions of characters like Luxo? If so, how
much of what we regard as "nice" motion follows directly
from first principles, and how much is really a matter of
style and convention?

This paper presents a physically-based approach to
character animat ion in which coordinated, active motion
is created automatically by specifying:

• What the character has to do, for instance "jump from
here to there."

• How the motion should be performed, for instance
"don' t waste energy," or "come down hard enough
to splatter whatever you land on."

• What the character's physical structure i s - -what the
pieces are shaped llke, what they weigh, how they're
connected, etc.

• What physical resources are available to the charac-
ter to accomplish the desired motion, for instance the
character's muscles (or whatever an animate lamp has
in place of muscles,) a floor to push off from, etc.

@ 1 9 8 8 ACM-0-89791-275-6/88/008/0159 $00.75 "Luxo" is a trademark of Jac Jacobsen Industries AS.

159

SIGGRAPH '88, Atlanta, August 1-5, 1988

Our initial experiments with this approach have aimed
at making a Luxo lamp execute a convincing jump just by
telling it where to start mad where to end. The results
we present in this paper show that such properties as an-
ticipation, follow-through, squash-and-stretch, and timing
indeed emerge from a bare description of the motion's pur-
pose and the physical context in which it occurs. Moreover,
simple changes to the goals of the motion or to the phys-
ical model give rise to interesting variations on the basic
motion. For example, doubling (or quadrupling) the mass
of Luxo's base creates amusingly exaggerated motion in
which the base 1oo~ heavy.

OvLr method entails the numerical solution of laxge
constrained optimization problems, for which a variety of
standard algorithms exist. These algorithms, while rela-
tively expensive, spend most of their time solving sparse
linear systems, and are therefore amenable to accelera-
tion by array processors and other commonly available
hardware. The greatest difficulty arises not in comput-
ing the numerical solution, but in setting up the intricate
sparse matrix equations that drive the solution process. To
address this problem we implemented an object-oriented
symbolic algebra system that automates this difficult task
almost entirely. We therefore believe the method described
here can become a practical animation tool requiring no
more mathematical sophistication of the end user than do
current keyframlng systems.

The remainder of the paper is organized as follows:
the following section discusses the previous use of physical
methods in animation. The spacetime method is then in-
troduced using a moving particle as a toy example. Next,
our extension of the method to complex problems is dis-
cussed. Finally, the Luxo model and the results obtained
with it are described.

II. B a c k g r o u n d a n d M o t i v a t i o n

Recently, there has been considerable interest in incorpo-
rating physics into animation using simulation methods.
[10, 17, 18, 2, 16, 7, 9] The appeal of physical simulation
as an animation technique lies in its promise to produce re-
alistic motion automatically by applying the same physical
laws that govern real objects' behavior.

Unfortunately, the realism of simulation comes at the
expense of control. Simulation methods solve initial value
problems: the course of a simulation is completely deter-
mined by the objects' initial positions and velocities, and
by the forces applied to the objects along the way. An an-
imator, however, is usually concerned as much with where
the objects end up and how they get there as where they
begin. Problems cast in this form are not initial value
problems. For instance, while simulating a bouncing ball is
easy enough, making the ball bounce to a particular place
requires choosing just the right starting values for posi-
tion, velocity, and spin• Making these choices manually is
a painful matter of trial and error. Problems such as this
one, in which both initial and final conditions are partially

or completely constrained, are called two-point boundar!l
problems, requiring more elaborate solution methods than
forward simulation.[6]

Character animation poses a still more difficult prob-
lem. Animals move by using their muscles to exert forces
that vary as a function of time. Calculating the motion by
simulation is straightforward once these tlme-dependent
force functions are known, but the difficult problem is to
calculate force functions that achieve the goals of the mo-
tion. Specifying these functions by hvaad would be hope-
less, equivalent to making a robot move gracefuLly by man-
ually varying its motor torques.

In an effort to reconcile the advaaatages of simula-
tion with the need for control, several researchers [2, 10]
have proposed methods for blending positional constraints
with dynamic simulations. The idea behind these meth-
ods is to treat kinematic constraints as the consequences
of unknown "constraint forces," solve for the forces, then
add them into the simulation, exactly canceling that com-
ponent of the applied forces that fights against the con-
straints.

Constraint force methods permit parts, such as a
character's hands or feet, to be moved along predefined
keyframed trajectories, but provide no help in defining
the trajectories, which is the central problem in creat-
ing character animation. While allowing a character to
be dragged around manually like a marionette, constraint
forces sidestep the central issue of deciding how the char-
acter should move.

These shortcomings led us to adopt a new formula-
tion of the constraint problem, whose central characteris-
tic is that we solve for the character's motion and time-
varying muscle forces over the entire time interval of in-
terest, rather than progressing sequentially through time.
Because we extend the model through time as well as space,
we call the formulation spacetim¢ constraints.

The spacetime formulation permits the imposition of
constraints throughout the time course of the motion,
with the effects of constraints propagating freely back-
ward as well as forward in time. Constraints on initial,
final, or intermediate positions and velocities directly en-
code the goal~ of the motion, while constraints limiting
muscle forces or preventing interpenetration define prop-
erties of the physical situation. Additionally, Newtouian
physics provides a constraint relating the force and po-
sition functions that must hold at every instant in time.
Subject to these constraints we optimize functions that
specify how the motion should be performed, in terms of
efficiency, smoothness, etc. Solving this constrained opti-
mization problem yields optimal, physically valid motion
that achieves the goals specified by the animator.

III . A spacetlme particle
As a gentle but concrete introduction to the spacetime
method, this section describes a minimal example involv-
ing a moving particle, influenced by gravity, and equipped

160

~ Computer Graphics, Volume 22, Number 4, August 1988
i

with a "jet engine" as a means of locomotion. W i t h no
res t r ic t ions on the forces exer ted by its engine, the par t i -
cle can move any way it likes. The p rob lem we formulate
here is tha t of making the par t ic le fly from a given s ta r t -
ing po in t to a given des t ina t ion in a fixed per iod of t ime,
with min imal fuel consumpt ion. This toy p rob lem is too
simple to produce any really in teres t ing mot ion, bu t i t ex-
hibi ts all the key e lements of the me thod , and will a id in
under s t and ing what follows.

A . P r o b l e m f o r m u l a t i o n
Let the par t ic le ' s pos i t ion as a funct ion of t ime be x (t) ,
and the t ime-vary ing je t force be f (t) . Suppose for sim-
pl ic i ty tha t the mass of the fuel is negligible compared to
tha t of the par t ic le , so the to ta l mass may be t r ea t ed as a
cons tant , ra, wi th a constant g rav i ta t iona l force rag. Then
the parrticle's equat ion of mot ion is

m ~ - f - m g = 0, (1)

where i is the second t ime derivat ive of posit ion. Given
the funct ion f (t) , and ini t ia l values for x and ± at some
t ime to, the mot ion x(t) f rom to could be ob ta ined by
in tegra t ing equat ion 1 to solve the ini t ia l value problem.

Ins t ead we wish to make the par t ic le fly from a known
point a to a known poin t b in a fixed per iod of t ime. Sup-
pose for s implici ty tha t the ra te of fuel consumpt ion is Ill z.
In tha t case, we have const ra in ts x(t0) = a and x (t l) = b
subject to which

R = I f (t) l 2 dt

must be minimized. The p rob lem then is to find a force
funct ion f (t) , defined on the interval (t0, t l) , such tha t the
posi t ion funct ion x (t) ob ta ined by solving equat ion I satis-
fies the b o u n d a r y const ra ints , and such tha t the objec t ive
funct ion R is a const ra ined min imum.

There exist a var ie ty of s t a n d a r d approaches to solv-
ing problems of this form. Prevalent in the op t ima l con-
t rol l i t e ra ture are i t e ra t ive methods tha t solve the ini t ia l
value p rob lem wi th in each i te ra t ion , using the equat ions
of mot ion to ob ta in the posi t ion function from the force
funct ion (see [15] for a good survey.) We choose ins tead to
represent the funct ions x (t) and f (t) independent ly . The
equat ion of mot ion then enters as a cons t ra in t tha t re-
la tes the two functions, to be satisfied along with the other
const ra ints dur ing the so]at ion process. Each funct ion is
discret ized, t ha t is, represented as a sequence of values,
wi th t ime derivat ives app rox ima ted by finite differences.
This approach leads to a classical p rob lem in const ra ined
opt imiza t ion , for which a var ie ty of s t anda rd solut ion al-
gor i thms are available.

Let the discret ized functions x (t) and f (t) be repre-
sented by sequences of values xl and fi, 0 < i < n, wi th
h the t ime interval be tween samples. To approx imate the
t ime derivatives of x (t) we use the finite difference formulas

Xi = Xi - - Xi--1 h (2)

x i = Xi+l -- 2 x i + x i - 1
h~ (3)

Subs t i tu t ing these re la t ions into equat ion 1 gives n
"physics cons t ra in ts" re la t ing the z i ' s to the f i ' s ,

X i + l - - 2 x i + x i - l - - f i - - T n g = O , l < i < n . (4)
Pl ---- ra h2

In add i t ion we have the two b o u n d a r y constra ints

Ca=Xl--a=O

and
C b = X n - - b = 0 .

Assuming tha t f (t) is constant between samples, the ob-
ject ive funct ion R becomes a sum

R = h ~ If~l' (5)
i

which is to be minimized subject to the constra ints . The
discret ized ob jec t ive and cons t ra in t functions are now ex-
pressed in te rms of the x i ' s and the fi 's , which are the
independen t variables to he solved for.

B. N u m e r i c a l Solution
From the s t andpo in t of the numer ica l solut ion process it is
useful to suppress the s t ruc ture of tbe pa r t i cu la r problem,
reducing it to a canonical form consist ing of a collection of
scalar independen t variables S j , 1 ~ j ~ n, an objec t ive
funct ion R(Sj) to be minimized, and a collection of scalar
constraint functions Ci(Sj), 1 < i < m, which must be

driven to zero. In the current problem, the Sj's are the
z, y, aud z components of the x i ' s and the fi 's , while the
Ci ' s are the components of the p i ' s , ca, and cb. TypicMly,
se t t ing up the Hnearlzed indices is the responsibi l i ty of a
p rog ram tha t keeps t r ack of the independent variables and
the cons t ra in t functions.

In these te rms, the s t anda rd cons t ra ined opt imiza-
t ion p rob lem is "F ind S j t ha t minimizes R(Sj) subject
to Ci(Sj) = 0. For the sake of modtdar i ty , the humeri-
cat me thod tha t solves the p rob lem is best regarded as an
object t ha t requests answers to cer ta in s t anda rd questions
about the sys tem, and i te ra t ive ly provides u p d a t e d vMues
for the solut ion vector Sj . Any m e t h o d must be pe rmi t t ed
to request the values of R and C~ at a given Sj . In addi-
t ion, most effective me thods require access to derivativeJ
of R and Ci wi th respect to S j , in order to move toward a
solution.

The solut ion me thod we use is a variant of Sequential
Quadra t i c P r o g r a m m i n g (SQP) , descr ibed in de ta i l in [6].
Essentially, the m e t h o d computes a second-order Newton-
Raphson s tep in R, and a f i rs t -order Newton-Raphson step
in the Ci ' s , and combines the two steps by pro jec t ing the
first onto the null space of the second (tha t is, onto the
hyperplvme for which all the Ci ' s are constant to first or-
der.) Because i t is f i rs t -order in the const ra in t functions

161

SIGGRAPH '88, Atlanta, August 1-5, 1988

and second-order in the objective function, the method re-
quires that we be able to compute two derivative matrices:
the dacobian of the constraint functions, given by

J q = ~ ,

and the Hessian of the objective function,

O2 R

In addition, the first derivative vector OR/OSj must be
available. The SQP step is obtained by solving two linear
systems in sequence. The first,

OR

J

yields a step S$ that minimizes a second-order approxima-
tion to .R, without regard to the constraints. The second,

J

yields a step Sj that drives linear approximations to the
Ci's simultaneously to zero, and at the same time projects
the optimization step Sj onto the null space of the con-
straint Jacobian. The final update is AS s = S# + ~#. The
algorithm reaches a fixed point when Ci = 0 and when any
further decrease in R requires violating the constraints.

C. Linear system solving
The choice of a method for solving these linear systems is
critically important, because the matrices can be large.
Although inverting a general n x n matrix is O(ns),
the matrices arising in spacetime problems are nearly al-
ways extremely sparse. Exploiting the sparsity is essen-
tial to make the problem tractable. Moreover, over- and
under-constrained systems, whose matrices are non-square
and/or rank-deficient, can easily arise, in which case the
inverse is undefined and the system cannot be solved. The
latter problem is well treated by the pseudo-inverse [11, 7],
which provides least-squares solutions to overconstrained
problems, and minimal solutions to underconstrained ones.
To compute the pseudo-inverse while exploiting random
sparslty, we adapted a sparse conjugate gradient (CG)
algorithm described in [14}, which is O(n z) for typical
problems. The CG algorithm solves the matrix equation
a = M b by iteratively minimizing [a - Mb[z, giving a
least-squares solution to overconstrained problems. Pro-
vided that a zero starting-point is given for b, the solution
vector is restricted to the null-space complement of M.

D . Matrix evaluation.
Applying the SQP algorithm to the moving particle exam-
ple requires evaluation of the sparse derivative matrices,

as well as the objective and constraint functions them-
selves. Apart from the bookkeeping required for indexing,
these evaluations are straightforward. The Jacobian of the
physics constraint is given by

Opi _ 2ra/h2 ' i - - j
Oxi

= - m / h 2, i = j r k l

= O, otherwise
Opt

= 1, i = j 0fj
= 0, otherwise.

The Jacobians of the boundary constraints are trivial. The
gradient of R is

and the Hessian is

0fi0fi

OR
= 2f,,

= 2 , i = j

= O, otherwise.

Although it happens that the toy problem we chose
constrains initial and final positions, nothing in the solu-
tion approach depends on this configuration: initial and
final conditions could be left free, and constraints at arbi-
t rary internal points could be added. Moreover, arbitrary
constraints of the form F(S~) = 0, not just position con-
straints, may be added provided that the constraint func-
tions and their derivatives can be evaluated.

IV . E x t e n s i o n to c o m p l e x m o d e l s
In principle, the procedure described in the last section ex-
tends to complex models, constraints, and objective func-
tions. In practice, as the model grows more complex, the
problem becomes prohibitively difficult. The difficulty lies
not so much in calculating the numerical solution as in cre-
ating code to evaluate the constraint and objective func-
tions and their sparse derivatives, and in coercing the eval-
uatlons into the form of a canonical constrained optimiza-
tion. In particular, the required differentiations can lead to
enormous algebraic expressions that are all but impossible
to derive and code by hand.

To make the method practical, we developed a lisp-
based system that performs these difficult tasks automat-
ically. The system consists of three principle elements: a
specialized math compiler that performs symbolic differ-
entiation and simplification of tensor forms, and generates
optimized code to perform the evaluations; a runtime sys-
tem that allows the generated functions to be composed
dynamically, automatically building the vectors and sparse
matrices that drive the numerical solution; and an SQP
solver.

Because the mathematical operations required to de-
fine a new primitive object or constraint are highly styl-
ized, it is possible to reduce the programmer's job to a

162

~ Computer Graphics, Volume 22, Number 4, August 1988

simple cookbook procedure. Once the primitives are de-
fined, a user with little or no knowledge of the underlying
mathematics can wire them together dynamically to cre-
ate animation. Although a full description is beyond the
scope of this paper, this section briefly outlines the system
and the operations it performs.

A . Funct ion Boxes
A function boz, the lowest level construct in the system,
consists of a set of input quantities, which may be scalars,
vectors, matrices, or higher-order re,sots, and a collection
of output quantities each defined as a mathematical func-
tion of the inputs. To define a function box, the program-
mer specifies the inputs, the outputs, and the functions
that relate them. The function definitions are mathemati-
cal expressions that may include differentiations as well as
algebraic operations. Non-scalar quantities are expressed
and manipulated using index notation with the summation
convention. For each output, the system performs sym-
bolic differentiation as called for, simplifies the resulting
expression, extracts common sub-expressions, and gener-
ates an optimized lisp function that evaluates the output
given the inputs. In addition, the system symbolically dif-
ferentiates each output with respect to each input on which
it depends, creates a lisp function to evaluate the deriva-
tive, and analyzes its sparsity. These functions form the
Jacobians of the outputs. The generated functions, input-
output dependencies, spaxsities, etc., are recozded in a data
structure accessible to the runtime system.

B . User In te r face
Once defined, function boxes are manipulated using a
graphical interface in which they appear as literal boxes
on the screen, with ports representing the input and out-
put quantities.[5] The user may instaatiate boxes, con-
necting the ports to form a graph whose ares represent
function composition. In this way, complex systems are
built dynamically by composing pre-compiled primitives.
By default, input ports to which nothing has been con-
nected axe treated as internal constants whose values may
be inspected and modified interactively, and unconnected
output ports are ignored. However, inputs may also be
flagged by the user as state variables to be solved for, and
outputs may be flagged either as constraints or as terms
to be summed into the objective function.

C . R u n t i m e Sys t em
Once the graph representing the model has been con-
structed, and the state-variables, constraints, and objec-
tive terms declared, a pre-runtime computation is per-
formed to set up the constrained optimization. The user-
declared state vaxiables, constraints, and objective terms
axe collected and indexed to form the quantities Sj, C~,
and R required by the solver. The sparse derivatives
are formed by propagation through the graph using the
chain rule, with the individual Jacobian functions associ-
ated with function boxes combined by a hierarchy of sparse

matrix multiplications and additions. An optimal sequence
of adds and multiplies is pre-computed for each sparse ma-
trix operation, and the sparslty patterns of the resulting
global matrices are also precomputed. Evaluation of Ci, R,
and their derivatives, then proceeds by recursing through
the graph, calling the individual value and 3acobian func-
tions, and performing the sparse matrix operations. The
solver communicates with the model by requesting these
evaluations and updating the state vector.

D . Defining Objec ts

~ullt on top of the basic system is a layer handling the
specifics of physical object models, whose main job is to
construct the object's equations of motion. In the case of
the moving particle this just involved direct application of
f = ma. However, deriving the equations of motion for
more complicated objects can be difficult.

We derive the equations automatically using La-
granglan Dynamics [8], a classical cookbook procedure in
which an expression for a body's kinetic energy is sub-
jected to a series of symbolic differentiations. Lagrange's
equations of motion are given by

d 0T 0T
~ (~ q) -- qo"-- - q = 0, (6)

where T is kinetic energy, q is a vector of generalized co-
ordinates, and Q is a generalized force. The components
of the generalized coordinates axe whatever variables con-
trol the positions and orientations of parts of the body
(e.g. translations, rotations, joint angles, etc.) The gen-
eralized force is just the sum of ordinary forces applied to
body, transformed into generalized coordinates. For point
forces, this transformation is accomplished by multiplying
the force vector by the Jacobin" of the point at which the
force is applied with respect to q.

To define an object, the user is required to supply ex-
pressions for T, and for the coordinates of points on the
body to which forces or constraints may be applied. Al-
though T must be derived manually, this is a manageable
job and need only be done once when a primitive object is
defined. Given these expressions, automatic construction
of a function box representing the objects is straightfor-
ward: the kinetic energy expression is subjected to the
rote symbolic differentiations called for in equation 6, with
an additional derivative with respect to q used to define
the 3acobian of the physics constraint. The expressions for
material points are also differentiated with respect to q to
create "force converter" functions, small Jacobin, matri-
ces that map applied forces into generalized coordinates.
The function box takes as inputs values for q, el, and/ t ,
for applied forces, and for constants such as masses and di-
mensions. It produces outputs for the "physics constraint"
defined by the equations of motion, and for the positions
and velocities of the material points defined by the user.

163

¢ SIGGRAPH '88, Atlanta, August 1-5, 1988

Figure 1: Luxo

P~ 02

Pl o I

0 0

E . D i s c r e t i z e d f u n c t i o n s o f t i m e

In developing the par t ic le example of the last section, dis-
cret ized funct ions represent ing forces and posi t ions over
t ime were incorpora ted in to the equat ions of mot ion by di-.
rect subs t i tu t ion . Given the abi l i ty to compose functions
and the i r sparse Jacohians au tomat ica l ly , we adop t e d the
a l t e rna t ive of cons t ruc t ing special ized funct ion boxes to
represent d iscre t ized functions. These boxes conta in the
sequence of values represent ing the function, and o u t p u t
the values and the t ime-der iva t ives ob ta ined using finite-
difference formulas . The Jacobians of these ou tpu t func-
t ions are t r iv ia l cons tan t d iagonal or banded matr ices . The
values and der ivat ives are connected to the cor responding
inputs on the ob jec t model , causing the d iscre t iza t ion to
be effected au toma t i ca l ly at runt ime.

V. Space t ime Luxo
We axe now equ ipped to proceed to a space t ime model of
an an ima te Luxo Lamp. The model is composed of r/gid
bodies of uni form mass connected by frictionless joints .
Each jo in t is equipped wi th a "muscle" m o d d e d as an an-
gular spr ing whose stiffness and rest angle are free to vary
with t ime. The l a m p is subject to the forces of i ts own
muscles, in add i t ion to the ex te rna l force of gravi ty and
the contact forces arising f rom i ts in te rac t ion with objec ts
such as floors and ski jumps. A pic ture of the model ap-
pears in F igure 1. In our ini t ia l examples , Luxo 's mot ion is
res t r i c ted to a plane. This expedient simplifies the mathe-
mat ics , while still al lowing the crea t ion of complex, subtle,
and in te res t ing mot ion . Extens ion of the model to three
dimensions involves no fundamen ta l difficulties, a l though
i t leads to systems t ha t axe somewhat laxger, somewhat
slower, and more difficult to debug. The definit ion of the
model consists of less t han a page of tensor expressions,
which e x p a n d into roughly 4000 lines of au tomat ica l ly gen-
e ra ted lisp code.

A . K i n e t i c E n e r g y

As discussed in the last section, our principle task in defin-
ing the mode l was to formula te an expression for the kinet ic

F igure 2: Luxo 's paxameters : P0 is a t r ans la t ion , and 01
is the o r ien ta t ion of the i - t h l ink . Poin ts P l - P 3 axe com-
p u t e d from these pa ramete rs .

energy, T. In general , T is the volume in tegra l over the
body of the kinet ic energy of each paxticle, 1 ~p I±i z, where
p is the mass dens i ty at poin t =. The kinet ic energy of an
a r t i cu la ted objec t is the sum of the kinet ic energies of the
par t s . Each of Luxo 's l inks is modeled as a rigid body ro-
t a t ing abou t an axis of fixed direct ion t ha t passes th rough
the origin in b o d y coordina tes (see Figure 2.) Because the
axis is fixed, the o r ien ta t ion of the i - th l ink m a y be denoted
by a single angle 01, wi th angular veloci ty wi = 0 is , where
a is a uni t vector in the direct ion of the axis. In add i t ion to
ro ta t ion , the b o d y origin undergoes a t r ans la t ion Pl, wi th
t r ans la t iona l veloci ty v l = d p i / d t . Each link has mass ml ,
a cons tant moment of iner t ia _ri about the ro ta t ion axis,
and a cen te r of mass ci expressed as a d isplacement from
the body origin. In these terms, the kinet ic energy of the
i - th link is

1 1 [wilzZi. Ti = ~ m , Ivil 2 + m l w i • Vi × Ci "1- (r)

To connect the links, each l ink inher i t s as i ts t r ans la t ion
the pos i t ion of the previous Unk's endpoin t , wi th the base ' s
t r ans la t ion , P , serving as a t r ans la t ion paxameter for the
whole modal . The t r ans la t iona l veloci ty v~ of the i - th l ink
is thus

Vi
d P

- - i = 0
dt '

= Vi_ 1 + r i_ 1 X Wi--l, otherwise

where r i - 1 is a vec tor from the (i - 1)- th l ink 's center of
ro t a t ion to i ts poin t of a t t a c hme n t wi th the i - th link. The
to ta l kinet ic energy T is ob ta ined by recursively subs t i tu t -
ing this expression in to equa t ion 7 to ob ta in the Ti 's , and
summing over i.

164

~ Computer Graphics, Volume 22, Number 4, August 1988

B . M u s c l e s

Luxo's muscles are three angular springs, one situated at
each joint. The spring force on the joint connecting the
i-th and (i + 1)-th links is defined by

F~ = k~(¢~ - p~),

where ki is the stiffness constant, ¢i is the joint angle, and
pi is the rest angle. Our model is parameterlzed by]ink
orientations rather than joint angles. The joint angle is
~bi ---- 0i+t - 01, the difference between the orientations of
the surrounding links. The generalized force on 01, the
orientation of the i-th link, due to the j - th muscle is

dOj
J

= k ~ (¢ ~ - p ~) , j = i + l
= - k ~ (~ - p~), j = i

= O, otherwise

Unlike passive springs whose stiffness and rest state are
constants, /el and Pl vary freely over time, allowing arbi-
trary time-dependent joint forces to be exerted.

V I . R e s u l t s

A . J u m p i n g L u x o

Jumping motion was created using kinematic constraints
to specify initial and final poses, with linear interpolation
between the poses to create a trivial initial condition for
the spacetime iteration. Another constraint was used to
put Luxo on the floor during the initial and final phases of
the motion. Subject to these and the physics constraint,
we minimized the power due to the muscles, Fs0. In one
variation, we adjusted the mass of Luxo's base, leaving the
situation otherwise unchanged. In another, we additionally
constrained the force of contact with the floor on landing,
to produce a relatively soft landing. In a final variation, we
added a hurdle, together with a constraint that the jump
clear the hurdle.

The pose constraints consisted of values for the three
joint angles, and were applied to the first two and last two
fraxnes of motion. Because we measure velocity using a
finite difference, this incorporates the additional constraint
that Luxo be at rest at the beginning and end of motion.
Initial values for the orientations were obtained by linear
interpolation between the two poses.

The floor enters both as a kinematic constraint and as
a force. In general, collision constraints appear as inequal-
ities, but to simplify matters, we chose to specify explicitly
the time intervals during which Luxo was on the floor, im-
posing during those times the equality constraints

7f
80 - ~ = 0 , P - P / = 0

where 00 is the orientation of the base, P is the position of
the center of the base, and P / i s a constant point on the

floor. In other words, the position and orientation of the
base are nailed. The limitation of this formulation, com-
pared to an inequality, is that the times at which contact
occurs must be pre-specified, rather than allowing things
to bounce freely. The floor constraint was enabled for the
first and last five frames , allowing time for anticipation and
follow-through. Of course, two different values were used
for P! at the start and finish, defining the start end points
of the jump.

The floor constraint represents a mechanical interac-
tion involving the transmission of force between the base
and the floor. This contact force must be taken into ac-
count to satisfy the physics constraint. The simple contact
model used for the jump has the base colliding with the
floor inelastically with infinite friction, which means that
the base comes to rest, losing its kinetic energy, at the mo-
ment of contact. The contact force is therefore whatever
arbitrary force on the base specifically, on P and 0e--is
required to satisfy physics in light of the :floor constraint.
No special provision need be made to solve for the contact
forces beyond introducing additional state variables to rep-
resent them. Their values are then determined during the
constraint-solving process. This method of solving for con-
straint forces applies to other mechanical constraints, such
as joint attachments, and is closely related to the method
of Lagrange multipliers.

The choice of optimization criteria is an area we have
just begun to explore. In the examples shown, we sought
to optimize a measure of the morton's mechanical efficiency
by minimizing the power consumed by the muscles at each
time step, which for each joint is the product of the muscle
force and the joint's angular velocity. Our preliminary
observation is that this criterion produces relatively fluid
and natural motion, compared to kinematic smoothness
criteria in terms of velocity and acceleration, which tend
to come out looking somewhat arthritic.

Figure 3 shows a series of iterations leading from an
initial motion in which Luxo translates, floating well above
the floor, to a finished jump in which all the constraints
are met and the objective function is minimized. Note
that the elements of realistic motion already appear after
the first iteration. The final motion shows marked an-
ticipation, squash-and-stretch, and follow-through. From
its pre-defined initial pose, Luxo assumes a crouch provid-
ing a pose from which to build momentum. The crouch is
followed by a momentum-building forward-and-upward ex-
tension to a stretched launching position. While in flight,
the center of mass moves ballistically along a parabolic arc
determined by the launch velocity and by the force of grav-
ity. Toward the end of the flight, Lu.xo once again assumes
a crouched position in anticipation of landing, extending
sIightly while moving toward impact. This "stomp" ma-
neuver has the effect of transferring kinetic energy into the
base, where it vanishes in the inelastic coUision with the
floor. Following impact, luxo extends forward while com-
pressing slightly, dissipating the remaining momentum of
flight, then rises smoothly to its pre-specified final pose.

165

SIGGRAPH '88, Atlanta, August 1-5, 1988

/

/ /

L

Figure 3: F r o m top to bo t tom, a series of i te ra t ions
leading from an ini t ia l mot ion in which Luxo t rans la tes ,
f loating above the floor, to a finished j ump in which aR
the const ra in ts axe met and the op t imlza t ion funct ion is
minimized. The final mot ion shows marked ant ic ipat ion,
squash-and-s t re tch , and follow-through.

In the first var ia t ion on the basic j ump , we add an
addi t iona l const ra in t fixing the contact force on landing.
The value we choose provides control over a hard- to-sof t
landing d i m e n s i o n - - a large landing force leads to an exag-
ge ra ted s tomp, as if t ry ing to squash a bug, while a small
value leads to a soft landing, as if t ry ing to avoid breaking

Figure 4: A var ia t ion on the basic j u m p in which the
contact force on landing is conscralned to be small . The
force of impac t is reduced by squashing jus t before land-
ing, reducing the veloci ty and l:.ence the kinetic energy
of the base. In con t ras t , the j u m p in F igure 3 ex-
hibi ts a sl ight ~tretch before impac t , p roduc ing an en-
e rgy-absorb ing s tomp.

Figure 5: The mass of Luxo 's base has been doubled. In
o ther respects , the condit ions are the same as those pro-
ducing the basic j ump .

something fragile. F igure 4 shows a re la t ively soft landing,
genera ted under the same condit ions as the basic j u m p
except for the contac t force constra int . Compar ing the
mot ion to the basic j ump , we see tha t Luxo softened the
blow of impac t by squashing while moving toward impac t ,
reducing the velocity, and hence the kinetic energy of the
base. In cont ras t , the basic j u m p has a small atreteh before
impac t , p roduc ing an energy-absorb ing s tomp.

The next var ia t ion has the same condit ions as the ba-
sic j ump , bu t the mass of the base has been doubled. The
final mot ion is shown in F igure 5. As expected , bo th the
an t ic ipa t ion and fol low-through are exaggera ted in com-
pensa t ion for the grea ter mass.

A final var ia t ion , shown in Figure 6, has the condi t ions
of the sof t - landing jump , bu t wi th a hurdle in terposed be-
tween s t a r t and finish, and an addi t iona l const ra int t ha t
Luxo clear the hurdle. As one would expect , the ex t r a
height required is gained by squashing vigorously on ap-
proaching the wall.

The jumping examples each took under 10 minutes
to compute on a Symbolics 3640. Whi le this is ha rd ly
in terac t ive speed, i t cons t i tu tes a t iny f ract ion of the cost
of h igh-qual i ty rendering.

166

Computer Graphics, Volume 22, Number 4, August 1988
I IIII ~ I I I I I I I I

Figure 6: Hurdle Jump

Figure 7: Ski Jump

B. Ski Jumping
Figure 7 shows Luxo d,~scending a ski jump. As in the
previous case, Luxo is constrained to be on the ski jump
and the landing at par t icular t ime samples. The biggest
difference between the ski-jump and the infinite-friction
goor of the previous example is that Luxo is free to slide~
with the exact posi t ions on the ski j ump and the landing
left unspecified except at the top and b o t t o m of the ski
jump. In addit ion, there is a constraint that the or ientat ion
of the base must be tangent to the surface it is resting on.

Both the ski j ump and landing exert forces on Luxo.
There is a normal force which keeps him from falling
through and a frictional force which is tangent to the sur-
face and propor t ional to the tangent ia l velocity. The coef-
ficients of friction were s ta te variables in the opt imizat ion.

At one t ime ins tant while Luxo is in the air, the height
of his base is constrained. In addit ion, there is a t e rm in
the object ive function which gives him a preference for a
par t icular pose while in the air. This is a "style" optimiza-
t ion without which Luxo is content to go through the air
in a bent position.

Luxo is also given pose constraints at the beginning
and end of the motion. Unlike the previous jumps, how-
ever, his ini t ial velocity is unconstrained.

Figure 8: Spacet ime constraints: a car toonis t ' s view. (c)
1988 by Laura Green, used by permission.

The ini t ial condit ion for the opt imiza t ior ~as ~ uni-
form t rans la t ion in the air above both the ski j ump and
the landing. In the first i terat ion, Luxo puts hi~ feeet on
the ski j ump and landing. By i te ra t ion 4, there is signifi-
cant ant ic ipat ion and follow through. Figure 7 is the result
after 16 i terat ions.

Both the ski j ump and landing are buil t from two B-
spline segments. The entire j ump was computed with 28
t ime samples in the opt imizat ion. There were 223 con-
s t raints and 394 s ta te variables. The Jacobian contained
3587 non-zero entries, about 4 ~ of the to ta l number of en-
tries. The ent ire motion was computed in 45 minutes on a
Symbollcs 3600.

V I I . D i s c u s s i o n

Our results show tha t spacet ime methods axe capable of
producing realist ic, complex and coordinated motion given
only minimal kinematic constraints. Such basic a t t r ibutes
as ant ic ipat ion, squash-and-stre tch, follow-through, and
t iming emerge on their own from the requirement tha t the
kinemat ic constraints be met in a physical ly valid way sub-
ject to simple optimizat.lon criteria.

The principle advantage of spacet ime methods over
simple keyframing is tha t they do much of the work tha t
the an imator would otherwise be required to do, and tha t
only a skilled an imator c a n d o Motions tha t would require
highly detai led keyframe information may be sketched out
at the level of "s tar t here" and "stop there." This is a
profoundly different and more economical means of control
than conventional keyfrarning affords, an advantage tha t
easily outweighs the greater mathemat ica l complexity and
computa t ional cost of the method.

Beyond sparser keyframing, spacet ime methods offer
really new forms of mot ion control. For example, we saw
in the previous section tha t constraints on forces, such as
the force of a collision, can be used in a direct and simple
way to say "hit hard" or "hit softly," producing subtle but
very effective changes in the motion.

Of the new oppor tuni t ies for motion control, perhaps
the most excit ing is the selection of opt imizat ion cri ter ia
to affect the motion globally, an area we have only begun
to explore. Wi th a l i t t le thought , it is clear that a magic

167

SIGGRAPH '88, Atlanta, August 1-5, 1988

"right" criterion, whether based on smoothness, efficiency
or some other principle, is unlikely to emerge and would
in any case be undesirable. This is because the "optimal"
way to perform a motion, as with any optimization, de-
pends on what you're trying to do. Consider for example
several versions of a character crossing a room: in one case,
walking on hot coals; in another, welklng on eggs; in an-
other, carrying a full bowl of hot soup; and in still another,
pursued by a bear. Plainly the character's goals--and at-
tendant cr~te~a of optimall ty--are very different in each
case. We would hope to see these differing goals reflected
in the motion. The possibility of controlling motion di-
rectly in terms of its goals, not just where it goes but how,
is one we intend to explore.

R e f e r e n c e s

[1] William W. Armstrong and Mark W. Green, The dy-
namics of articulated rigid bodies for purposes of an-
imation, in Visual Computer, Springer-Verlag, 1985,
pp. 231-240.

[2] Ronen Barzel and Alan H. Barr, Dynamic Con-
siraints, Topics in Physically Based Modeling, Course
Notes, Vol. 16, Siggraph 1987

[3] Michael Brady et. el., eds, Robot Motion: Planning
and Control, MIT Press, Cambridge, MA, 1982

[4] Charles E. Buckley, The Application of Continuum
Methods to Path Planning, Doctoral Dissertation,
Dept. of Mechanical Engineering, Stanford University,
Steax£ord, CA, 1985

[5] Kurt Fleischer and Andrew Witkln, A modeling
testbed, Proc. Graphics Interface, 1988.

[6] Philllp Gill, Welter Murray, and Margret Wright,
Practical Optimization, Academic Press, New York,
NY, 1981

[7] Michael Girard and Anthony a Maciejewski, Com.
putataional Modeling/or the Computer Animation of
Legged Figures, Proc. SIGGRAPH, 1985, pp. 263-
270

t8] Herbert Goldstein, Classical Mechanics, Addison
Wesley, Reading, MA, 1950

I9] David Haumarm, Modeling the Physical Behavior of
Flezible Objects, Topics in Physically Based Modeling,
Course Notes, Vol. 16, Siggraph 1987

[10] Paul Isaacs and Michael Cohen, Controlling Dy-
namic Simulation with Kinematic Constraints, Be-
havior Functions and Inverse Dynamics, Proc. Sig-
graph 1987, pp. 215-224

[11] Charles Klein and Ching-Hsiang Huang, Review of
Pseudoinverse Control for Use with Kinematically Re-
dundant Manipulators, IEEE Trans. SMC, Vol. 13,
No. 3, 1983

[12] John Lasseter, Principles of Traditional Animation
Applied to 3D Computer Animation, Proc. Siggraph
1987, pp. 35--44

[13] Pixar, Luzo, Jr., (film,) 1986
[14] William Press et. al., Numerical Recipes, Cambridge

University Press, Cambridge, Engiemd, 1986
[15] Robert S. Stengel, Stochastic Optimal Control, John

Wiley and Sons, New York, 1986.
[16] Demetri Terzopoulos, John Platt, Alan Barr, and

Kart Fleischer, Elastically Deformable Models, Pros.
SIGGRAPH, 1987.

[17] Jane Wilhelms and Brian Barsky, Using Dynamic
Analysis To Animate Articulated Bodies Such As Hu-
mans and Robots, Graphics Interface, 1985.

[18] Andrew Witkin, Kurt Fleischer, and Alan Barr, En-
ergy constraints on parameterized models, Computer
Graphics, 21 (4) July 1987, pp. 225-232 (Proc. SIG-
GRAPH '87).

168

