
Installing and Running JCVSReport
Step #1: Check Prerequisites

In order to run JCVSReport, you must have the following:

• CVS: The official version of CVS must be installed and in your path
• Java: You need version 1.4 of Java.
• A RAW copy of a CVS repository.

In order to compile JCVSReport, you will also need:

• A copy of the JCVSReport software source files.
• Ant: We tested it with Ant 1.6.1.
• Java Compiler: Version 1.4 of the Java SDK at a minimum

If you are missing one or more of the above prerequisites, please see Appendix A:
Installing Prerequisites.

Step #2: Setup your configuration file

For JCVSReport to run, it requires a configuration file to be specified on the command
line. The file tells our software which CVS repository to use, as well as which metrics
you’d like included in your final report.

Below is a sample configuration file, sample_config.txt, followed by an explanation of
how to customize it to your personal uses:

Change cvsroot to point to your local CVS repository.
cvsroot=/u/csc408h/winter/pub/repo/c408h11

Change cvsmodule to be the name of your project inside
your CVS repository
cvsmodule=408project

A list of the graphs you want to generate
graphs=CodeSize,CodeComplexity,TestSize,DocumentationSize

cvsroot: The path must refer to the repository location. In the above case, we show the
path to our CVS repository on CDF.

cvsmodule: This refers to the name of the project within the cvsroot directory that you
would like to gather statistics on. In our case, the project name was “408project”.

graphs: This is where you set which graphs are to be generated and displayed. The
graphs are specified through a comma delimited list, where the contents refer to the name
of the .properties file. In this case, CodeSize refers to the CodeSize.properties file,
located within the ca.utoronto.JCVSReport.report.properties package. See

Appendix B: Graph Configuration for more information on the graphs that can be
displayed here.

Step #3 – Executing JCVSReport

If you are working within a local checkout of the JCVSReport repository, simply go to
that directory and type:

/bin/sh JCVSReport –c sample_config.txt

This will run either the packaged JAR file, or your latest compile. The –c option
specifies where the configuration file can be found. An optional option –u can also be
specified to tell JCVSReport to simply update its database, and not recreate it from
scratch.

If you would like to test JCVSReport, simply type:

/bin/sh JCVSReport –t

After the tests are run, the application will let you know whether or not the tests were
successful. If you would like extended information on any errors that might be reported,
you will need to install Eclipse and run the tests manually from within the IDE.

If you would like to recompile JCVSReport, simply type ‘ant’. A new directory called
‘dest’ will be created with the contents of your compile. The provided shell script will use
this compile in place of the JAR.

Step #4 – View your report

After following all of the above, a report.html file will be written out in the same
directory that the program was run from, along with all of the images that report.html
makes reference to. You can view this report using any standard web browser.

Appendix A: Installing Prerequisites
Copy the RAW CVS Repository to your local system.

For the purposes of this course, the CVS repository will be located at:

/u/csc408h/winter/pub/repo/c408hXX

Where XX would be replaced by the numerals assigned to your group account by the
Professor. Make sure to copy the whole folder to a local folder. This step is necessary
because our system gathers statistics from the raw repository, which in the case of a local
install is not accessible without this copy.

The easiest way to do this is probably to tar up the repository and then transfer it over
using SCP or SFTP. This can be done with:

tar -czf ~/cvsrepository.tgz $CVSROOT

In the case that the $CVSROOT environment variable is not set (or in the case that it
refers to a remote file system), one can achieve the same thing with:

tar -czf ~/cvsrepository.tgz /u/csc408h/winter/pub/repo/c408hXX

When you extract the archive to your own local directory, you must make sure that the
path to it is at least 10 characters long, due to some limitations in the bloof database that
is part of our system. If the path is not long enough, you will get the following error
when the software first starts up:

net.sf.bloof.scm.cvsplugin.InvalidRepositoryLocationException:
The repository location is null or too short:

Furthermore, make sure to use the usual Linux tar software to extract, or cygwin’s tar.
Other windows applications such as WinRAR seem to damage the repository if the paths
are too long.

Install CVS on your home machine.

Our software makes extensive use of the CVS package, and as such its installation is very
important.

If you are using Linux, you will need the official distribution of CVS. This will likely be
available with your Linux distribution but it can also be downloaded from
www.gnu.org/software/cvs/.

If using a windows based machine, then it is best to use Cygwin port of CVS
(www.cygwin.com), as some of the other distributions of the software (such as cvsNT)
suffer from compatibility issues with our software.

Note: Make sure that you add the CVS binary to your path, so our system can run CVS
easily.

Appendix B: Graph Configuration

It was mentioned previously that our program contains many metrics. We will now
describe what they are. To include one with your report, simply add the name to the
graph= section of your configuration file.

• NCSS: The number of non-commenting source statements.

• CyclomaticComplexity: The number of possible execution paths through
your code.

• LinesOfCode, LinesOfComments, LinesOfJavaDoc, LinesWithTabs, and
LinesWithTrailingSpaces are straightforward.

• NumberOfClasses, NumberOfMethods, and NumberOfImports, all count
the number of occurrences of class, method, or import declarations
respectively.

• NumberOfTestClasses, and NumberOfTestMethods count the number of
test classes and test methods respectively. To do this, the regular expressions
consider any class whose name ends with ‘test’ to be test classes.
Furthermore, if the class extends ‘testCase’, it is also considered a test class.
All methods that start with “test” are considered to be test methods because
that is the standard JUnit syntax.

The above 12 metrics are single metrics. That is, if included, only a single metric will be
displayed on the graph. There are 8 predefined graphs which include multiple metrics, as
follows:

• CodeComplexity: Includes the CyclomaticComplexity, NumberOfMethods,
NumberOfClasses metrics. By looking at the relation between the cyclomatic
complexity of your software and the number of methods contained within it,
you can determine the average complexity of each method in your code.

• CodeSize: Includes LinesOfCode and NCSS metrics

• Conflicts: Describes the number of conflicting or merged updates An update
is considered to be merged if two people make changes to the same file and
CVS automatically merges them. If the changes cannot be merged
automatically then it will be considered conflicting. This information is
gathered from the CVS history file.

• Coupling: Displays NumberOfImports, and NumberOfClasses. By looking at
the relation between these two metrics, you can get a quick estimate of the
coupling of your software.

• DocumentationSize: Displays LinesOfComments and LinesOfJavaDoc

• Lines: Displays LinesOfCode, LinesOfComments, LinesOfJavaDoc,
LinesWithTabs, and LinesWithTrailingSpaces

• Operations: Find the number of updates and commits in the repository.

• TestSize: Displays NumberOfTestMethods and NumberOfTestClasses

By default, all statistics are sampled over time, and displayed as a line graph. This
behaviour can be changed by appending one of several extensions listed below. The
extensions are as follows:

• –BarGraph: Displays your final results as a bar graph instead of a time series.
This graph only is applicable when you are displaying multiple metrics on a
single graph.

• –PieGraph: Displays your final results as a pie chart instead of a time series.

This graph only is applicable when you are displaying multiple metrics on a
single graph.

• -PerDeveloper: The contribution of each developer to any of the above metrics

can be easily viewed by appending “-PerDeveloper” to the metric name. For
example, you can view how much each developer contributed to the number of
lines of code in the project by listing “LinesOfCode-PerDeveloper” as one of
your metrics. If you are displaying only one metric, then these results will be
displayed on a pie chart. If you are displaying multiple metrics, then these results
will be displayed as a bar graph.

• -PerDeveloperBarGraph: This is the same as above, except that it will be forced
to be displayed as a bar graph.

• -PerDeveloperTimeSeries: This option will allow you to display your results
Per Developer, as a time series. This graph is only applicable when you are
displaying a single metric on a single graph.

Appendix C: Advanced Graph Configuration

Above it was explained that the final rendered document will contain graphs, specified in
the sample_config.txt file via the graphs= property. It is yet to be explained how this
is mapped to an actual graph. To demonstrate this, we will go through an example. Lets
say we defined graphs=Lines,CodeSize

JCVSReport will then look in the package directory
ca.utoronto.JCVSReport.report.properties for two files: Lines.properties, and
CodeSize.properties.

The first file Lines.properties is a predefined metric, packaged with the software. We
will go through its contents to learn how to create new metric property files, such as
MyNewMetric.properties.

Specifying Graph Characteristics

The first 5 lines, title, ylabel, xlabel, height, and width, all specify the graphs
title, y-axis label, x-axis label, and the graphs height and width respectively. For
example:

title=Lines of code over time
ylabel=Lines
xlabel=Date
height=300
width=500

Specifying Graph Metrics Sources

The next line contains a metric attribute, which specifies which .properties metrics will
be used in collecting data. These other .properties files are located within the
ca.utoronto.JCVSReport.metric.properties package. For example:

metrics=LinesOfCode,LinesOfComments,LinesOfJavaDoc

The above would refer to LinesOfCode.properties, LinesOfComments.properties,
and LinesOfJavaDoc.properties, all within the
ca.utoronto.JCVSReport.metric.properties package. All .properties files within
the ca.utoronto.JCVSReport.metric.properties package are titled metric properties
files, and will be explained in more detail in the next section.

Metric Properties Files
Metric Properties Files specify exactly what is to be matched and counted, and where
from. For example, the previous report .properties file mentioned above,
Lines.properties, had a line:

metrics=LinesOfCode,LinesOfComments,LinesOfJavaDoc

And we already know this means it looks for LinesOfCode.properties in the
ca.utoronto.JCVSReport.metric.properties package. A typical metric properties
file contains three lines, and looks like the following:

class=ca.utoronto.JCVSReport.metric.RegexLineCounter
title=Lines of Code
regex=\\n

The first line specifies what class should be used as the matching engine. In this
example, we use RegexLineCounter, which uses regular expressions against a plain text
.java file. We can see from the third line that this metric just matches to the end of a line
character.

The title property just sets the default name for the metric in the event that it is
included directly from the sample_config.txt file, instead of through the report .properties
file described earlier.

Lets see another example of a metric .properties file that uses the RegexLineCounter
class. In this case, we will look at LinesOfComments.properties.

class=ca.utoronto.JCVSReport.metric.RegexLineCounter
title=Lines of Comments
regex=(?:/*(?s:.*?)*/|//).*\n

It is identical to the previous file, except for the regular expression which is used to
match to comments.

The class line can also point to:

ca.utoronto.JCVSReport.metric.SyntaxTreeRegexMatchCounter

Which is the other matching engine of JCVSReport. This matching engine also uses
regular expressions, but it uses them against an abstract syntax tree generated by a java
compiler. Let us look at the file NumberOfClasses.properties which counts the
number of classes in a given file.

class=ca.utoronto.JCVSReport.metric.SyntaxTreeRegexMatchCounter
title=Number of Classes
regex=ClassDeclaration:

As can be seen, these metrics are easily written. You may be wondering how we knew to
use ClassDeclaration: as our regular expression. One can find these things out by
downloading the PMD tools from http://pmd.sourceforge.net/, extracting, and running

pmd-2.3\bin\designer.bat or pmd-2.3\bin\designer.sh

A window is open, in which you
can put java source code. You
can click on a ‘go’ button, and
the resulting parse tree is shown
in another window pane. By
exploring around with different
pieces of code, you can learn
what kind of parse tree to expect,
and design a matching regular
expression for that. A screen
capture is shown on the right.

Clearly these combined tools are
extremely powerful in coming up
with new metrics.

