
 David James Page 1 3/20/2005 

David James 
Department of Computer Science 
University of Toronto 
 

HipVersion: Subversion for Hippos 
 
Goal: To make it easier for Hippo developers to 
manipulate versioned repositories using Java 
 
The goal of HipVersion is to make it easier for Hippo developers to manipulate versioned 
repositories using Java. This was accomplished by replacing Hippo’s home-brewed Subversion 
Java bindings with the publicly available JavaHL bindings. The JavaHL bindings offer richer 
functionality, improved performance, proven reliability and reduced maintenance costs. This 
report describes the design process, history, and outcome of the HipVersion project.  

 



 David James Page 2 3/20/2005 

Table of Contents 

Chapter 1: Planning .................................................................................................................................. 3 
1.1: Software Configuration Management and Hippo..................................................................... 3 
1.2: Goals ................................................................................................................................................. 3 
1.3: SvnProvider: The Old Subversion Integration Scheme............................................................. 3 
1.4: JavaHL: A Better Subversion Integration Scheme ..................................................................... 4 
1.5: Migration Issues.............................................................................................................................. 5 
1.6: Easy Installation for Casual Users................................................................................................ 6 
1.7: Easy Installation for Power Users ................................................................................................ 6 
1.8: Ant Integration................................................................................................................................ 7 
1.9: The HipVersion Integration Plan ................................................................................................. 8 
1.10: Tasks ............................................................................................................................................... 8 

Chapter 2: Implementation and Evaluation....................................................................................... 11 
2.1: Implementing the HipVersion Plan........................................................................................... 11 
2.2: Making JavaHL Easy to Install ................................................................................................... 12 

2.2.1: Non-standard Install Targets ............................................................................................... 13 
2.2.2: Broken Install Dependencies ................................................................................................ 13 
2.2.3: Missing Directories ................................................................................................................ 14 
2.2.4: Test Suite Fails Due to Typo................................................................................................. 14 
2.2.5: Can’t Test Before Install ........................................................................................................ 14 
2.2.6: Slow Compilation .................................................................................................................. 16 

2.3: Measuring Ease of Installation: Before and After .................................................................... 17 
2.4: Sample Code.................................................................................................................................. 18 
2.5: Feature Matrix............................................................................................................................... 19 
2.6: Test Coverage................................................................................................................................ 20 
2.7: Task Checklist ............................................................................................................................... 21 

Chapter 3: Discussion............................................................................................................................. 22 
3.1: Lessons for Contributing to Hippo ............................................................................................ 22 
3.2: Lessons for Contributing to Subversion.................................................................................... 23 

Chapter 4: Conclusion ............................................................................................................................ 25 
Appendix A: Glossary ............................................................................................................................ 26 

A1: Terminology .................................................................................................................................. 26 
A2: Software ......................................................................................................................................... 26 

Appendix B: JavaHL Proposals ............................................................................................................ 27 
RFC 1: Making JavaHL easier to maintain? ..................................................................................... 27 
RFC 2: Streamlining Binding Installation......................................................................................... 27 
RFC 3: Best way to get “objdir” variable from libtool? .................................................................. 28 
RFC 4: If bindings are enabled, install them with standard ‘install’ target................................. 29 

Appendix C: Log Messages for JavaHL Patches................................................................................ 30 
C1. Broken Install Dependencies....................................................................................................... 30 
C2. Missing Directories ....................................................................................................................... 31 
C3. Test Suite Fails Due to Typo........................................................................................................ 31 
C4. Can’t Test Before Install ............................................................................................................... 31 
C5. Slow Compilation ......................................................................................................................... 32 

Appendix D: References ........................................................................................................................ 33 
 



 David James Page 3 3/20/2005 

Chapter 1: Planning 

1.1: Software Configuration Management and Hippo 

Software configuration management (SCM) is the “tracking and control of software 

development” [1]. By providing facilities for “version control, concurrent development, release 

management, and change review”, SCM tools make team programming more productive and 

less error-prone [2]. While SCM tools are heavily used in industry, few undergraduate courses 

make use of them because the overhead associated with setting them up and securing them is 

considerable [3]. The Hippo project aims to reduce this overhead by providing tools that will 

automatically configure the Subversion version-control system for academic use. Once 

Subversion is configured, Hippo will also allow both students and instructors to manage it via a 

simple web interface.  

1.2: Goals 

Before the HipVersion project was started, Hippo manipulated Subversion repositories 

using a home-brewed class named SvnProvider. The goal of the HipVersion project is to 

improve the functionality, performance and reliability of Hippo’s Java bindings by replacing 

SvnProvider with the official Subversion Java bindings maintained by the Subversion team. 

1.3: SvnProvider: The Old Subversion Integration Scheme  

The SvnProvider class manipulated Subversion repositories by interacting with the 

Subversion command-line client using a primitive text-based interface. SvnProvider supported 

a very limited subset of Subversion functionality through the following three methods: 

Figure 1: Functions Supported by the Old Subversion Integration Scheme 

Method Description 
mkdir Create a new directory 
delete Delete a directory or file 
checkout Retrieve files and/or directories 

 



 David James Page 4 3/20/2005 

Each of the above methods built a text-based query and submitted it to the Subversion 

command-line client. If the command-line client crashed or returned an error code, then the 

method would throw an exception with the error message text. 

 The SvnProvider interface suffered from four major problems: 

1. Limited functionality: SvnProvider does not support enough version control 

functionality to support Hippo. For example, SvnProvider did not support adding files 

to the Subversion repository. 

2. Difficult maintenance: Every feature added to the SvnProvider class needed to be 

maintained by the Hippo team on an ongoing basis. Furthermore, if the team decides to 

support more advanced functionality, the SvnProvider class will grow in complexity 

and so will the maintenance obligations. 

3. Uncertain Reliability: The SvnProvider class was only used for the Hippo project and 

was not subjected to rigorous tests. It is not known whether this code will perform 

reliably under more strenuous conditions. 

4. Poor performance: The actual process of converting the query to text and interacting 

with the Subversion command-line client was CPU-intensive. 

1.4: JavaHL: A Better Subversion Integration Scheme 

There is no need for the Hippo project to be subjected to the limitations of SvnProvider 

because the Subversion team maintains a set of official Java bindings dubbed JavaHL. The 

JavaHL bindings make it easy to manipulate Subversion repositories using simple Java 

commands. The JavaHL bindings offer far superior functionality, performance, and reliability 

over our home-brewed implementation: 

1. Full functionality: JavaHL offers complete access to the SCM functionality of Subversion.  

2. Excellent Performance: JavaHL communicates directly with the Subversion server using 

the Subversion client library. 

3. Proven Reliability: The JavaHL team maintains a large test suite that covers the majority 

of its documented functionality. Furthermore, JavaHL is used widely within the 

Subversion community and undergoes regular maintenance updates and fixes.  

Because the official Java bindings are maintained by the Subversion developers, these 

advantages come with no additional maintenance obligations. In fact, since these bindings 



 David James Page 5 3/20/2005 

replace the SvnProvider interface, switching to JavaHL will actually reduce the amount of code 

that Hippo developers will need to maintain.  

1.5: Migration Issues 

If SvnProvider is replaced with JavaHL, the Hippo developers will need to compile and 

install JavaHL. Unfortunately, JavaHL suffers from several bugs that make it confusing, difficult 

and slow to install: 

1. Broken Download: At the start of our project, the latest stable Subversion did not contain 

a working version of JavaHL. The latest unstable version of Subversion contains fixes 

that are necessary to compile JavaHL [4]. 

2. Need to Use Subversion to Download JavaHL: While stable versions of Subversion are 

available on the Subversion website, the unstable version is not. The only way to get the 

unstable Subversion source code is to download it using Subversion. Therefore a new 

user must first download and compile the stable Subversion distribution before 

downloading the unstable version of Subversion [4].  

3. Non-standard Installation Targets: Once you have configured JavaHL to install, you will 

need to remember to run ‘make javahl’ and ‘make install-javahl’ to compile and install it. 

The standard targets ‘all’ and ‘install’ will only install the base Subversion package [5].  

4. Broken Installation Dependencies: The installer crashes if the user attempts to install 

JavaHL without installing the latest version of the base Subversion package [6]. If the 

user already has the stable version of Subversion installed and decides not to replace it, 

JavaHL may crash unexpectedly due to version incompatibilities [7]. 

5. Missing Directories: The compilation step of JavaHL will fail the first time it is run due 

to a missing directory. To work around this problem, the user must create the missing 

directory [4, 8].  

6. Test Suite Fails Due to Typo: Due to a minor typographical error in the testing code, 

JavaHL does not pass its test suite [9]. 

7. Can’t Test Before Installation: Currently, JavaHL must be installed first before it can be 

tested. This restriction is undocumented and users are often surprised when their 

JavaHL build fails tests for no obvious reason [10]. 



 David James Page 6 3/20/2005 

8. Slow Compilation: The Java header files and classes are always recompiled, even if they 

already exist. This behaviour is suboptimal and slows the installation process [11]. 

If they are not properly managed, these migration issues could create roadblocks. Forcing each 

member to debug minor issues in the JavaHL installer could tie up the entire Hippo team. 

Furthermore, forcing these installation issues on users could create a bad first impression. 

Therefore it is clear that JavaHL’s installation process needs to be improved. 

1.6: Easy Installation for Casual Users 

Eclipse is an integrated development environment for Java, and Subclipse is a plug-in 

that integrates Subversion with Eclipse. Subclipse uses JavaHL to manipulate Subversion 

repositories. Because the JavaHL bindings can sometimes be difficult to set up, the Subclipse 

team devised a simple adapter called SVNClientAdapter that would only make use of JavaHL if 

it is available. If not, SVNClientAdapter will send requests using the Subversion command-line 

client. This adapter offers the full functionality of Subversion to all users regardless of whether 

they have JavaHL installed. 

This flexible approach offers all of the benefits of JavaHL to users who are willing to 

install it. If the users need speed, they should install JavaHL and SVNClientAdapter will use 

JavaHL to achieve optimal performance. If speed is not a major concern, then the user does not 

need to install JavaHL; SVNClientAdapter will work just as well without it, even if it runs a bit 

slower.  

1.7: Easy Installation for Power Users 

While the flexible approach offered by SVNClientAdapter helps casual users, it doesn’t 

solve the installation hassles for users who need the speedy performance of JavaHL. To make 

JavaHL easier to install, the bugs in the installation process need to be fixed. The table below 

outlines each installation issue and the plan to fix it: 



 David James Page 7 3/20/2005 

Figure 2: JavaHL Installation Problems and the Required Changes 

Problem Required Changes to Make JavaHL Easy to Install 
Broken Download / Need to use 
Subversion to download JavaHL 

None. The JavaHL download will be fixed in the 
next stable version of Subversion. 

Non-standard Installation Targets Upgrade JavaHL to use standard installation targets 
Broken Installation Dependencies Upgrade JavaHL to automatically build and install 

these dependencies 
Missing Directories Upgrade JavaHL to automatically create missing 

directories 
Test Suite Fails Due to Typo Fix the typographical error 
Can’t Test Before Install Upgrade JavaHL to support testing before install 
Slow Compilation Upgrade JavaHL to only recompile when necessary 

 

Figure 2 identifies six areas where the installation process of JavaHL needs to be improved. 

Fortunately, the Subversion team is a friendly group of people and they graciously accept 

beneficial fixes. If these changes are accepted by the Subversion team, the Subversion team will 

handle all of the maintenance obligations. Therefore the Hippo team will not need to 

continually upgrade our fixes to work with the latest version of Subversion. This will save the 

Hippo team substantial effort on an ongoing basis. 

1.8: Ant Integration 

The Hippo build script is written in XML and is parsed by a tool called Ant. Hippo uses 

a custom Ant task called SvnTask to manipulate the Subversion repository from within the 

build script. In order to upgrade Hippo to use SVNClientAdapter instead of SvnProvider, it will 

be necessary to upgrade Hippo’s custom-made Ant task to support the new features of 

SVNClientAdapter. Fortunately, this task is easy: the Subclipse team has already created an Ant 

task which supports the full functionality of SVNClientAdapter. By switching to the Subclipse 

Ant task, the Hippo team will take advantage of the superior functionality, performance and 

reliability of SVNClientAdapter. This switch will also reduce the amount of code that Hippo 

developers will need to maintain. 



 David James Page 8 3/20/2005 

1.9: The HipVersion Integration Plan 

The plan is to replace Hippo’s custom-made SvnProvider class with SVNClientAdapter. 

Because SVNClientAdapter offers more functionality than SvnProvider and has no external 

dependencies, it is expected that the transition to the new system will be smooth. 

The following table describes the changes required to support the switch to 

SVNClientAdapter. 

Figure 3: Required Changes to Switch to SVNClientAdapter 

Situation Required Change 
Initialize Hippo: When the Hippo database is first 
initialized, Hippo creates a directory in the 
Subversion repository to contain Hippo-related files.  

Upgrade initializeHippoTask class 
to use new SVNClientAdapter  

Create Project: When a user creates a new project, 
Hippo creates a directory in the Subversion repository 
to contain the files for that project. 

Upgrade addProject function to use 
new SVNClientAdapter 

Delete Project: When a user deletes a project, the 
associated directory in the Subversion repository is 
also removed. 

Upgrade removeProject function to 
use new SVNClientAdapter 

Delete Hippo: The Hippo build script uses a custom 
Ant task called SvnTask to delete Hippo-related files 
in the Subversion repository. 

Upgrade build script to use the new 
SvnTask class created by the 
Subclipse team 

1.10: Tasks 

The following list identifies the tasks required to complete the objectives and the estimated time 

requirements for each task. The total estimated time for the project was 152 hours.  

1. Ensure that JavaHL passes all tests (Section Total: 9 hours) 
o Determine the cause of the failure in the test suite (2 hours) 
o Build patch to fix error in test suite (1 hour) 
o Submit patch to Subversion developers and respond to feedback 

 Submit patch (1 hour) 
 Respond to feedback (2 hours) 
 Resubmit patch with changes if necessary (3 hours) 

 
2. Make JavaHL easy to test (Section Total: 12 hours) 

o Allow JavaHL to be tested before installation 
 File bug report (2 hours) 
 Build patch [in collaboration with Holger Thon] (4 hours) 
 Submit patch to Subversion developers and respond to feedback  

 Submit patch (1 hour) 



 David James Page 9 3/20/2005 

 Respond to feedback (2 hours) 
 Resubmit patch with changes if necessary (3 hours) 

 
3. Make JavaHL easy to build (Section Total: 40 hours) 

o Fix issue 2032: JavaHL build fails due to missing directory 
 Determine the cause of the 'missing directory' problems (6 hours) 
 Build patch (2 hours) 
 Submit patch to Subversion developers and respond to feedback 

 Submit patch (1 hour) 
 Respond to feedback (2 hours) 
 Resubmit patch with changes if necessary (3 hours) 

o Fix javahl-lib compilation dependencies 
 Research problem (1 hour) 
 Build patch (1 hour) 
 Submit patch to Subversion developers and respond to feedback 

 Submit patch (1 hour) 
 Respond to feedback (2 hours) 
 Resubmit patch with changes if necessary (3 hours) 

o Fix javahl-java and javahl-javah compilation dependencies 
 Determine how to fix the compilation dependency problems with JavaHL 

(4 hours) 
 Build patch (8 hours) 
 Submit patch to Subversion developers and respond to feedback 

 Submit patch (1 hour) 
 Respond to feedback (2 hours) 
 Resubmit patch with changes if necessary (3 hours) 

 
4. Make JavaHL easy to install (Section Total: 20 hours) 

o Fix JavaHL installation dependencies 
 Determine how to fix the installation dependency problems with JavaHL  

 ... by corresponding with Subversion developers (4 hours) 
 ... by debugging the code myself (6 hours)  

 Build patch (4 hours) 
 Submit patch to Subversion developers and respond to feedback  

 Submit patch (1 hour) 
 Respond to feedback (2 hours) 
 Resubmit patch with changes if necessary (3 hours) 

 
5. Write JavaHL tutorial on getting a simple JavaHL example up and running (Section 

Total: 8 hours) 
o Document list of commands required to compile and install Subversion and 

JavaHL on Linux (3 hours) 
o Direct Mac OS X and Windows users to JavaHL binaries on Subversion website 

(1 hour) 
o Write simple JavaHL example (1 hour) 
o Explain simple JavaHL example in HTML format (1 hour) 
o Send document to Subversion developers' list and reply to questions (1 hour) 



 David James Page 10 3/20/2005 

o Send document to Neon developers' list and reply to questions (1 hour) 
 

6. Convert Hippo to use ISVNClientAdapter (Section Total: 9 hours) 
o Add SVNClientAdapter and JavaHL into Hippo classpath (3 hours) 
o Update ca.utoronto.hippo.model.Hippo.createSvnProvider function to create an 

ISVNClientAdapter object (2 hours) 
o Update ca.utoronto.hippo.model.Hippo.addProject function to use 

ISVNClientAdapter to create a directory (1 hour) 
o Update ca.utoronto.hippo.model.Hippo.removeProject function to use 

ISVNClientAdapter to delete a directory (1 hour) 
o Convert ca.utoronto.ant.InitializeHippoTask to use ISVNClientAdapter to make 

a directory (1 hour) 
o Create ca.utoronto.hippo.model.Hippo.repositoryPathAsURL function to convert 

a path in the working copy to a URL in the repository (1 hour) 
 

7. Administrative tasks (Section Total: 54 hours): 
o Setup 

 Install and configure JavaHL and its prerequisites (3 hours) 
 Set up distributed repository using SVK to track my changes to the 

Subversion repository (2 hours) 
 Learn proper procedures for submitting Subversion patches 

 Read Subversion documentation on how to submit patches (4 
hours) 

 Correspond with Subversion developers to clarify procedures (3 
hours) 

 General Proposal to Subversion Developers 
 Write initial post (3 hours) 
 Respond to questions (3 hours) 

o Assist team with JavaHL issues when necessary (16 hours) 
o Write final report detailing our progress this term (20 hours) 



 David James Page 11 3/20/2005 

Chapter 2: Implementation and Evaluation 

2.1: Implementing the HipVersion Plan 

The plan for switching to SVNClientAdapter was implemented in the 577th revision of Hippo. 

While this change enabled Hippo developers to access the full functionality of Subversion, it 

actually simplified the Hippo code: 168 lines of code were deleted but only 63 new lines were 

added. 

• New Java Libraries 

• svnClientAdapter.jar: Contains the SVNClientAdapter class. 

• svnAnt.jar: Contains the Subclipse SvnTask class 

• Modified files 

• src/ca/utoronto/hippo/model/Hippo.java 

• Created repositoryPathAsURL function to convert a path on the local disk to a URL 

in a Subversion repository 

• Upgraded addProject method to use new SVNClientAdapter 

• Upgraded removeProject method to use new SVNClientAdapter 

• Upgraded createSVNProvider method to create a new SVNClientAdapter object. 

This function will create a JavaHL object if possible. Otherwise, it will use the 

command line client. 

• src/ca/utoronto/ant/InitializeHippoTask.java 

• Converted execute method to use SVNClientAdapter 

• build.xml 

• Replaced custom SvnTask in clean_svn target with Subclipse SvnTask class 

• Deleted classes: 

• ca.utoronto.hippo.vcs.TestSvnProvider 

• ca.utoronto.hippo.vcs.SvnProvider 

• ca.utoronto.hippo.ant.SvnTask 



 David James Page 12 3/20/2005 

2.2: Making JavaHL Easy to Install 

A three-step process was used to implement the plan set out in Section 1.7 for making 

JavaHL easy to install: 

1. Submit a proposal to the Subversion developers explaining the purpose of each change 

and how it could be implemented 

2. If the proposal was accepted, create and submit a patch 

3. If the patch was accepted, nominate it for inclusion in an appropriate, stable version of 

Subversion 

The secret to success in submitting a patch is to be polite yet persistent: every time a developer 

raises a concern with your patch, fix it and resubmit. If you get no response, wait a month and 

then e-mail a reminder to the list. Eventually your patch will either be accepted or rejected; 

either way, you’ll know how you can improve for next time. 

The success rate of my attempts at solving the four problems is detailed below. 80% of 

my proposals and 80% of my submitted patches were eventually accepted. I expect that my 

remaining patch and proposal will be accepted during the next few months. Considering that 

the Subversion developers are very selective in which patches they accept, the 80% acceptance 

rate is a mark of success. 

 

Figure 4: Proposals and Patches for Making JavaHL Easy to Install 

Proposal Patch Problem 
Submit Accept Submit Accept 

Included 
in version 

Non-standard Install Targets   N/A N/A N/A 
Broken Install Dependencies     1.2.0 
Missing Directories     1.1.2 
Test Suite Fails Due to Typo     1.1.0 
Can’t Test Before Install      N/A  
Slow Compilation     1.2.0 
 

The content of each patch and proposal is described below. 



 David James Page 13 3/20/2005 

2.2.1: Non-standard Install Targets 

Problem: Once you have configured JavaHL to install, you will need to remember to run 

‘make javahl’ and ‘make install-javahl’ to compile and install it. The standard 

targets ‘all’ and ‘install’ will only install the base Subversion package. 

Solution: After I raised this issue, Justin Erenkrantz said that he prefers the status quo 

because he doesn’t want the Java bindings to behave differently from those of 

other languages [12, 13]. On the advice of Max Bowsher, I reposted my question as 

a general question about streamlining binding installation for any language [14, 

15]. In the new topic, Erik Huelsmann expressed modest support for the idea, but 

Ben Reser noted that he had tried this idea before and received a lot of complaints 

[16, 17]. While I still hope that I can eventually convince the Subversion developers 

to switch to standard target names, I decided to postpone implementing this idea. 

2.2.2: Broken Install Dependencies 

Problem: The installer crashes if the user attempts to install JavaHL without installing the 

latest version of the base Subversion package.  

Solution: The first time I tried to install JavaHL, the install script crashed and exited with a 

weird error. Searching for a way to work around the bug, I tried installing 

Subversion first before installing JavaHL, and the installation worked. 

Nevertheless, I found this bug disconcerting. This bug could easily trip up new 

Hippo users. 

After many hours of debugging, I determined that this error occurs 

because Subversion does not keep track of the extra installation dependencies for 

all of its libraries. Fixing this bug involved upgrading the build script to keep track 

of these dependencies. After a round of review, I submitted my patch to the 

Subversion list [18]. Greg Hudson committed this patch in r11050 [19]. After I 

nominated this patch to be included in Subversion 1.1.2, it was approved by Greg 

Hudson and Justin Erenkrantz. With the approval of one more committer, this 

patch will be accepted into Subversion 1.1.2. 



 David James Page 14 3/20/2005 

2.2.3: Missing Directories 

Problem: With some build configurations, the compilation step of JavaHL will fail the first 

time it is run due to a missing directory. 

Solution: The easy solution to this problem is simply to create the missing directory in the 

Makefile, as attempted by Holger Thon [20]. The Subversion developers, however, 

asked me to look deeper into the true cause of the problem before so quickly 

prescribing a fix. Looking more closely, I discovered that the missing directory is 

supposed to be created by a Makefile target called mkdir-init; however, the mkdir-

init target is not always executed. By switching Subversion to always run mkdir-

init in the configuration script, I solved this problem. My final patch was 

committed in revision r11047 by Greg Hudson [21, 22]. After I nominated this 

patch for inclusion in Subversion 1.1.2, it was committed by Erik Huelsmann and 

approved by Greg Hudson, Max Bowsher, and Daniel Rall [6]. 

2.2.4: Test Suite Fails Due to Typo 

Problem: Due to a minor typographical error in the testing code, JavaHL does not pass its 

test suite. 

Solution: I fixed the typographical error and posted a patch to the mailing list [9]. Patrick 

Mayweg committed my patch in revision 10773 [50]. McClain Looney found this 

patch quite important and nominated it for inclusion in Subversion 1.1.0. Max 

Bowsher backported my patch to version 1.1.0 of Subversion just one week before 

its release date with the approval of Patrick Mayweg, Greg Hudson, Karl Fogel, 

and Ben Reser [23].  

2.2.5: Can’t Test Before Install 

Problem: Currently, JavaHL must be installed first before it can be tested. This restriction is 

undocumented and users are often surprised when their JavaHL build fails tests 

for no obvious reason. 

Solution: When I first compiled JavaHL, I was surprised to see the tests fail. It is usually not 

a good idea to install a piece of software unless its tests pass. Nevertheless, I 



 David James Page 15 3/20/2005 

installed it anyway, and discovered that the tests only work after you have 

installed the software. After C. Michael Pilato confirmed my problem and noted 

that this issue also prevents him from using the bindings in the main Subversion 

test suite, I posted this problem to the issue tracker as issue 2040 [24, 25, 26, 10].  

 Soon after I posted the issue, Holger Thon posted a simple solution to the 

Issue Tracker that set the Java library path to point to the Libtool temporary build 

directory for the Java libraries [10]. To ensure that Holger’s patch received the 

attention of the Subversion developers, I posted his patch to the Subversion 

developers’ mailing list with a few small changes to make it more portable. In 

response, Greg Hudson asked whether there was a better way to do this than 

messing with temporary build directories [27]. 

  Holger Thon responded to this feedback by trying a new trick which 

would request the location of the temporary directory from Libtool by using the 

LD_LIBRARY_PATH variable [28]. After I pointed out that this technique does not 

work on all platforms, he followed Ben Reser’s advice and used the Apache 

Portable Runtime to achieve better portability [29, 30, 31]. A few weeks later, I 

looked over the patch again and reposted it with a Subversion-style log message 

and a few minor improvements [32]. A few months later, at the urging of Karl 

Fogel, Justin Erenkrantz took a look at this patch and noted that he probably won’t 

get around to it for a long time because he dislikes Libtool [33, 34]. 

 Looking at the patch again, I decided to take another look at Holger’s 

original method of simply accessing the Libtool temporary build directory. 

Looking at the Libtool documentation, I discovered that Libtool exports a variable 

called “$objdir” which specifies the name of the directory where the compiled 

versions of the library are stored [35]. Therefore there is no need to include 

complex code to extract this directory from Libtool; I can simply use $objdir [36]. 

With this change, the patch was much simpler. No feedback has been received yet 

on this new patch [37].  



 David James Page 16 3/20/2005 

2.2.6: Slow Compilation 

Problem: The Java header files and classes are always recompiled, even if they already exist. 

This behaviour is suboptimal and slows the installation process. 

Solution: After issue was first pointed out by Justin Erenkrantz, I posted it to the issue 

tracker as issue 2039 [13, 38]. Reading up on the issue, I soon discovered that each 

Java file could potentially depend on any or all of the other Java files. While 

dependency checkers for Java do exist, it’s definitely easier and often faster to 

simply ignore dependencies and just recompile everything if any of the files 

change. 

 Therefore I decided to handle dependencies in a very conservative way: I 

assume that every Java file depends on every other Java file. I regenerate the full 

set of class files any time that any of the Java files changes. This solution prevents 

unnecessary recompiles when no files have been changed. Both Holger Thon and I 

posted fixes; Holger Thon recommended that the developers use my fix because 

his patch was incomplete [38]. Justin Erenkrantz committed my patch in r12018 

[39].  

  



 David James Page 17 3/20/2005 

2.3: Measuring Ease of Installation: Before and After 

At the outset of the HipVersion project, installing the JavaHL bindings was a complicated 

twelve step process [4]: 

1. Download Subversion 1.06 

2. Compile Subversion 1.06 

3. Install Subversion 1.06 

4. Use Subversion 1.06 to download the latest version of Subversion 

5. Copy the Apache Portable Runtime directory from the Subversion 1.06 directory to the 

newly downloaded Subversion directory 

6. Generate the Configure script using autogen.sh 

7. Generate the Makefile using the Configure script 

8. Build Subversion 

9. Install Subversion 

10. Create the subversion/bindings/java/javahl/classes directory 

11. Build JavaHL 

12. Install JavaHL  

Thanks in part to my contributions, the JavaHL installation process is much easier with 

Subversion 1.2.0: 

1. Download Subversion 1.2.0 

2. Generate the Makefile using the Configure script  

3. Install JavaHL by typing make install-javahl. All dependencies will be built and installed 

automatically. 



 David James Page 18 3/20/2005 

2.4: Sample Code 

The following code sets up a new ‘SVNClientAdapter’ object by asking  

SVNClientAdapterFactory for the best available implementation. Currently, this code chooses 

only between a JavaHL and a command-line implementation of SVNClientAdapter. In the next 

version of SVNClientAdapter, there will also be a pure Java implementation of 

SVNClientAdapter. Because this code asks for the “best available” implementation, it does not 

exclude the pure Java implementation. When the new version of SVNClientAdapter is released, 

this code will support using pure Java to interact with Subversion. 

public SVNClientAdapterWrapper() throws SVNClientException { 
    fSvnClient = SVNClientAdapterFactory 
            .createSVNClient(SVNClientAdapterFactory 
                    .getBestSVNClientType()); 
} 

 

The following code demonstrates how to create a new directory or file directly in the 

Subversion repository.  

/* Create a new directory directly in the Hippo Subversion repository */ 
public void mkdir(String path, String message) throws SVNClientException { 
    fSvnClient.mkdir(repositoryPathAsURL(path), message); 
} 
 
/* Create a new file directly in the Hippo Subversion repository */ 
public void addFile(String path, String message) throws SVNClientException { 
    fSvnClient.copy(path, repositoryPathAsURL(path), message); 
}  
 
/* The repositoryPathAsURL function, defined in SVNClientAdapterWrapper,  
   converts the specified path to a URL in the Hippo repository */ 

 



 David James Page 19 3/20/2005 

2.5: Feature Matrix 

As demonstrated below, JavaHL provides significantly better coverage of the 

Subversion feature set than our old system; JavaHL supports almost all of the Subversion 

features. 

Figure 5: Subversion Feature Matrix with our old and new integration schemes [40] 

Feature Descriptions Old New 
add Schedule a file or directory for addition to the repository   
blame Show author and revision information in-line   
cat Output the contents of the specified files or URLs   
checkout Check out a working copy from a repository   
cleanup Recursively clean up the working copy   
commit Send changes from your working copy to the repository   
copy Copy a file or directory in a working copy or in the repository   
delete Delete an item from a working copy or the repository   
diff Display the differences between two paths   
export Export a clean directory tree   
import Recursively commit a copy of PATH to URL   
info Print information about PATHs   
list List directory entries in the repository   
merge Apply the differences between two sources to a local path   
mkdir Create a new directory under version control   
move Move a file or directory   
propdel Remove a property from an item   
propedit Edit the property of one or more items under version control   
propget Print the value of a property   
proplist List all properties   
propset Set PROPNAME to PROPVAL on files, directories, or revisions   
resolved Remove 'conflicted' state on working copy files or directories   
revert Undo all local edits   
status Print the status of working copy files and directories   
switch Update working copy to a different URL   
update Update your working copy   
 

Descriptions from Version Control with Subversion by Ben Collins-Sussman, Brian W. Fitzpatrick, 

and C. Michael Pilato [40]. Licensed under the Creative Commons Attribution license [41].  



 David James Page 20 3/20/2005 

2.6: Test Coverage 

A sizable majority (68%) of the JavaHL library is covered by the JavaHL test suite, as 

demonstrated below. Each test function builds a set of files on disk, commits it to a repository, 

and tests whether a specific command behaves as desired. 

Figure 6: Functions that implement and test each JavaHL feature 

Feature Function Test Functions 
add addDirectory, 

addFile 
testBasicAddIgnores 

blame blame  
cat getContent testBasicCat 
checkout checkout testBasicCheckout, testBasicCheckoutDeleted 
commit commit testBasicCommit 
copy copy  
delete remove testBasicDelete 
diff diff  
export doExport  
import doImport testBasicImport, testBasicImportIgnores 
info getDirEntry testBasicInfo 
list getList testBasicLs 
mkdir mkdir testBasicMkdirUrl 
move move  
propdel propertyDel  
propget propertyGet testBasicDelete 
proplist getProperties  
propset propertySet testBasicDelete 
resolved resolved testBasicConflict 
revert revert testBasicRevert 
status getSingleStatus, 

getStatus 
testBasicStatus 

update update testBasicUpdate, testBasicMergingUpdate, 
testBasicConflict 

 

JavaHL implements its features by calling the Subversion Client Library. The Subversion Client 

Library, being the main library used by almost all of the Subversion clients, is tested even more 

thoroughly than JavaHL. 

 

 

 



 David James Page 21 3/20/2005 

2.7: Task Checklist 

The following table lists the major tasks established in our plan and outlines whether they were 

completed. The HipVersion team has accomplished all of its objectives. 

Task Estimated 
Hours 

Completed? 

Ensure that JavaHL passes all tests 9   
Make JavaHL easy to test 12  
Make JavaHL easy to build 40  
Make JavaHL easy to install 20  
Write JavaHL tutorial on setting up a simple JavaHL example 8  
Convert Hippo to use ISVNClientAdapter 9  
Administrative tasks  54  
 

 



 David James Page 22 3/20/2005 

Chapter 3: Discussion 

By participating in the Hippo project and contributing patches to the Subversion project, I 

learned quite a bit about how to approach this type of project. In the hopes that these lessons 

might be useful to future developers who contribute to open source projects, I have 

summarized some of the lessons below. 

3.1: Lessons for Contributing to Hippo 

Start early 

 I started this project early, in August, and finished the bulk of the required work by the 

end of September. It was nice to finish my requirements early on the term so that I could focus 

on other courses when necessary. 

Pick reasonable goals 

 Project courses can be very demanding. It is important to allocate time for your other 

courses so that the project course does not take up all of your time. To ensure that this will be 

possible, you must pick goals at the outset of the project that you can complete in the time you 

have available.  

External tools save development and maintenance time 

 Developing a tool in-house takes time and will cost future developers of the project time 

to maintain on an ongoing basis. By selecting an external tool instead, I saved the Hippo team a 

substantial amount of time. With JavaHL, I was able to implement more features much more 

quickly than I would have otherwise expected.  

Contributing to open source helps Hippo 

 I contributed several fixes to the JavaHL project to make it easier to install. It would have 

been easier for me to simply keep our contributions in-house because I would not have had to 

meet the Subversion project’s strict code-review policies. However, by contributing to the 

Subversion project, I learned how to improve the quality of my code while saving future Hippo 

developers from needing to maintain my fixes to JavaHL. 



 David James Page 23 3/20/2005 

3.2: Lessons for Contributing to Subversion 

Don’t just read the documentation. Summarize the key points 

The first step in contributing to any Open Source project is to read the documentation. 

Before I contributed to the Subversion project, I read the ‘HACKING’ file, which provides 

advice on how to submit patches to the Subversion developers. When I later prepared a 

presentation on how contribute to open source, I summarized the key points of the ‘HACKING’ 

file on slides, and I began to understand the documentation in a much deeper way than I had 

ever before. If I had taken this step earlier, it would have improved the quality of my code. 

Split patches into manageable portions 

Early in the project, I made the mistake of submitting a huge patch to fix all of the 

installation problems with JavaHL [42]. This patch was rejected because it was too difficult for 

any one person to review because it contained so many issues. If it is possible, it’s better to 

submit a few small patches instead. Small patches are easier to review and are more likely to be 

integrated. 

Comment your code to prevent confusion 

The developer who commits your code to the Subversion project will need to 

understand every single line of your code. While excessive comments may detract from 

understanding, a few key comments here and there can drastically reduce the amount of time 

the reviewer will need to spend reading your code. This will result in your patch being accepted 

sooner.  

Write detailed log messages 

The log message for your patch should contain everything that developers will need to 

both understand your code and decide whether you have selected the best method for 

achieving your goal. It’s a good idea to outline a few alternative ways of achieving your goal, 

and explain why you didn’t choose them. By exposing your logic, you reduce the amount of 

time that the reviewer will need to spend deciding whether to accept your patch.  

Let your patches sit for a few days before submitting them 

No matter how carefully I check over a patch, I will occasionally realise the next day that 

I had forgotten something. When I wait an extra day before submitting the patch, the quality of 

my code improves. 



 David James Page 24 3/20/2005 

Admit Inexperience 

If you’re new to an open source project, be sure to say so when you submit your patch. 

It’s quite likely that your first few patches will have problems, and it’s better to admit it up front 

than to be chastised for it later. If you admit that you’re a beginner and that you’re looking for 

advice, the developers will be more patient and will take the time to explain how you can 

improve. 

Be Patient and Communicate 

The task of carefully triple checking your patch to ensure that its entirely correct takes 

time. Checking the correctness of a patch involves much more than simply reading over each 

line of code that you submit; it also means comparing your code to the rest of the Subversion 

code to ensure your code fits in. You’ll need to regularly e-mail the developers to ensure you’re 

attacking the problem using the right method and that you’re following the appropriate 

conventions. This process is slow, but it works: it produces the highest quality software. 

 



 David James Page 25 3/20/2005 

Chapter 4: Conclusion 

The goal of HipVersion is to make it easier for Hippo developers to manipulate 

versioned repositories using Java. This was accomplished by replacing Hippo’s home-brewed 

Subversion Java bindings with the publicly available JavaHL bindings. The JavaHL bindings 

offer richer functionality, improved performance, proven reliability and reduced maintenance 

costs. Hippo is now leaner and meaner: it has less code but more features. 

At the outset of the HipVersion project, JavaHL was very difficult to install. With the 

assistance and support of the Subversion developers, I have fixed these flaws: JavaHL is now 

easy to install. By submitting my fixes to the Subversion project, I have freed future Hippo 

developers from the obligation of maintaining my patches. 

In the future, Hippo developers may wish to upgrade Hippo to function using pure Java 

without any need for either JavaHL or the Subversion command-line client. Fortunately, the 

Subclipse developers plan to include support for this feature in the next stable version of the 

SVNClientAdapter library. When the new version of SVNClientAdapter is released, Hippo 

developers can upgrade and start using the pure Java library immediately: no code changes will 

be necessary. 



 David James Page 26 3/20/2005 

Appendix A: Glossary 

A1: Terminology 

Makefile: A script that builds a program 

Log Message: A message that describes a patch  

Patch: A list of changes (usually to source code) 

Version Control System: A program that tracks the versioned history of a set of files 

Working Copy: An “ordinary directory tree on your local system, containing a collection of 

files” [40]. 

A2: Software 

Ant: A Java-based tool for building programs [43] 

Make: A Unix-based tool for building programs [44] 

Hippo: A lightweight framework supporting undergraduate programming projects [45] 

Libtool: A tool for building shared libraries in a portable manner [46] 

JavaHL: The official Subversion Java Bindings supported by the Subversion development team 

Subversion: A popular version control system [47] 

Subversion Java Bindings: A Java library for manipulating Subversion repositories 

Subversion Client Library: A C library for manipulating Subversion repositories 

Subversion Command-line Client: A command-line program that can manipulate Subversion 

repositories 

SVNClientAdapter: A publicly available library that can manipulate Subversion repositories 

using either JavaHL or the Subversion Command-line Client [48] 

SvnProvider: Hippo’s home-brewed class for manipulating Subversion repositories 



 David James Page 27 3/20/2005 

Appendix B: JavaHL Proposals  

RFC 1: Making JavaHL easier to maintain? [12]  

Subversion developers, 
 
I'm planning to work on making JavaHL easier to maintain. What would 
you like me to work on? 
 
Here are some of my ideas (can you give me some feedback?): 
- JavaHL should be integrated into the standard build process 
-- If --enable-javahl is set, JavaHL should be built, tested, and 
installed when you call 'make', 'make check', and 'make install' 
-- We should set up a test script to build the latest version of 
JavaHL and e-mail us when it doesn't pass tests 
- We should autogenerate the JNI headers for JavaHL instead of 
updating them manually 
-- Patrick Mayweg has an Ant script to autogenerate the JNI headers. 
We should call this script when users make javahl. 
- We should make JavaHL easier to test 
-- make 'check-javahl' should automatically build the test suite if it 
has not yet been built 
-- make 'check-javahl' should work even if javahl has not yet been installed 

RFC 2: Streamlining Binding Installation [15] 

PROBLEM: 
 
Currently, the process of building and installing bindings is quite complex. 
 
For example, here is how to build and test Subversion and the JavaHL 
bindings (from a source tarball): 
1. ./configure [with some options] 
2. make 
3. make install 
4. make check 
5. make javahl 
6. make javahl-tests 
7. make install-javahl 
8. make check-javahl 
 
The process of building and testing the SWIG bindings is also complex 
-- and it requires an entirely different set of commands from those 
required to build JavaHL. 
 
PROPOSED SOLUTION: 
 
If the user asks configure to build a binding, build it and test it 
with the rest of the Subversion. 
 
The build process (for all bindings) will now be: 
1. ./configure [with some options] 
2. make 



 David James Page 28 3/20/2005 

3. make install 
4. make check 
 
PROS 
- The new process is simpler than the old process (half as many lines!) 
- All bindings can be configured and built using the same process 
(only difference is a configure option!) 
- I generally expect an application to fully install after I type 
"./configure [with some options] && make && make install". Subversion 
will now operate as I expect. 
- Other advantages? 
 
CONS 
- The new process is different from the old process (Users will have 
to learn the new process) 
- Other disadvantages? 
 
Comments? 
 

RFC 3: Best way to get “objdir” variable from libtool? [36] 

According to the LIBTOOL documentation, objdir is "The name of the 
directory that contains temporary libtool files". What do you think is 
the best way to get the value of the "objdir" configuration variable 
from libtool inside configure.in? 
 
Currently, Subversion includes the libtool macros directly inside 
configure.in using sinclude(ac-helpers/libtool.m4) 
 
The libtool.m4 script sets the $objdir variable. It appears from my 
reading of the LIBTOOL documentation that "objdir" is a documented 
output of this libtool.m4 script and it is therefore safe for us to 
directly use the $objdir variable that is set by libtool.m4. Am I 
correct? 
 
See the relevant section of the LIBTOOL documentation at: 
  http://www.delorie.com/gnu/docs/libtool/libtool_71.html 
 
Here's an example snippet of code using this variable: 
FIX_JAVAHL_LIB="ln -sf libsvnjavahl-1.dylib \`dirname 
\$(libsvnjavahl_FILENAME)\`/$objdir/libsvnjavahl-1.jnilib" 
 
Cheers, 
 
David 



 David James Page 29 3/20/2005 

RFC 4: If bindings are enabled, install them with standard ‘install’ target [5] 

MY PROPOSAL: 
If the user chooses to enable a set of bindings using "configure", 
then we should compile and install them with the standard targets. For 
example, if the user types "./configure --enable-javahl=yes && make && 
make install", then we should include JavaHL with the Subversion 
installation. 
 
JUSTIFICATION: 
- If users choose to enable JavaHL, then clearly they want to compile 
and install it. If they don't want to install JavaHL, then they 
wouldn't have enabled it. 
- For most programs, the standard "all" and "install" targets compile 
and install the entire program. If users wish to enable or disable 
specific sections of a program, then they can do so by specifying 
different options when they call configure. See the official GNU 
coding standards for Makefiles at 
<http://www.gnu.org/prep/standards/html_node/Standard-Targets.html>. 
 
If the Subversion team is in favour of my proposal, then I will submit 
a patch to implement it. Please let me know :) 
 
Cheers, 
 
David 
 
P.S. Related threads: 
- [RFC] Streamlining Binding Installation 
http://svn.haxx.se/dev/archive-2004-09/0075.shtml 
- [SVN RFC] Making JavaHL easier to maintain? 
http://svn.haxx.se/dev/archive-2004-09/0054.shtml 

 



 David James Page 30 3/20/2005 

Appendix C: Log Messages for JavaHL Patches 

C1. Broken Install Dependencies 

Patch committed in r11050 by Greg Hudson [19] 

Add install dependencies for libsvn_fs and libsvn_fs_base.  From David 
James <james@cs.toronto.edu>. 
 
* configure.in 
  (libsvn_fs, libsvn_ra): Added SVN_RA_LIB_INSTALL_DEPS and 
    SVN_FS_LIB_INSTALL_DEPS to keep track of installation dependencies 
    for libsvn_ra and libsvn_fs 
 
* Makefile.in 
  (libsvn_fs, libsvn_ra): Added SVN_RA_LIB_INSTALL_DEPS and 
    SVN_FS_LIB_INSTALL_DEPS to keep track of installation dependencies 
    for libsvn_ra and libsvn_fs 
 
* build.conf: 
  (libsvn_fs): Added $(SVN_FS_LIB_INSTALL_DEPS) to install deps of  
    libsvn_fs 
  (libsvn_ra): Added $(SVN_RA_LIB_INSTALL_DEPS) to install deps of 
    libsvn_fs_base 
 
* build/generator/gen_base.py 
  (gen_base.Target): Added 'add-install-deps' option for build.conf to 
    list additional installation dependencies 
 
* build/generator/gen_make.py 
  (gen_make.Generator.write): Upgraded dependency checker to support 
    manual cross-library installation dependencies 

 

Patch committed in r12016 by Justin Erenkrantz [49] 

Resolve Issue #2102 by adding the right dependencies for javahl bindings. 
 
* build.conf 
 (javahl-javah): Add $(javahl_java_DEPS) to the dependencies for javahl-javah 
 so that the javahl-javah target will work independently. 
 (libsvnjavahl): Add $(javahl_javah_DEPS) and $(javahl_java_DEPS) to the 
 dependencies for libsvnjavahl so that the libsvnjavahl target will work 
 independently. 
 
Note that this is different than what is in the issue tracker as adding 
the simple targets is incorrect as make will assume that 'javahl-java' 
and 'javahl-javah' must always be rebuilt -- instead, use their dependencies. 
(This follows the convention of the other library dependencies.) 
 
Issue: 2102 
Submitted by: David James 
Reviewed/Tweaked by:  Justin Erenkrantz 



 David James Page 31 3/20/2005 

C2. Missing Directories 

Patch committed in r11047 by Greg Hudson [22] 

Fix issue #2032 (javahl build can fail due to missing directories) by 
always calling mkdir-init at configure time.  Also fix a problem where 
bindings targets would always rebuild because they depended on mkdir-init. 
From David James <james@cs.toronto.edu>. 
 
* configure.in: Always call mkdir-init, even if we are not in a VPATH 
  setup.  This fixes issue 2032. 
* build.conf: Removed mkdir-init from all dependency lists because 
  it's now always run inside configure.  This change also prevents make 
  from unnecessarily recompiling targets just because the file 
  'mkdir-init' does not exist. 

C3. Test Suite Fails Due to Typo 

Patch committed in r10773 by Patrick Mayweg [50]. 

* subversion/bindings/java/javahl/src/org/tigris/subversion/javahl/tests/ 
    BasicTests.java 
   testBasicLogMessage : fix typo in expected log message 
Patch thanks to David James. 

C4. Can’t Test Before Install 

I submitted the following patch to the Subversion development list on November 25 [37]: 

This patch solves issue #2040 by fixing JavaHL so that it can be 
tested before it is installed. I've revised this patch in response to 
feedback from Justin Erenkrantz and I hope that this version is much 
improved. 
* Makefile.in 
 (check-javahl): Instead of using the installed version of JavaHL, use 
    the version compiled by libtool in the @JAVAHL_OBJDIR@ directory. 
    We use FIX_JAVAHL_LIB to link libsvnjavahl-1.jnilib to 
    libsvnjavahl-1.dylib on Mac OS X. We also replace the hardcoded 
    path to the javahl classes directory with $(javahl_tests_PATH). 
* configure.in 
 (JAVAHL_OBJDIR): Get the directory where the compiled version of the 
    JavaHL library is stored and save it as @JAVAHL_OBJDIR@ 
 (FIX_JAVAHL_LIB): On Mac OS X, substitute @FIX_JAVAHL_LIB@ for code 
    to link libsvnjavahl-1.jnilib to libsvnjavahl-1.dylib 
* build/generator/gen_make.py 
 (Generator.write): Output the name of the directory where each target 
    generates its files as %s_PATH. E.g., for the libsvnjavahl target, 
    we create a variable called libsvnjavahl_PATH. Also, by setting 
    path = target_ob.output_dir for TargetJava objects, we ensure that 
    targets of type TargetJavaHeaders output the correct output 
    directory into the %s_PATH variable. 
     
Discussion: 
- For why we need to link libsvnjavahl-1.jnilib to libsvnjavahl-1.dylib 
  on Mac OS X, see Issue 1632: 



 David James Page 32 3/20/2005 

  <http://subversion.tigris.org/issues/show_bug.cgi?id=1632> 
- We assume that libtool stores its libraries in 
    '$(libsvnjavahl_PATH)'/$objdir 
  According to the libtool documentation, the $objdir variable 
  specifies the name of the directory where the compiled versions 
  of the library are stored. I also checked the libtool source code and 
  found that regardless of your platform, when you try to run an 
  uninstalled program using libtool, it simply adds the location of the 
  $objdir directory to the variable specified by $shlibpath_var. 
  Therefore there is no need for complex code to extract this directory 
  by running libtool and checking $shlibpath_var; all we need to do is 
  look in $objdir. So that's what we do. 
- For discussion regarding the best method for retrieving the $objdir 
  variable from libtool, see 
  <http://svn.haxx.se/dev/archive-2004-11/1074.shtml> 
- If my change "path = target_ob.output_dir" is controversial, feel 
  free to omit it. It is only a cosmetic fix to the output of %s_PATH. 
- This patch has been substantially improved from previous versions 
  thanks to feedback from Justin Erenkrantz, Ben Reser, and Greg 
  Hudson. For full history of the development of this patch see issue 
  #2040: <http://subversion.tigris.org/issues/show_bug.cgi?id=2040> 
- Let me know if you have any feedback. I am always happy to revise my 
  patches to meet your needs. 

C5. Slow Compilation 

Patch committed in r12018 by Justin Erenkrantz [51] 

Resolve Issue #2103 by teaching the javahl build section about dependencies. 
* build.conf (javahl-javah): Pass -force to javah to always update .h file. 
  Otherwise, if there were no changes, then javah wouldn't touch the file and 
  make would not recognize that the file is in sync. 
* build/generator/gen_base.py 
  (gen_base.TargetJavaClasses.add_dependencies): Add class file to dependency 
   list instead of the source file. 
* build/generator/gen_make.py 
  (gen_make.Generator.write): Switched TargetJavaClasses rules to 
     depend on the object files instead of the source files. These 
     object files are generated in a single call to 'javac'. This 
     change prevents unnecessary regeneration of .class files. 
  (gen_make.Generator.write): Switched TargetJavaHeaders rules to 
     depend on the header files instead of the source files. These 
     header files are generated in a single call to 'javah'. This 
     change prevents unnecessary regeneration of .h files. 
  (gen_make.Generator.write): Added code to keep track of 
     dependencies for new TargetJavaHeaders and TargetJavaClasses rules 
(Justin added the build.conf tweak in order to make it really work and  
 tweaked some comments in gen_base.py and gen_make.py to make it more 
 understandable.) 
Issue: 2103 
Submitted by: David James 
Reviewed by: Justin Erenkrantz 

 



 David James Page 33 3/20/2005 

Appendix D: References 

                                                      

[1] Eaton, Dave. Configuration Management Frequently Asked Questions.  

URL: ftp://ftp.cs.uu.nl/pub/NEWS.ANSWERS/sw-config-mgmt/faq  

[2] Perforce 98.2: Glossary. Perforce.  

URL: http://www.perforce.com/perforce/doc.982/cmdguide/glossary.html 

[3] Helium Project Overview. Third Bit.  

URL: http://www.third-bit.com/helium/doc/overview.html 

[4] Coyner, Brian M. (July 14, 2004). Building Subversion With Java Bindings On Mac OS X. 

O’Reilly Developer Weblogs. URL: http://www.oreillynet.com/pub/wlg/5210 

[5] James, David. (2004-12-12) [RFC] If bindings are enabled, install them with standard ‘install’ target  

URL: http://svn.haxx.se/dev/archive-2004-12/0504.shtml 

[6] James, David. (2004-10-31) Request for 1.1.2 nomination: Simple but important JavaHL installation 

fixes in r11047, r11050. URL: http://svn.haxx.se/dev/archive-2004-10/1597.shtml 

[7] Hudson, Greg. (2004-12-04) Re: Why do we allowed mixed versions of libsvn_* ?  

URL: http://svn.haxx.se/dev/archive-2004-12/0184.shtml 

[8] Kopp, David. (2004-08-31) Minor javahl build breakage.  

URL: http://subversion.tigris.org/issues/show_bug.cgi?id=2032 

[9] James, David. (2004-08-29) [PATCH] javaHL testBasicLogMessage test fails.  

URL: http://svn.haxx.se/dev/archive-2004-08/0821.shtml 

[10] James, David. (2004-09-02) Issue 2040: Can’t Test JavaHL Bindings Before Installation.  

URL: http://subversion.tigris.org/issues/show_bug.cgi?id=2040 

[11] James, David. (2004-10-17) Prevent unnecessary regeneration of JavaHL .class and .h files.  

URL: http://subversion.tigris.org/issues/show_bug.cgi?id=2103 

[12] James, David. (2004-09-02) [SVN RFC] Making JavaHL easier to maintain?  

URL: http://svn.haxx.se/dev/archive-2004-09/0054.shtml 

[13] Erenkrantz, Justin. (2004-09-02) Re: [SVN RFC] Making JavaHL easier to maintain?  

URL: http://svn.haxx.se/dev/archive-2004-09/0058.shtml 

[14] Bowsher, Max. (2004-09-02) Re: [SVN RFC] Making JavaHL easier to maintain?  

URL: http://svn.haxx.se/dev/archive-2004-09/0070.shtml 



 David James Page 34 3/20/2005 

                                                                                                                                                                           

[15] James, David. (2004-09-02) [RFC] Streamlining Binding Installation.  

URL: http://svn.haxx.se/dev/archive-2004-09/0075.shtml 

[16] Huelsmann, Erik. (2004-09-02) Re: [RFC] Streamlining Binding Installation.  

URL: http://svn.haxx.se/dev/archive-2004-09/0079.shtml 

[17] Reser, Ben. (2004-09-03) Re: [RFC] Streamlining Binding Installation.  

URL: http://svn.haxx.se/dev/archive-2004-09/0111.shtml 

[18] James, David. (2004-09-19) [PATCH] Allow JavaHL to be installed separately from main 

Subversion package (was: Re: [PATCH] Fix cross-library installation dependencies for libsvn_fs 

and libsvn_fs_base)  

URL: http://svn.haxx.se/dev/archive-2004-09/0656.shtml 

[19] Hudson, Greg. (2004-09-19) Add install dependencies for libsvn_fs and libsvn_fs_base.  

URL: http://svn.collab.net/viewcvs/svn?rev=11050&view=rev 

[20] Thon, Holger. (2004-09-13) [PATCH] javahl fixes (Issue #2040) (Issue #2032).  

URL: http://svn.haxx.se/dev/archive-2004-09/0408.shtml 

[21] James, David. (2004-09-18) [PATCH] Always call mkdir-init, even if we're not in a VPATH setup 

(Fixes Issue #2032). URL: http://svn.haxx.se/dev/archive-2004-09/0633.shtml 

[22] Hudson, Greg. (2004-09-19) Fix issue #2032 by always calling mkdir-init at configure time.  

URL: http://svn.collab.net/viewcvs/svn?rev=11047&view=rev 

[23] Bowsher, Max. (2004-09-22) Merge r10773 from trunk to 1.1.x branch.  

URL: http://svn.collab.net/viewcvs/svn/?rev=11091&view=rev 

[24] Pilato, C. (2004-09-02) Re: [RFC] Streamlining Binding Installation.  

URL: http://svn.haxx.se/dev/archive-2004-09/0084.shtml 

[25] Erenkrantz, Justin. (2004-09-02) Re: [RFC] Streamlining Binding Installation.  

URL: http://svn.haxx.se/dev/archive-2004-09/0088.shtml 

[26] Pilato, C. (2004-09-02) Re: [RFC] Streamlining Binding Installation.  

URL: http://svn.haxx.se/dev/archive-2004-09/0093.shtml 

[27] Reser, Ben. (2004-09-13) Re: [PATCH] Can't test JavaHL bindings before installation (Issue 

#2040) URL: http://svn.haxx.se/dev/archive-2004-09/0401.shtml 

[28] Thon, Holger. (2004-09-12) Re: [PATCH] Can't test JavaHL bindings before installation (Issue 

#2040) URL: http://svn.haxx.se/dev/archive-2004-09/0398.shtml 



 David James Page 35 3/20/2005 

                                                                                                                                                                           

[29] Hudson, Greg. (2004-09-12) Re: [PATCH] Can't test JavaHL bindings before installation (Issue 

#2040) URL: http://svn.haxx.se/dev/archive-2004-09/0391.shtml 

[30] Reser, Ben. (2004-09-13) Re: [PATCH] Can't test JavaHL bindings before installation (Issue 

#2040) URL: http://svn.haxx.se/dev/archive-2004-09/0402.shtml 

[31] Thon, Holger. (2004-09-13) [PATCH] javahl fixes (Issue #2040) (Issue #2032).  

URL: http://svn.haxx.se/dev/archive-2004-09/0408.shtml 

[32] James, David. (2004-09-19) [PATCH] Allow users to test JavaHL bindings before installation. 

URL: http://svn.haxx.se/dev/archive-2004-09/0654.shtml 

[33] Fogel, Karl. (2004-11-22) JavaHL bindings status. 

URL: http://svn.haxx.se/dev/archive-2004-11/0955.shtml 

[34] Erenkrantz, Justin. (2004-11-24) Re: JavaHL bindings status.  

URL: http://svn.haxx.se/dev/archive-2004-11/1013.shtml 

[35] libtool script contents. URL: http://www.delorie.com/gnu/docs/libtool/libtool_71.html 

[36] James, David. (2004-11-25) Best way to get “objdir” variable from libtool?  

URL: http://svn.haxx.se/dev/archive-2004-11/1074.shtml 

[37] James, David. (2004-11-25) [PATCH] Allow JavaHL to be tested before installation (Solves Issue 

#2040) URL: http://svn.haxx.se/dev/archive-2004-11/1075.shtml 

[38] James, David. (2004-09-02) Issue 2039: Fix JavaHL Dependencies 

URL: http://subversion.tigris.org/issues/show_bug.cgi?id=2039 

[39] Erenkrantz, Justin. (2004-11-24) Resolve Issue #2103 by teaching the javahl build system about 

dependencies. URL: http://svn.collab.net/viewcvs/svn?rev=12018&view=rev 

[40] Ben Collins-Sussman, Brian W. Fitzpatrick, and C. Michael Pilato. Version Control with 

Subversion. URL: http://svnbook.red-bean.com  

[41] Creative Commons Deed. URL: http://creativecommons.org/licenses/by/2.0/ 

[42] James, David. (2004-09-18). [PATCH] Autobuild dependencies before install.  

URL: http://svn.haxx.se/dev/archive-2004-09/0609.shtml 

[43] Apache Ant – Welcome. Apache Foundation. URL: http://ant.apache.org/ 

[44] Quinton, Reg. How to write a Makefile. URL: 

http://vertigo.hsrl.rutgers.edu/ug/make_help.html 

[45] Hippo: Neon. URL: http://pyre.third-bit.com/hippo 



 David James Page 36 3/20/2005 

                                                                                                                                                                           

[46] GNU Libtool. Free Software Foundation (FSF). 

http://www.gnu.org/software/libtool/libtool.html 

[47] Subversion. Apache Foundation. http://subversion.tigris.org/ 

[48] SVNClientAdapter. Subclipse: A Subversion Eclipse Plugin.  

URL: http://subclipse.tigris.org/svnClientAdapter.html 

[49] Erenkrantz, Justin. Resolve Issue #2102 by adding the right dependencies for javahl bindings. 

URL: http://svn.collab.net/viewcvs/svn?rev=12016&view=rev 

[50] Mayweg, Patrick. Fix typo in expected log message.  

URL: http://svn.collab.net/viewcvs/svn?rev=10773&view=rev 

[51] Erenkrantz, Justin. Resolve Issue #2103 by teaching the javahl build section about dependencies. 

URL: http://svn.collab.net/viewcvs/svn?rev=12016&view=rev 


