
 1

Polina Gohstein, David James, Jeff Magder, Olga Rodimina
CSC408: Software Engineering
Professor Reid
February 2, 2005

JCVSReport
Assess the Progress of a Java Project in CVS

Polina Gohstein

David James
Jeff Magder

Olga Rodimina

 2

 3

Table of Contents

Table of Contents.. 3
Chapter 1: Design Document for JCVSReport... 5

Abstract ... 5
System Requirements.. 5
System Architecture.. 6
Presentation Component ... 7
UpdateStatistics Component... 8
Diagrams ... 11
References... 14

Chapter 2: Data Storage Module... 15
Goal... 15
Background... 15
Requirements .. 16
Design Decisions .. 16
Assumptions and Dependencies ... 17
Database Schema .. 17
Use Cases .. 21
Tasks ... 23
Task Matrix... 23
Schedule.. 23
Resources .. 23

Chapter 3: CVS Parser Component .. 24
Goal... 24
Abstract ... 24
Background... 24
User Stories... 26
Potential Solutions .. 26
Decision and Justification ... 27
Features ... 29

Chapter 4: Java Parser Module ... 34
Goal... 34
Background... 34
Potential Approaches to Data Collection.. 34
Design Decisions .. 35
Dependencies and Risk Factors .. 36
Use Cases .. 36
Example Java Syntax Tree.. 37
Tasks ... 38
Time Estimates.. 39
Task Matrix... 39
Schedule.. 40

Chapter 5: Report Module .. 42
Goal... 42

 4

Background... 42
User Stories... 43
Potential Solutions .. 43
Tasks ... 46
Features Matrix ... 49
Schedule.. 50
References... 50

 5

Chapter 1: Design Document for JCVSReport

Abstract

JCVSReport is designed to help software development teams to assess the process of
Java projects that are maintained in a CVS repository. JCVSReport will use its data
gathering component to collect data from both the CVS metadata and the Java source
files. The gathering component will in turn interact with the data storage component and
will create a representation of the collected data in a project database. Once JCVSReport
finishes gathering the required data, the presentation component will take over. The
presentation component will rely on a configuration file provided to JCVSReport by the
user. The user will use the configuration file to specify what types of metrics and
statistics should be displayed in the final report. The presentation component will query
the database for the specified metrics and statistics and will use a report component to
output the final HTML report.

In this document together with the Analysis and Estimation documents for each system
component we will try and provide you with a complete picture of the design and
architecture of JCVSReport.

System Requirements

Functional Requirements

Data Collection

• User must be able to specify what metrics should be tracked in the data storage
component.

• Users must be able to customize metrics that are tracked in the storage
component.

• Statistical dataset that is kept in the data storage component should not be rebuilt
every time the system runs. Instead the system must be able to store and add to
previously collected data.

• Data Storage component should be able to regenerate the data from scratch if any
configuration option change.

• User should be able to compare progress of one project with the progress of
another.

• The user must be able to extract the following statistics from projects CVS
metadata:

o number of changed/added/deleted lines (per developer, per group of files,
for specific period of time)

o the number of files

 6

o the number of commits/updates/checkouts
• The user must be able to extract the following statistics from projects source files:

o number of lines of code
o number of lines of test code
o number of unit tests
o lines of comments
o lines of documentation
o number of methods
o number of classes
o number of imports per source file

Presentation
• User should be able to configure which data will be presented in the HTML

report.
• User should be able to configure how the data should be presented.
• User should be able to configure granularity of presented data.
• System should output the report as static HTML pages.

Non-Functional Requirements

• The system must be extensible (developer level).
• The system should be easy to install (it should take less than 10 minutes for

the TA to install).
• The system should work on CDF.
• The system can make use of third party tools/libraries only if they are open

source or available on CDF.

System Architecture

JCVSReport can be broken down into the following components: Presentation,
UpdateStatistics, CVS Parser, Java Parser, Data Storage and Report. The following
diagram captures the individual components and the communication between the
components. Moreover, it also captures the configuration files, the entry point and the
output of JCVSReport.

 7

.properties

This is a user configuration file. The user will use this file to specify the following
information to JCVSReport: the CVS repository location, CVS login details, the project
module, database location/name, database login details, the list of metrics to be included
in the report. Here is an example of a .properties file:

cvs repository location=:pserver:anonymous@cvs.sourceforge.net:/cvsroot/bloof
cvs user=anonymous
cvs password=
cvs project module=bloof
database=bloofdb
database user=anonymous
database password=
report metrics=commitsPerDeveloper, linesOfCodePerDeveloper,
numberOfFunctionsPerFile

Presentation Component

The Presentation component will be the entry point of JCVSReport, i.e. this component
will contain the main class that will be called when the user invokes JCVSReport via
command line. The Presentation component will parse the .properties file to get the CVS
information and the database information specified by the user. It will then pass this

 8

information to the UpdateStatistics component asking it to update the database. Once the
UpdateStatistics component brings the database up to date with the CVS repository, the
Presentation component will call the Report component to generate the output report. For
every report metric specified by the user in the .properties file, the Presentation
component will do the following:

• Find the definition of this report metric in reportMetrics.xml.
• Run the corresponding SQL query on the database.
• Graph or display the results of the query using the Report component.

reportMetrics.xml

JCVSReport will use the reportMetrics.xml file to define metrics that the user might want
to include in their report. More specifically, for every such metric, the file will define the
SQL query and type of graph. Here is a sample reportMetrics.xml file:

<reportMetrics>
 <reportMetric name=”commitsPerDeveloper” >
 <graph type=“BarGraph” title=“Number of Commits”
axisLabel=”Developer,Number Of Commits” />
 <query>SELECT developer, COUNT(UNIQUE revision_id) FROM revisions GROUP
BY developer</query>
 </reportMetric>
 <reportMetric name=”linesOfCodePerDeveloper” >
 <graph type=“PieChart” title=“Lines of Code Added Per Developer”
axisLabel=”Developer,Number Of Commits” />
 <query>SELECT developer, lines_add FROM revisions GROUP BY developer<
/query>
 </reportMetric>
 <reportMetric name=”numberOfFunctionsPerFile” >
 <graph type=“BarGraph” title=“Functions Per File”
axisLabel=”File,Number Of Functions” />
 <query>SELECT developer, metricValue FROM metric WHERE metricName =
“numFunctions” GROUP BY developer< /query>
 </reportMetric>
</reportMetrics>

UpdateStatistics Component

The UpdateStatistics component will be in charge of bringing the statistics in the
database up to date with the CVS repository. UpdateStatistics will first make a call to the
CVSParser component (Bloof) asking it to update the database with the CVS metadata.
Once the database contains up-to-date information of all the files and their revisions, the
UpdateStatistics component will start updating the database with information that comes
from the individual files. UpdateStatistics will parse the metrics.xml file and for every
metric in this file, it will do the following:

• Dynamically load the Metric class specified in the xml file and create a metric
object.

• Call Metric.update(file, revision) for every new revision of every file in the
CVS.

 9

The notion of a metric object belongs to the UpdateStatistics component. metrics.xml is a
power user configuration file. It provides a convenient way of defining how the
individual metrics should be gathered and updated. There are two types of metric objects:
the Java AST metric and the Regular Expression metric. Both types implement the same
Metric interface. Java AST metrics are metrics that can be gathered by parsing an
Abstract Syntax Tree (AST) generated from a Java source file. These metrics will make
use of the Java Parser component to perform this task. Regular Expression metrics are
metrics that can only be generated by matching lines of a Java source file with regular
expressions. For more information on these types of metrics, please refer to the Java
Parser A&E.

metrics.xml

It is possible for each statistic collection module to collect different statistics at different
times. For example, the Java Parser may only collect statistics on the number of methods
in a file, but later it is decided we need the number of classes as well. This can be easily
added without making code changes, simply by modifying the configuration file. Here is
a sample configuration file:

<metric name="numMethods">
 <description>Number of Functions</description>
 <fileExtension>.java</fileExtension>
 <metricClass>JavaASTMatcher</metricClass>
 <match>MethodDeclarator</match>
</metric>

The <metric name = “numMethods”> tells the software that the metric to be updated
in the database is called numMethods. This is important for both information storage and
retrieval at a later time. That is, numMethods would fill in SQL query string after the
FROM field for retrieving statistics. Similarly, it would be the assigned VALUE to the
SQL query string during database updates. (See the Data Component A&E for details).

The <description>Number of Functions</description> line is simply a way of
storing useful human readable information for this metric.

The <fileExtension>.java</fileExtension> line tells what file types this metric will
work on. For now this is only .java, but could be expanded to work on other file types,
such as .cpp.

The <metricClass>JavaASTMatcher</metricClass> line tells us which module this
statistic belongs to. This is very relevant for metric gathering and updating, as it is the
one line that tells each module that this XML tidbit applies to it. Here, JavaASTMatcher
refers to the Java Parsing module. The RegExpLineCounter also refers to that module
but to the group A statistics. (See the Java Parser A&E document for more details on
group A and group B metrics).

The final <match>MethodDeclarator</match> line, tells us specifics about how the
statistics gathering module is to find its metric. In the case of the AST Matcher section of

 10

the Java Parser module (Group B Metrics), the module simply counts the number of
occurrences of MethodDeclarator in the AST tree. If we wanted to match the number
of if, or else statements, we’d use IfStatement|ElseStatement in the place of
MethodDeclarator, since those statements are what would be generated by the AST
generator.

A more complete configuration file is shown below:
<metrics>
 <metric name="numMethods">
 <description>Number of Functions</description>
 <fileExtension>.java</fileExtension>
 <metricClass>JavaASTMatcher</metricClass>
 <match>MethodDeclarator</match>
 </metric>
 <metric name="complexity">
 <description>Number of If, Else, Case, While, For, or Try
Statements</description>
 <fileExtension>.java</fileExtension>
 <metricClass>JavaASTMatcher</metricClass>

 <match>IfStatement|ElseStatement|CaseStatement|WhileStatement|ForStatement|
TryStatement</match>
 </metric>
 <metric name="comments">
 <description>Number of Lines of Comments</description>
 <fileExtension>.java</fileExtension>
 <metricClass>RegExpLineCounter</metricClass>
 <match>//|/*(.+?)*/</match>
 </metric>
 <metric name="JavaDoc">
 <description>Number of Lines of JavaDoc</description>
 <fileExtension>.java</fileExtension>
 <metricClass>RegExpLineCounter</metricClass>
 <match>///|/**(.+?)*/</match>
 </metric>
</metrics>

To assist in parsing this file, all modules should use the standard Java XML parser. They
should only use the information in a particular metric tag if its <metricClass> tag
matches its module type. Such an approach allows each module to extend itself, without
worrying about impacting the other modules or statistics.

CVS Parser Component

The CVS Parser component will parse the CVS log and the CVS history of a specified
project. As it parses the metadata, it will store it into a relational database which is a part
of the Data Storage component. Please refer to the A&E for the Data Storage component
for information on database schema. Note that the CVS Parser will simply create a
database representation of the metadata, with no regards to user specified statistics.
Creating a representation of all the metadata in a relational database makes future
operations on the data more flexible and convenient. We will use the core component of a
third party solution, called Bloof, to implement the majority of the CVS Parser
component. The advantage of using Bloof is the fact that it already is integrated with a

 11

database, more specifically the McKoi database. Please refer to the CVS Parser A&E for
a more detailed description of this component.

Java Parser Component

Gathering metrics or statistics from the Java source files is a more complicated task than
gathering CVS metadata. The Java Parser component will use an Abstract Syntax Tree
(AST) generator to remove the complexities of the code by transforming it into a tree of
easily recognizable tokens. It will then operate on the tree to gather a particular statistic
for that Java file. Please refer to the Java Parser A&E for a more detailed description of
this component.

Report Component

As the name suggests, the Report component will be used for generating the final report.
The final report will consist of a series of HTML pages with graphs. Please refer to the
Report Component A&E for a more detailed description of this component.

Diagrams

Class Diagrams

The following diagram illustrates the breakdown of the JCVSReport into its main classes
and the associations between these classes.

 12

Sequence Diagram: Statistics Gathering

The following diagram illustrates the process of JCVSReport that gathers or updates the
statistics.

 13

Presentation UpdateStatistics JavaASTMatcher DatabaseCVSParser JavaParser

update

parseProperties

update

new Metric

update

CVS

getMetadata

update

update

parseMetrics

getFileRevision

update

for every metric

JCVSReport

RegExpLineCounter

new Metric

update

getFileRevision

generateAST

matchRegExpression

update

select new revisions

for every revision

{OR}

Sequence Diagram: Report Generation

After JCVSReport completed gathering the statistics and updating the database, it can
start generating the report. The following diagram illustrates the process of querying the
report statistics from the database, and of generating the report.

 14

References

Please refer to the individual Analysis and Estimation documents for every one of the
system components for further details. Here is the list of all the related A&E documents:

• Chapter 2: Data Storage A&E.
• Chapter 3: CVS Parser A&E.
• Chapter 4: Java Parser A&E.
• Chapter 5: Report A&E.

 15

Chapter 2: Data Storage Module

Goal

To allow for the easy storage and retrieval of statistics related to a Java project in CVS

Background

JCVSReport is a lightweight framework for gathering and reporting statistical metrics
related to a Java project in CVS. Because the process of gathering these metrics can
potentially be quite lengthy for a large project, we want to be able to store our results on
disk so that they can be retrieved and updated later without rebuilding the complete
historical dataset for the entire CVS repository. Consequently, the Java and CVS data
gathering modules will store their results directly in this database.

Once our data has been gathered, the presentation component will need to be able to
request revisions and metrics that match a specific set of files, versions, authors, dates,
classes, and/or functions. We must create a simple way for specifying and responding to
these queries.

 16

Requirements

Statistics must be stored on disk
We want to store our results on disk so that they can be retrieved and updated later
without rebuilding the complete historical dataset for the entire CVS repository.

Flexible queries must be simple and possible
Our presentation layer will need to be able to gather revisions and metrics that match a
specific set of files, versions, authors, dates, classes, and/or functions. We must create a
simple way for specifying these queries.

Design Decisions

We must choose a simple way of representing our data that will allow us to easily meet
our above requirements. Two approaches are possible:

1) Traditional SQL Database: Collect all of the statistics ahead of time and store
them in tables in a SQL database. These results can be retrieved, collated and
compared at any subsequent time using simple SQL queries.

2) Cache Queries on Disk: Alternatively, we can gather the statistics upon request

by simply forwarding queries directly to the relevant functions in the
UpdateStatistics module. As each statistic is collected, we can store the result in a
hash-like database which maps each query to its cached results. When the same
query is repeated later, we can simply return the cached results.

The cache-based approach has several benefits. For one, it allows us to keep all of our
database-related code in a single, simple subroutine. Furthermore, it can be implemented
very easily, as demonstrated by its pseudo-code:

if (query is cached in database):
 Output result from database

 else:
 Ask UpdateStatistics module for query result
 Save query result in database

While this seems attractive at first, it actually adds to the software’s overall complexity.
That is, since our data is not stored, we need to have a defined procedure for retrieving all
related statistics from every component. This means that both this module and the
statistic collecting modules with be much thicker with interfaces. Furthermore, any new
future statistics may require changes in all modules.

While the SQL-based system has slightly more complex implementation, it vastly
simplifies our remaining modules. All requests for statistics and metrics can be made in
the form of a standard SQL query string to the SQL database. We can retrieve our data in

 17

any format or order we want using a simple SQL string. Furthermore, we get to reduce
the complexity of all the statistic collection modules. This is because they collect all their
statistics on their own, as specified through their own configuration files, and then blast
off their results into the central database, again using standard SQL. So all statistic
collection modules no longer have to worry about their interfaces, as they all have an
extensible SQL communication standard.

However, one of the most notable benefits to an SQL database lies in the power of the
SQL query string. It allows one to query new statistics using a simple syntax. While we
could implement this through our own proprietary system, SQL databases have already
solved this complexity for us. Let us say for example that we have a query string which
retrieves the number of lines of code by a certain author. If we wanted to add the extra
constraint that we were only interested in the lines of code added between a certain date,
we could do so by adding that constraint to the standard SQL query string. But if we
weren’t using SQL, we’d have to write more complex code. By this point, it should be
clear that an SQL database should be the central part of our database.

Assumptions and Dependencies

For the approach outlined above to work, it is assumed that some other process will call
the statistic collection modules on a regular basis. Since all metric and statistic queries
are to an SQL database directly, the returned results can only be as recent as the last
database update. Fortunately, the Presentation module always calls the updateStatistics
module before sending queries to the database; therefore we can safely assume that the
database is up to date.

Database Schema

Up to this point we have talked about an SQL database in the general sense, and given
little details on which database we will use.

For this project, we will make use of the open-source Bloof package. Our reasons for
doing so are as follows:

1) Bloof has a rich set of functionality for retrieving data directly from CVS
repositories. This means that it implements a huge subset of our required
functionality with respect to dealing with CVS databases.

2) Bloof stores this information directly to its McKoi SQL database. This McKoi

database can be updated, extended, and expanded so as to contain all future
metrics.

 18

Bloof Schema

In order to better understand Bloof, we constructed a diagram of the Bloof database. This
diagram is shown below.

File

PK pathname

name
description

DeletedFile

PK id

FK1 file
tstamp

Developer

PK login

Revision

PK revisionID

FK2 file
version

FK1 developer
tstamp
lines_add
lines_del
description

Project

PK name

scmsystem
login
passwd
location
connmethod
module

The Project Table

Each CVS repository monitored by Bloof has an entry in the Bloof Project table:

• scmsystem: The type of repository (typically CVS)
• login: Our login name to allow us to access the repository
• passwd: Our password to allow us to access the repository
• location: The location of the CVS repository
• module: The module we would like to monitor in that CVS repository

The Developer Table

Each developer in each project has an entry in the Bloof Developer table:

• login: The developer’s login name

The File Table

Each file in each project has an entry in the Bloof File table:

• pathname: The full path (including the directory and filename) for the file
• name: The filename for the file
• description: A description of the file if a user has created one using the cvs

annotate command (optional)

 19

The Revision Table

Each version of each file has an entry in the Bloof Revision table:

• revisionID: An autogenerated unique identifier for this table entry
• file: The full path (including the directory and filename) for the file.

(Refers to an entry in the File table.)
• version: The version number of this revision of this file
• developer: The developer who committed this revision (Refers to an entry in

the Developer table.)
• tstamp: The time and date of the commit
• lines_add: The number of lines added in this commit
• lines_del: The number of lines deleted in this commit
• description: The message the developer attached to describe this commit

The DeletedFile Table

When a file is deleted from the repository, an entry is added in the Bloof DeletedFile
table:

• id: An autogenerated unique identifier for this table entry
• file: The full path (including the directory and filename) for the file

(Refers to an entry in the File table)
• tstamp: The time and date that the file was deleted

Storing CVS and Java-related information

In addition to the data provided by Bloof, our application will need to store two more
types of information:

• Entries from the history file
• Metrics related to specific revisions of Java files in the repository

(For more information on the history file and on the Java-related metrics, please see the
A&E documents for the Java and CVS Parsers.)

To meet these additional requirements, we have extended the Bloof database as shown
below:

 20

File

PK pathname

name
description

DeletedFile

PK id

FK1 file
tstamp

Developer

PK login

Revision

PK revisionID

FK2 file
version

FK1 developer
tstamp
lines_add
lines_del
description

Metric

PK id

FK1 revisionID
metricName
metricValue
functionName
className

CVSOperation

PK id

CVSOperation
FK1 revisionID

tstamp
FK2 developer

Project

PK name

scmsystem
login
passwd
location
connmethod
module

The Project, Revision, Developer, File and DeletedFile tables are identical to the
related Bloof tables. We define two new tables: CVSOperation and Metric.

The CVSOperation Table

Each entry in the CVS history file has an entry in the CVSOperation table:

• id: An autogenerated unique identifier for this table entry
• CVSOperation: The type of CVS operation being performed (E.g. update,

checkout, commit, etc.)
• revisionID: Refers to an entry in the Revision table
• tstamp: The time and date of the operation
• developer: The developer who performed the operation (Refers to an

entry in the Developer table)

The Metric Table

Each metric gathered by our module for updating statistics has an entry in the Metric
table.

• id: An autogenerated unique identifier for this table entry
• revisionID: Refers to an entry in the Revision table

 21

• metricName: The name of the metric (e.g. lines of code)
• metricValue: The gathered value (E.g. 100 lines of code)
• functionName: If this metric is associated with an individual Java function,

the name of the function. (Optional)
• className: If this metric is associated with an individual Java class, the

name of the class. (Optional)

An Extensible Schema

Because developers will often need to add new metrics, we have created the above metric
table in a way that ensures that it is not specific to any one set of metrics. Any metric that
applies to a specific version of a specific file can be stored in the Metric table with an
appropriate metricName and metricValue.

Usability Shortcuts

Based on our use cases (below), we have determined that it is very common that the
presentation module will want to request metrics that apply only to a specific file or a
specific date range. As such, we have decided to construct a ‘view’ constructed from the
natural join of the Metric and Revision tables. We labeled this view ‘MetricRevision.’ In
McKoi databases, views are read-only; therefore this view should only be used in
SELECT statements.

Use Cases

To better understand this system, we will go through two examples. The first will be
from the viewpoint of the modules which request certain metrics and statistics. The
second example shows how a statistics collection and updating module such as the Java
Parser updates the actual database.

Requesting Statistics

Let us assume that the presentation module needs to collect an arbitrary metric, say in this
case ‘linesOfCode’, from a particular file. The presentation module must therefore
construct the following query:

SELECT date, metricValue FROM MetricRevision WHERE MetricName =

‘linesOfCode’ AND FILE='path/aFile.java’

In the above query, a table will be returned with two columns, one for the date and one
for the metricValue, which is literally the result of the query. These results have the
constraints that the name of the Metric (a column in the database table), must be

 22

linesOfCode, and that the file must be path/aFile.java. Furthermore, these results are
obtained from the MetricViewTable, our databases main table of statistics.

Let us say that they now decided they only wanted the results for 2004. They could form
a new query string with new constraints as follows:

SELECT date, metricValue FROM MetricRevision WHERE MetricName =

‘linesOfCode’ AND FILE='path/aFile.java’ AND date IS BETWEEN
 DATE(‘01/01/2004’) AND DATE(‘12/31/2004’)

In Java, the same query can be expressed as follows.

ResultSet results =

db.query("SELECT date, metricValue FROM MetricRevision WHERE
 MetricName = ‘linesOfCode’ AND date IS BETWEEN
 DATE('01/01/2004') AND DATE('12/31/2004')")

Here, the db.query() is Java’s way of querying the database. It returns a ResultSet
object, which allows one to easily iterate over the returned data. How these results are
used is up to the rest of the program. One possibility is to just call a DisplayStats
library and generate a pie graph directly from the results

DisplayStats.GenerateGraph(“PieGraph”, results, title, etc);

Storing Results in the Database

Let us say that the java parser just finished running, and that it wants to update the
database with its newly collected statistics. To do so, it will need to follow the same
steps as above, except this time with an UPDATE query string. Each query will need to
specify which table to update, and what values to insert. Therefore it will have to
perform multiple queries for different types of data. For our purposes, we will
demonstrate a single update for the ‘numberOfMethods’ metric.

INSERT INTO Metric (revisionID, metricName, metricValue,

functionName, className) VALUES
(1,’numberOfMethods’,3,NULL,’myClassesName’).

Or

INSERT INTO Metric (revisionID, metricName, metricValue) VALUES
(1,2,3).

In the above queries, Metric refers to the table of metrics. The first set of parentheses
contain the columns to be updated, and the second set the values assigned to those
columns. The last two columns, functionName and className are optional, in that all
statistics do not necessarily have any use for them. In this case, NULL can be passed in
the second set of parentheses, or the second syntax can be used.

 23

Tasks

• Create SQL database schema
o …for table for storing CVS history (1 hour)
o …for table for storing Java-related metrics (1 hour)

• Replace Bloof schema with updated schema (2 hours)
• Create simple example in Java for sending SELECT, UPDATE and INSERT

queries to the Bloof/McKoi database. Check this example in to CVS repository,
and explain it to the rest of the team so as to make their work with the database
easier (4 hours)

Task Matrix

Hard
Moderate • Create example

Java file

DIFFICULTY

Easy • Create SQL
database schemas

• Replace Bloof
schema

Low Medium High
IMPORTANCE

Schedule

Since the database component is the central information hub of JCVSReport, it is difficult
to write the other components without having access to the database. Therefore the
deadline for the database tasks will have to be very soon. As such, we plan to finish all
three tasks by Wednesday, February 9.

Resources

Bloof: http://bloof.sourceforge.net
Mckoi SQL database: http://www.mckoi.com/database/

 24

Chapter 3: CVS Parser Component

Goal

Our goal is to implement a component that will collect CVS metadata for a project
maintained in a CVS repository.

Abstract

The CVS repository stores metadata about the projects that it maintains. More
specifically, it stores the history of operations performed by the developers on the project
repository. Moreover, for every commit operation, the CVS stores information such as
the developer’s comment, the files affected by the commit, the number of lines
added/deleted, the date and the revision. The CVS metadata, thus, can be a major
contributor to analyzing and tracking the progress of each project. The CVS Parser
component will access the CVS metadata for a given project, will parse it and pass it on
to the Data Storage component (which in our case will be a Relational Database). This
document outlines the approach that we will take in implementing the CVS Parser
component, and provides a tentative timeline for its implementation.

Background

CVS Metadata

CVS stores metadata regarding the change history of the repository. CVS metadata
consists of information such as what files have changed, when, how, and by whom. There
exist several ways for viewing CVS metadata. The two mechanisms we will use in our
system are CVS log and CVS history.

One can generate a CVS log file by issuing the ‘cvs log’ command. The output of ‘cvs
log’ contains the following information for every file:

• The location of the RCS file.
• The head revision (the latest revision on the trunk).
• All symbolic names (tags).

It also contains the following information for every revision:
• The revision number.
• The time (displayed in Coordinated Universal Time).
• The author.
• The number of lines added/deleted.
• The log message.

Here is a sample output of ‘cvs log’:

 25

RCS file:
/cvsroot/checkstyle/checkstyle/src/checkstyle/com/puppycrawl/tools/checkstyle/A
ttic/ClassResolver.java,v
Working file: src/checkstyle/com/puppycrawl/tools/checkstyle/ClassResolver.java
head: 1.2
branch:
locks: strict
access list:
symbolic names:
 v2-branch: 1.2.0.2
 release2_4: 1.2
keyword substitution: kv
total revisions: 2; selected revisions: 2
description:

revision 1.2
date: 2002/06/14 13:52:20; author: oburn; state: Exp; lines: +0 -1
Removed an extra debugging statement

revision 1.1
date: 2002/06/14 13:23:18; author: oburn; state: Exp;
First cut at a class to resolve class names. It has some limitations (inner
classes), but I think it is a good enough start. Still need to do the unit
tests.

The second mechanism we will be looking at is CVS history. CVS history provides a
summary of the repository activity, i.e.: it provides the list of all the operations performed
on the repository. For every operations, it provides information such as time, revision,
author and files affected by the operation. Below is a sample output of the ‘cvs history -e
–a’ command (note: ‘-e -a’ means show every kind of event that happened for all users).

O 07/25 15:14 +0000 qsmith myproj =mp= ~/*
M 07/25 15:16 +0000 qsmith 1.14 hello.c myproj == ~/mp
U 07/25 15:21 +0000 qsmith 1.14 README.txt myproj == ~/mp
G 07/25 15:21 +0000 qsmith 1.15 hello.c myproj == ~/mp
A 07/25 15:22 +0000 qsmith 1.1 goodbye.c myproj == ~/mp
M 07/25 15:23 +0000 qsmith 1.16 hello.c myproj == ~/mp
M 07/25 15:26 +0000 qsmith 1.17 hello.c myproj == ~/mp
U 07/25 15:29 +0000 qsmith 1.2 goodbye.c myproj == ~/mp
G 07/25 15:29 +0000 qsmith 1.18 hello.c myproj == ~/mp
M 07/25 15:30 +0000 qsmith 1.19 hello.c myproj == ~/mp
O 07/23 03:45 +0000 jrandom myproj =myproj= ~/src/*
F 07/23 03:48 +0000 jrandom =myproj= ~/src/*
F 07/23 04:06 +0000 jrandom =myproj= ~/src/*
M 07/25 15:12 +0000 jrandom 1.13 README.txt myproj == ~/src/myproj
U 07/25 15:17 +0000 jrandom 1.14 hello.c myproj == ~/src/myproj
M 07/25 15:18 +0000 jrandom 1.14 README.txt myproj == ~/src/myproj
M 07/25 15:18 +0000 jrandom 1.15 hello.c myproj == ~/src/myproj
U 07/25 15:23 +0000 jrandom 1.1 goodbye.c myproj == ~/src/myproj
U 07/25 15:23 +0000 jrandom 1.16 hello.c myproj == ~/src/myproj
U 07/25 15:26 +0000 jrandom 1.1 goodbye.c myproj == ~/src/myproj
G 07/25 15:26 +0000 jrandom 1.17 hello.c myproj == ~/src/myproj
M 07/25 15:27 +0000 jrandom 1.18 hello.c myproj == ~/src/myproj
C 07/25 15:30 +0000 jrandom 1.19 hello.c myproj == ~/src/myproj
M 07/25 15:31 +0000 jrandom 1.20 hello.c myproj == ~/src/myproj
M 07/25 16:29 +0000 jrandom 1.3 whatever.c myproj/a-subdir == ~/src/myproj

The general format of the history command output is:

 26

 CODE DATE USER [REVISION] [FILE] PATH_IN_REPOSITORY
ACTUAL_WORKING_COPY_NAME

Requirements for the CVS Parser Component

As the name suggests, the CVS Parser component should be able to parse CVS metadata.
The CVS Parser component should meet the following requirements:

• Access the CVS metadata, more specifically data captured by CVS log and CVS
history.

• Allow one to collect metadata for the whole lifetime of a given project.
• Allow one to collect only the data that has been changed since the last time the

component has been run on this project, without rebuilding historical dataset.
• Store the metadata that has been parsed in the database (the Data Storage

component).

Dependencies on other Components

The CVS Parser component has a dependency on the Data Storage component. The CVS
Parser component collects the data from CVS metadata and has to communicate to the
Data Storage component in order to store the data.

User Stories

The user in the case of the CVS Parser component is its client application/component.
The client should be able to interact with the CVS Parser component by invoking
methods defined by its API.

User Story
A client component can ask CVS Parser to bring the database of a particular project up to
date with its CVS repository. It will make a call to an updateProject() method defined by
CVS Parser API. The client component will also provide the CVS parser with access
information to the CVS repository as well as the access information for the project
database. The CVS Parser will then run a log command and a history command on the
given CVS repository, parse the output of these commands and update the project
database accordingly.

Potential Solutions

Home Grown Solution
One of the approaches is to implement the CVS Parser component from scratch without
making use of any third party solutions. Since CVS metadata is represented in plain text,
we could extract the desired data from it with the use of regular expressions.

Disadvantages

 27

The problem with this solution is that implementing a whole component that will be able
to parse CVS metadata extracting different type of data is time consuming and takes a
significant amount of effort. Moreover, the format of the CVS metadata is well defined
and is fixed. There already exist tools that successfully parse CVS metadata and extract
information from it. Therefore, re-implementing this functionality is simply unnecessary.

StatCVS and StatCVS-XML
StatCVS is an open source software that takes a CVS log file as an input, extracts
relevant information, and generates various tables and charts describing the project
development. StatCVS outputs the final report as a series of HTML pages.

Disadvantages

• Does not store the data in a database. This is a real disadvantage because, as
mentioned in the earlier in this document, our system should be able to perform
incremental updates.

• Not easy to extend/integrate.

Bloof
Bloof is an open source Java based infrastructure for analytical processing of version
control data. Bloof uses version control data for analysing the evolution of software
projects. Bloof is build for being integrated into other applications, providing a Java API
and a scripting interface for access and a XML output format.

Advantages:

• A third party solution that for the most part follows our requirements will save
us time and effort. There is no need to reinvent the wheel.

• The main advantage of Bloof is that it is designed for being integrated into other
applications. Bloof has a modular architecture, which makes it easy to integrate
and extend.

• If we can come up with good ways to extend Bloof, we can contribute our
source code to this open source project.

Disadvantages:

• Bloof is a relatively new project. It has not been used very much yet.
• The documentation that comes with it is not very detailed.

Decision and Justification

We decided that we will use Bloof to implement the CVS Parser component. The Bloof
project is conveniently divided into a number of subprojects. The Bloof project consists
of a core component and of user tools. The core component already implements a lot of
the functionality that we need to fulfill the requirements of the CVS Parser component.
More specifically, it can access a CVS repository, run the ‘cvs log’ command on the
repository, parse the log metadata and create representation of this data in a database.

 28

dbbloof

scm cvsplugin

Bloof consists of the main bloof package, the db package that contains classes that deal
with Database connection and information storage and retrieval, the scm package that
contains classes that deal with access to an source control management system, and
finally cvs package that contains classes that extend the scm package classes and that
are tailored specifically towards working with CVS. The following class diagram shows a
more detailed overview of the classes and the interaction between them. It seems that we
could make a good use of the existing Bloof architecture in other places but the CVS
Parser component. For instance, Bloof already provides us with a number of classes that
facilitate interaction with a Database. In fact, for our Storage Module we will be using the
McKoi database, which is the primary database currently supported by Bloof. Moreover,
Bloof provides us with classes that facilitate interaction with CVS.

 29

Features

Most of the functionality that we need is already implemented in the Bloof project.

Input Methods

Bloof supports the following input methods:

• Online access to a CVS repository via pserver, for example using
”:pserver:anonymous@cvs.sourceforge.net:/cvsroot/bloof”.

• Online access to your CVS repository via ssh, rsh.
• Reading cvs log file from the local disk.

If the specified method requires online access to a CVS repository, then Bloof uses the
specified method (one of pserver, ssh, ext) to establish a connection and uses CVS
protocol to send a request for the log information. Here is an example of a request that
asks for CVS log data for a particular module starting from a specified date:

 30

Root <repository root>
Argument –d
Argument > <date>
Argument <module name>
rlog \n

Updating and Importing a Project

One of the functional requirements for our overall system was that the customer should
be able to use the system in the following two ways:

• To monitor and ongoing project, which implies that the system should be ablto
incrementally update the data by adding new data to previously collected data.

• To generate the complete history of the project from start to finish.

Bloof currently supports both of these methods. Bloof has two API calls:
importProject(ScmAccess, DbAccess) and updateProject(ScmAccess,
DbAccess). importProject collects CVS log information for the entire history of the
project, creates a new database for this project and stores the data in a newly created
database. updateProject on the other hand, collects CVS log information from the date
the database was last updated, and adds the new data to the previously collected data in
the same database.

Extensible Interface for Dealing with Source Configuration Management
Programs

The Bloof project has a package net.sf.bloof.scm. This package defines interface
classes for dealing with a source configuration management program (a version control
program, in other words). It then has another package net.sf.bloof.scm.cvsplugin.
This package contains classes that implement the interfaces from net.sf.bloof.scm and
are specifically implemented for dealing with CVS. This architecture ensures that Bloof
can be further extended to work with configuration management programs other than
CVS, if required. Note that, most likely we will use the classes in these two packages
outside of the CVS Parser component, because other system components will need to
interact with the CVS as well.

Parsing of the CVS Log

The most convenient things about Bloof is that not only does it parse the CVS log file but
it also stores the collected data into a database. The net.sf.bloof.scm.cvsplugin
package in Bloof contains a LogParser class. This defines methods that parse the log
data and store it in the database.

Parsing of the CVS History

Unlike the features outlined above, this feature is not currently supported by Bloof. As
mentioned in the background section of this document, CVS log does not contain the

 31

entire information about the activity in the CVS repository. One cannot find out, for
instance, how many update/check out/commit operations have been made to the
repository by every developer. Information about the operations performed on the
repository appears in the CVS history file. Thus, we would like to extend Bloof so that it
parses the CVS history output and stores it in the database, just the same way it parses
and stores the CVS log data.

Tasks

Setup the Bloof project and the environment
• Set up Java TM runtime environment version 1.4 or greater.
• Check out the Bloof project from its CVS repository.
• Import the project to a development environment such as Eclipse.
• Download the following JAR dependencies and add then to the projects Java build

path:
gnu-regexp-1.1.4.jar
activation-1.0.2.jar
junit-3.8.1.jar
mindterm-1.2.1.jar
nanoxml-2.2.3.jar
mckoidb-0.94.jar
blooftestdata-0.1.jar
jargs-0.3.jar

Run JUnit tests on Bloof
• Run the JUnit tests that come with the project source code and make sure that the

project passes them.
• Write and run new JUnit tests if required.

Verify that Bloof is gathering and storing the log data properly
Here is an example of a method that uses Bloof to gather metadata from a CVS repository
accessed via pserver and store the data in the database. Verify that the data is gathered
and stored properly.

 public static void main(String[] args) {
 try {
 // Specify the location and the login information of the CVS
repository of the project to be analysed.
 RepositoryLocation repo = new
RepositoryLocation(":pserver:anonymous@cvs.sourceforge.net:/cvsroot/bloof");
 LoginDetails loginDetails = new LoginDetails("anonymous", "");
 ScmAccess cvs = new CvsAccess(repo, loginDetails, "bloof", "example
cvs module");

 // Specify the login information and the url of the project
database.
 DbAccess dbaccess = new DefaultDbAccess("Default internal
database", "bloof", "bloof", "/bloof/bloofdb");

 32

 // Import this new project – parse CVS log for the lifetime of the
project and store it in a newly created database.

 Bloof.importProject(cvs, dbaccess);

 // Once the CVS log data is in the database, get the database object

and run an SQL query on it.

 } catch (Exception e) {
 e.printStackTrace();
 }
 }

Test the different input methods
Test that Bloof can successfully access CVS repositories via the different methods:

pserver, ssh, ext.

Extend Bloof to parse CVS history
This involves implementation of a HistoryParser class, which would be along the lines
of the LogParser class that Bloof uses for CVS log parsing purposes.

Write JUnit tests to test the history parser functionality
Write and execute JUnit tests for the new HistoryParser class.

Task Matrix

Hard
Moderate - Extend Bloof to

parse CVS history
- Write JUnit tests
to for the history
parser

DIFFICULTY

Easy - Setup Bloof
- Run JUnit Tests on
Bloof
- Verify that Bloof
is gathering and
storing the log data
properly
- Test the different
input methods

Low Medium High
IMPORTANCE

Schedule

Task Hours
Setup Bloof 1 hour
Run JUnit Tests on Bloof 2 hours

 33

Verify that Bloof is gathering and storing
the log data properly

2 hours

Test the different input methods 2 hours
Extend Bloof to parse CVS history 8 hours
Write and run JUnit tests to for the history
parser

2 hours

Because the Report module depends on our CVS Parser module, we want to finish the
CVS Parser module as early as possible so as to allow our work on the Report module to
begin. We will budget to finish 50% of our tasks for this section by February 9 (9 hours),
and to finish the other 50% of our tasks by February 17 (another 8 hours).

Resources

CVS - https://www.cvshome.org
Bloof - http://bloof.sourceforge.net/
StatCVS - http://statcvs.sourceforge.net/

 34

Chapter 4: Java Parser Module

Goal

To collect statistics from Java files in a CVS repository

Background

The Java Parser module is a small but important part of our entire system. Its sole
purpose is to collect all metrics and statistics as required from Java text files. The
number of lines of code in a file from a specific date or revision, or the number of
methods or classes for a particular file, are all examples of valid metrics that one may
wish to retrieve.

The module will be called with a path to a file as well as its revision ID. From there it
will collect all statistics specified in its configuration file, and then update the Database
Storage Module with the newly collected statistics. There are many approaches to
collecting this data, as described below.

Potential Approaches to Data Collection

1) One could write customized Java parsers combined with regular expressions to
collect all statistics. While this does allow the greatest amount of customization,
it would take a considerable amount of time to implement each feature.

2) Another approach would be to use existing libraries to collect many of our

statistics. This requires the least amount of time to implement, but also offers the
least flexibility. For example, expansion for new statistics may not be possible.

3) As a middle approach, we could make use of certain utility software such as

PMD. PMD takes static Java source code, and generates a parse tree of it. This
allows one to write small pieces of software to flag certain parts of the tree
traversal in Java or XPath. However, the kinds of statistics that can be generated
are only those that are related to tree traversal of an abstract tree. So other non-
traversing statistics such as the number of lines of code, could not be collected
with this approach.

4) We could take the Abstract Syntax Tree that PMD uses, and store the entire tree

in a database, for each revision. From there, simply counting the number of
abstract tokens such as UnmodifiedClassDeclaration (for counting the
number of classes), and MethodDeclarator (for counting the number of
methods). The disadvantage to this is that the database would get somewhat

 35

larger. That is, it takes much more storage to contain an entire parse trees (or
even their subsets) than it does to store summaries of their individual tokens. The
obvious benefit is that we retain a lot more data, and can do much more advanced
SQL queries on that data.

Design Decisions

In order to decide on which approach to use, we must first recognize what kinds of
statistics are expected to be needed by the users of our software. A short preliminary list
is as follows:

A) Simple Counts of lines of code, comments, test code, etc.
B) Counts of the number of methods, classes, unit tests, etc.

All metrics in group A seem simple enough that we just need to count the number of
matches to a simple regular expression, which can be easily written in Java. So for group
A, any other approach seems to be a bit of overkill. We will write a Metric class called
RegExpLineCounter to handle the Group A metrics and count the number of lines that
match a regular expression.

Group B statistics are more complicated. It would be much more difficult to write a
regular expression for these types of metrics. At first it seems the PMD approach is
probably best. But after further examination, we see that PMD relies on a Java parser to
produce Abstract Syntax Trees (AST), which contain all the information we need.
Specifically, the complexities of the code are already removed by the AST generator, and
leave us with easily recognizable tokens. Both UnmodifiedClassDeclaration and
MethodDeclarator are examples.

So for group B, we are left with two good choices.

1) Count the number of occurrences of every token type (such as
MethodDeclarator) that we are interested in, and store their totals in the SQL
database. Such an approach allows quick queries into our database.

2) Store the entire parse tree (or subsets of it) in the database, and use standard SQL

queries to do the counting for us.

While 2) does seem like an attractive option for its expressive power, it is overkill. Any
user requirements found thus far do not need this expressive power. The computational
costs for performing these queries would be much higher, and as such this approach is not
advised.

Therefore the implementation should use a standard Java parser to generate AST trees
which remove complexities. From there, the trees can be traversed and a tally can be
made of the number of occurrences of all tokens encountered such as

 36

MethodDeclarator. That is, all matches should increment a count of a state variable
representing this token-type. At the end of the parse, the module will update the data
storage component with a subset of its collected statistics, comprising of those specified
in the Java Parsers supplied configuration file. This becomes a huge benefit because all
metrics can be found in a single pass.

We will call our class for handling group B metrics JavaASTMatcher.

Dependencies and Risk Factors

Since all group B metrics rely on an abstract syntax tree, the Java Parser module is
dependent upon the module which produces these trees. For example, our code would no
longer recognize the number of methods in a file if a new version of our AST generator
was released which renamed MethodDeclarator to ProcedureDeclarator.
Fortunately this issue could be easily resolved by simple modifications to the
configuration file, in a single place. Specifically, the ‘NumberOfMethods’ metric which
is set to match the MethodDeclarator in its configuration file, could be updated to
match ProcedureDeclarator. Furthermore, we do not expect the AST generator to
change.

Matching Java code is more complex than matching a simple syntax tree. The Java spec
is not simple, and it is often true that many Java compilers accept code that doesn’t
exactly match the specification. We are confident that this will not be much of a
hindrance however, so long as we carefully follow the Java spec and test against a wide
variety of code from many different authors.

As a final note, our statistics will only be collected if the file can be properly compiled.
If it can’t be compiled, then that means no AST tree can be generated. However, one
would not expect someone to submit a file to a repository which does not build.
Regardless, we recognize this as a limitation to our system.

Use Cases

We will now describe a typical user scenario to better understand how this module fits
into the overall system.

When a user of the system wants to retrieve a certain statistic, they retrieve it from a
database. Therefore they do not call our module directly. However, when it comes time
to generate a new batch of statistics (due to a nightly system update, for example), the
Java Parser module will be called to generate new statistics, as a separate program from
the command line.

 37

For the module to begin work, it must be provided a file to collect statistics on. It should
also be told what revision this file is, so that the Java Parser can update the appropriate
sections of the database once its statistics collection is complete.

Note that the parser is not told what statistics to collect on the command line. The actual
statistics to be collected from source files are specified in a configuration file, as
described in the design document. This is because most of its statistics can be collected
in one or two passes through the specified file. For example, as it goes through each line
of the java files AST, it reads in a token. For each token X encountered, a counter
located at HashMap(X) is incremented. At the end of this pass, whatever statistics are
requested in the configuration file, are blasted off to the database. That is, if the config
file contains only the two metrics MethodDeclarator and
UnmodifiedClassDeclaration, then at the end of the file, The database will be
updated with HashMap(MethodDeclarator), and HashMap(UnmodifiedClassDeclaration),
with the constraint of the supplied file ID, and file revision. The format of this
configuration file is left to the design document.

Example Java Syntax Tree

Below we show an example of a Java Source Code file and its resultant syntax tree.

Application:
/**
 * The HelloWorldApp class implements an application that
 * simply displays "Hello World!" to the standard output.
 */
class HelloWorldApp {
 public static void main(String[] args) {
 System.out.println("Hello World!"); //Display the string.
 }
}

Syntax Tree:

CompilationUnit
 TypeDeclaration
 ClassDeclaration:(package private)
 UnmodifiedClassDeclaration(HelloWorldApp)
 ClassBody
 ClassBodyDeclaration
 MethodDeclaration:(public)(static)
 ResultType
 MethodDeclarator(main)
 FormalParameters
 FormalParameter:(package private)
 Type
 Name:String
 VariableDeclaratorId(args)
 Block
 BlockStatement
 Statement

 38

 StatementExpression
 PrimaryExpression
 PrimaryPrefix
 Name:System.out.println
 PrimarySuffix
 Arguments
 ArgumentList
 Expression
 PrimaryExpression
 PrimaryPrefix
 Literal:"Hello World!"

Tasks

To gather our metrics from a Java Syntax tree, the following tasks must be completed:

1) Manually collect statistics on numerous Java files from varying sources so as to
have a basis to compare the performance of our software.

2) Set up the PMD Abstract Syntax Tree parser and test it on a simple example
3) Implement the JavaASTMatcher class
4) Implement the RegExpLineCounter class
5) Test that our Java Parser module must be shown to generate proper Group A and

B type statistics on a wide variety of files, based on the manually collected
statistics above.

6) The config file method must be tested so as to make sure that the program runs in
all cases. For example, if there are no occurrences of a particular statistic.

The following pseudo-code describes the JavaASTMatcher class.

HashMap hash = new HashMap();

For each token in AST {
 hash.set(token.getName(), hash.get(token.getName())+1);
}

// After we reach the end of the file:
For each desired node_name listed in the config file {
 Int result = hash.get(node_name);

 // Update the database with the statistic, for the
 // file we are collecting statistics on, its revision,
 // and the result.
 InsertIntoDB(node_name, filename, revision, result)
}

The following Pseudo-code describes the RegExpLineCounter class.

• Read the file from CVS into memory into a variable called “file_contents”

 39

• Replace all instances of the specified regular expression in “file_contents” with
the empty string

• Count how many lines are in “file_contents” and compare it to the number of
lines in the original file to find out how many lines were deleted by the specified
regular expression

Time Estimates
• Install and examine the AST generator from PMD: 2 hours
• Implement JavaASTMatcher:

o Implement data collection: 4 hours
o Implement inserting results into database: 2 hours

• Implement RELineCounter:
o Implement data collection: 4 hours
o Implement inserting results into database: 2 hours

• Collect manual statistics from a few files: 4 hours
• Compare manual to automatically gathered statistics to ensure accuracy: 2 hours
• Create user documentation which explains how to use the aforementioned

statistics

Task Matrix

Importance

Low Medium High

H
ig

h

M
ed

iu
m

• Collect Manual
Statistics

• Implement data collection for
JavaASTMatcher

• Implement data collection for
RELineCounter

D
iff

ic
ul

ty

L
ow

• Test Program on
Manual Stats

• Install AST Parser
• Implement inserting

JavaASTMatcher results into
database

• Implement inserting
RELineCounter results into
database

 40

Schedule

Because the Report module depends on our Java Parser module, we want to finish the
Java Parser module as early as possible so as to allow our work on the presentation
module to begin. We will budget to finish 50% of our tasks for this section by February 9
(10 hours), and to finish the other 50% of our tasks by February 17 (another 10 hours).

 41

 42

Chapter 5: Report Module

Goal

To implement a component that will generate requested statistical HTML reports
in the form of charts, graphs, tables, etc.

Background

The report component should prepare HTML reports tailored to specific data,
requested by its users. The specified data can be any valid data points that can
be represented in the graph or a table. In our case the data points will be
statistics about CVS metadata gathered from the project’s cvs repository or any
statistics about the project’s source files that are of interest to the user. The
reports generated by this component will be used to make observations about
the progress of the project, and thus they must be easy to read and comprehend.

Functionality

The main purpose of this module is to present collected statistics relevant to the
software’s users, in an easy to understand, graphical form. To facilitate in this
task, this module must be easily customizable so as to allow users to specify
which statistics are to be presented, as well as the format of how these charts
are displayed. For example, perhaps a statistic is better represented by a pie
chart, than a histogram. Other style information should also be customizable.

Requirements

To allow this functionality, the following requirements are to be met:

o Options for configuring display features, such as the title of the report, its
graphs, their legends, etc, must be provided.

o The user must be able to specify where the generated HTML reports are
to be placed.

o The format and style of all charts (such as a pie chart, histogram, etc.)
must be configurable.

o Each report may contain different statistics, and as such it must be easy
for a user to change data is sourced.

 43

Dependencies on other Components

The Report component depends on the Presentation component of the system.
This is because it is the Presentation component that passes this component its
required data for document generation.

User Stories

The user of this component will be the Presentation component of our system.
The Presentation component will ask the Report to generate an HTML report with
specific graphs and title.

User Story 1: The Presentation component needs to generate a report to
compare the number of lines of code for two projects: say, project 1 and project
2. The generated report should have the title “Comparisons of Lines of Code -
Project1 vs. Project2 ”, and should convey this data in the form of a simple line
graph. The HTML report is to be outputted to a directory called
“/home/boss/reports” and the file name should be “ComparisonP1vsP2.html”

User Story 2: The Presentation component requests a report containing the
number of commits and lines of code in relation to the user BOB. The report is
further constrained in that its statistics must only present data between January
1, 2004 to January 1, 2005. The title of the report should be “Progress of Bob”
and its graphs titles should be “Commits” & “Lines of Code Added”. Line graphs
are the preferred method of visualization. The directory where the reports will be
outputted should be called “/home/boss/reports/bob/” and file should be named
“Bob’s Progress.html”.

Potential Solutions

Approach #1 – Implement this component in Java

This component can be written in Java and can use any free software for
generating charts.

Some of the free graphing software packages are:

- PtPlot2D: This package is a data plotting and histogram tool implemented
in Java. It can be used as a standalone applet or application, and can also
be embedded in a larger piece of software.

 44

- JChart2d: A java programming library for visualizing quantitative data
using two-dimensional charts.

- JFreeChart: An open source Java class library for generating many

different types of charts. Support is included for pie charts, bar charts, line
charts, scatter plots, time series charts, candlestick charts, high-low-open-
close charts and more. Generated graphs can be exported to PNG,
JPEG, PDF, SVG and HTML image maps.

Advantages of JFreeChart:

JFreeChart is a widely used software solution. As such, it is proven to be well
written, tested and documented. This is always an important consideration if one
wants to use another software package to help implement their own. Another
major advantage lies in its easy of use for feature work and application
integration.

For example, there are only 2 steps to create a chart using JFreeChart:

1) Create a dataset object containing the statistics that we want to be
displayed.

2) Create a JFreeChart object by specifying the charts type, and passing it
the dataset object created in the first step..

Thus, it seems that one of the better approaches to help develop this module,
involves the integration of JFreeChart into a Java based solution. That is, since
a large part of our application (that is, its other components), are to be
implemented in Java, integration with JFreeChart should be simple and
straightforward. Furthermore, since the application is already well developed,
using it will save us a great deal of development time.

Approach 2: XML statistics + Bloof-Websuite

Bloof-Websuite is a user application that generates a suite of webpage’s from a
set of Bloof XML result files.

The following is a format of the xml file:

XML file format:

<?xml version="1.0" encoding="UTF-8"?>
 <result type="timeline">
 <parameter files="/junit"/>
 <data>

 45

 <datapoint time="2000-12-03 9:36:14" value="0.0"/>
 <datapoint time="2000-12-03 9:36:15" value="0.0"/>
 <datapoint time="2000-12-03 9:36:17" value="0.0"/>
 <datapoint time="2000-12-03 9:36:22" value="0.0"/>

 </data>
 </result>

Advantages:

Bloof-websuite implements most of the required functionality for the Report
component. This makes it appear that using it would require less work on our
part.

Furthermore, since our CVS parser will be implemented using Bloof, and web-
suite is already designed specifically to work with the statistics that are generated
by Bloof, this would cut down on our development time even further.

Disadvantages:

Bloof-Websuite is currently in its alpha version, and as such likely has many bugs
and unimplemented features. Also, since the package has to parse an XML file
with statistics in order to generate reports, then parsing might take substantial
amount time, which will reduce the efficiency of the system. Furthermore,
extending the Bloof-Websuite to better suit our required features would be quite
difficult. This is because doing so involves understanding the packages existing
code base. It is also always a possibility that it has a poor architecture, and
would be much too difficult to extend.

As a final disadvantage, our Java Parser component is not implemented by
Bloof. This means that the Java Parser module would have to be extended to
output its statistics to an XML format that is useable by this suite.

Decision and Justification

We decided that we will go with the first approach in which the component will be
implemented in Java and will use JFreeChart for producing different types of
charts. Implementing this component in Java will ensure easy integration with
main module and using JFreeChart chart for graphing functionality will save
substantial amount of development time. This approach will make Report
component efficient, easy to use and extend.

 Features

 46

o Generate graphs with specified graph type, title and graph legends
o Generate comparison graphs that will display two sets of data points with

specified graph type, title and graph legend
o Generating Report containing specified graphs
o Output report to the directory specified by the user

Tasks

Setup the project and the environment
o Set up Java TM runtime environment version 1.4 or greater
o Check out the JFreeChart project
o Download the following JAR dependencies and add them to the projects

Java build path:
 jfreechart-0.9.21.jar

The features described above will be implemented in the class called Report
Below is API for Report class.

class Report {

 String title; // title of the report
 String outputDirectory; // directory where the report will be created
 JFreeChart[] charts; // charts that will be included in the report

 /**
 * Construct report object
 * @param reportTitle title of the report
 * @param outputDirectory path to directory where report will be created
 */
 public Report(String reportTitle, String outputDirectory);

 /**
 * Add graph to the report document
 * @param dataPoints data points that should be graphed
 * @param xlabel label of the x-axis
 * @param ylabel label of the y-axis
 * @param typeOfGraph type of graph that will be produced
 * @param graphLegend legend of the graph, can be null
 */
 addGraph(ResultSet dataPoints, String xlabel, String, ylabel, String
typeOfGraph, String graphTitle, String graphLegend)

 47

 /**
 * Add graph to the report document
 * @param dataPoints1 first set of data points that should be graphed
 * @param dataPoints2 second set of data points that should be graphed
 * @param xlabel label of the x-axis
 * @param ylabel label of the y-axis
 * @param typeOfGraph type of graph that will be produced
 * @param graphLegend legend of the graph, can be null
 */
 addComparisonGraph(ResultSet dataPoints1, ResultSet dataPoints2, String
xlabel, String ylabel,
 String typeOfGraph, String graphTitle, String
graphLegend);

 /**
 * Creates report in the report’s output directory
 */
 generateReport();

}

Feature1: Generate graph with specified graph type, title and graph legends
must implement addGraph(ResultSet dataPoints, String xlabel, String, ylabel,
String typeOfGraph, String graphTitle, String graphLegend)

Feature2: Generate comparison graphs that displaying two sets of data
points with specified graph type, title and graph legend
must implement addComparisonGraph(ResultSet dataPoints1, ResultSet
dataPoints2, String xlabel, String ylabel,
 String typeOfGraph, String
graphTitle, String graphLegend);

To implement this methods the following actions have to be performed:

o Extract data from the dataPoints and create appropriate dataSet
object depending on the type of graph that has to be created.

o Create JFreeChart with the specified features and add it to the
array of charts in the report.

Here is sample code for creating XYSeries using JFreeChart

 48

XYSeries data = new XYSeries("Title");
data.add(20.0, 10.0);
data.add(40.0, 15.0);
XYDataset dataSet = new XYSeriesCollection(data);

JFreeChart chart = ChartFactory.createAreaXYChart
 ("Sample XY Chart", // graph title
 "dimension1", // xlabel
 “dimenstion2", // ylabel
 xyDataset, // data points
 true // include graph legend
);

3. Generating Report for specific project

Every report will include “title of the project” and then links to graphs for each
metric requested by the user. The graphs will be listed
one below the other, however the links will be on top of the report if the user
wants to go right away to the a specific graph. The HTML report will be
created using org.w3c.dom Interface Document API.

Below is a sample report for Mauve project. The report was required to
contain “Lines of Code” and “Number of files”.
As you can see there is two links at the top available for each graph

 49

Features Matrix

Hard

Moderate

Setup the project
and the
environment

Create report
including all the
graphs in the
specified directory

Generating
different types of
graph with
specified
features

Generating
different types of
comparison
graphs with
specified features

Difficulty

Easy

 Output report to
the specified

 50

directory by the
user

High Medium Low

Importance

Schedule

Time (Hours) Features
Development Testing

Setup the project and the environment

1 1

Generate graph with specified graph
type, title and graph legends

5 4

Generate comparison graphs that
displaying two sets of data points with
specified graph type, title and graph
legend

6 3

Generating Report with specified title and
graphs 6 3

Output report to the specified directory by
the user 2 2

Total time(hours) 20 13

References

www.jfree.org/jfreechart

