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Abstract

Generative probabilistic models have been
used for content modelling and template
induction, and are typically trained on
small corpora in the target domain. In
contrast, vector space models of distribu-
tional semantics are trained on large cor-
pora, but are typically applied to domain-
general lexical disambiguation tasks. We
introduce Distributional Semantic Hidden
Markov Models, a novel variant of a hid-
den Markov model that integrates these
two approaches by incorporating contex-
tualized distributional semantic vectors
into a generative model as observed emis-
sions. Experiments in slot induction show
that our approach yields improvements in
learning coherent entity clusters in a do-
main. In a subsequent extrinsic evalua-
tion, we show that these improvements are
also reflected in multi-document summa-
rization.

1 Introduction

Detailed domain knowledge is crucial to many
NLP tasks, either as an input for language un-
derstanding, or as the goal itself, to acquire such
knowledge. For example, in information extrac-
tion, a list of slots in the target domain is given
to the system, and in natural language generation,
content models are trained to learn the content
structure of texts in the target domain for infor-
mation structuring and automatic summarization.

Generative probabilistic models have been one
popular approach to content modelling. An impor-
tant advantage of this approach is that the structure
of the model can be adapted to fit the assumptions
about the structure of the domain and the nature
of the end task. As this field has progressed, the
formal structures that are assumed to represent a

domain have increased in complexity and become
more hierarchical. Earlier work assumes a flat set
of topics (Barzilay and Lee, 2004), which are ex-
pressed as states of a latent random variable in the
model. Later work organizes topics into a hierar-
chy from general to specific (Haghighi and Van-
derwende, 2009; Celikyilmaz and Hakkani-Tur,
2010). Recently, Cheung et al. (2013) formalized
a domain as a set of frames consisting of proto-
typical sequences of events, slots, and slot fillers
or entities, inspired by classical AI work such as
Schank and Abelson’s (1977) scripts. We adopt
much of this terminology in this work. For exam-
ple, in the CRIMINAL INVESTIGATIONS domain,
there may be events such as a murder, an investi-
gation of the crime, an arrest, and a trial. These
would be indicated by event heads such as kill, ar-
rest, charge, plead. Relevant slots would include
VICTIM, SUSPECT, AUTHORITIES, PLEA, etc.

One problem faced by this line of work is that,
by their nature, these models are typically trained
on a small corpus from the target domain, on the
order of hundreds of documents. The small size of
the training corpus makes it difficult to estimate re-
liable statistics, especially for more powerful fea-
tures such as higher-order N-gram features or syn-
tactic features.

By contrast, distributional semantic models are
trained on large, domain-general corpora. These
methods model word meaning using the contexts
in the training corpus in which the word appears.
The most popular approach today is a vector space
representation, in which each dimension corre-
sponds to some context word, and the value at that
dimension corresponds to the strength of the as-
sociation between the context word and the target
word being modelled. A notion of word similarity
arises naturally from these models by comparing
the similarity of the word vectors, for example by
using a cosine measure. Recently, these models
have been extended by considering how distribu-



tional representations can be modified depending
on the specific context in which the word appears
(Mitchell and Lapata, 2008, for example). Con-
textualization has been found to improve perfor-
mance in tasks like lexical substitution and word
sense disambiguation (Thater et al., 2011).

In this paper, we propose to inject contextual-
ized distributional semantic vectors into genera-
tive probabilistic models, in order to combine their
complementary strengths for domain modelling.
There are a number of potential advantages that
distributional semantic models offer. First, they
provide domain-general representations of word
meaning that cannot be reliably estimated from the
small target-domain corpora on which probabilis-
tic models are trained. Second, the contextualiza-
tion process allows the semantic vectors to implic-
itly encode disambiguated word sense and syntac-
tic information, without further adding to the com-
plexity of the generative model.

Our model, the Distributional Semantic Hidden
Markov Model (DSHMM), incorporates contextu-
alized distributional semantic vectors into a gen-
erative probabilistic model as observed emissions.
We demonstrate the effectiveness of our model in
two domain modelling tasks. First, we apply it to
slot induction on guided summarization data over
five different domains. We show that our model
outperforms a baseline version of our method that
does not use distributional semantic vectors, as
well as a recent state-of-the-art template induction
method. Then, we perform an extrinsic evaluation
using multi-document summarization, wherein we
show that our model is able to learn event and slot
topics that are appropriate to include in a sum-
mary. From a modelling perspective, these results
show that probabilistic models for content mod-
elling and template induction benefit from distri-
butional semantics trained on a much larger cor-
pus. From the perspective of distributional seman-
tics, this work broadens the variety of problems to
which distributional semantics can be applied, and
proposes methods to perform inference in a prob-
abilistic setting beyond geometric measures such
as cosine similarity.

2 Related Work

Probabilistic content models were proposed by
Barzilay and Lee (2004), and related models have
since become popular for summarization (Fung
and Ngai, 2006; Haghighi and Vanderwende,

2009), and information ordering (Elsner et al.,
2007; Louis and Nenkova, 2012). Other related
generative models include topic models and struc-
tured versions thereof (Blei et al., 2003; Gruber
et al., 2007; Wallach, 2008). In terms of domain
learning in the form of template induction, heuris-
tic methods involving multiple clustering steps
have been proposed (Filatova et al., 2006; Cham-
bers and Jurafsky, 2011). Most recently, Cheung
et al. (2013) propose PROFINDER, a probabilis-
tic model for frame induction inspired by content
models. Our work is similar in that we assume
much of the same structure within a domain and
consequently in the model as well (Section 3), but
whereas PROFINDER focuses on finding the “cor-
rect” number of frames, events, and slots with a
nonparametric method, this work focuses on in-
tegrating global knowledge in the form of distri-
butional semantics into a probabilistic model. We
adopt one of their evaluation procedures and use it
to compare with PROFINDER in Section 5.

Vector space models form the basis of modern
information retrieval (Salton et al., 1975), but only
recently have distributional models been proposed
that are compositional (Mitchell and Lapata, 2008;
Clark et al., 2008; Grefenstette and Sadrzadeh,
2011, inter alia), or that contextualize the meaning
of a word using other words in the same phrase
(co-compositionality) (Erk and Padó, 2008; Dinu
and Lapata, 2010; Thater et al., 2011). We re-
cently showed how such models can be evaluated
for their ability to support semantic inference for
use in complex NLP tasks like question answering
or automatic summarization (Cheung and Penn,
2012).

Combining distributional information and prob-
abilistic models has actually been explored in pre-
vious work. Usually, an ad-hoc clustering step
precedes training and is used to bias the initializa-
tion of the probabilistic model (Barzilay and Lee,
2004; Louis and Nenkova, 2012), or the clustering
is interleaved with iterations of training (Fung et
al., 2003). By contrast, our method better modu-
larizes the two, and provides a principled way to
train the model. More importantly, previous ad-
hoc clustering methods only use distributional in-
formation derived from the target domain itself;
initializing based on domain-general distributional
information can be problematic because it can bias
training towards a local optimum that is inappro-
priate for the target domain, leading to poor per-
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Figure 1: Graphical representation of our model.
Distributions that generate the latent variables and
hyperparameters are omitted for clarity.

formance.

3 Distributional Semantic Hidden
Markov Models

We now describe the DSHMM model. This model
can be thought of as an HMM with two layers
of latent variables, representing events and slots
in the domain. Given a document consisting of
a sequence of T clauses headed by propositional
heads ~H (verbs or event nouns), and argument
noun phrases ~A, a DSHMM models the joint prob-
ability of observations ~H , ~A, and latent random
variables ~E and ~S representing domain events and
slots respectively; i.e., P ( ~H, ~A, ~E, ~S).

The basic structure of our model is similar to
PROFINDER. Each timestep in the model gener-
ates one clause in the document. More specifi-
cally, it generates the event heads and arguments
which are crucial in identifying events and slots.
We assume that event heads are verbs or event
nouns, while arguments are the head words of their
syntactically dependent noun phrases. We also as-
sume that the sequence of clauses and the clause-
internal syntactic structure are fixed, for example
by applying a dependency parser. Within each
clause, a hierarchy of latent and observed variables
maps to corresponding elements in the clause (Ta-
ble 1), as follows:

Event Variables At the top-level, a categorical
latent variable Et with NE possible states repre-
sents the event that is described by clause t. Its
value is conditioned on the previous time step’s
event variable, following the standard, first-order
Markov assumption (PE(Et|Et−1), or PE

init(E1)

Node Component Textual unit
Et Event Clause
Sta Slot Noun phrase
Ht Event head Verb/event noun
Ata Event argument Noun phrase

Table 1: The correspondence between nodes in our
graphical model, the domain components that they
model, and the related elements in the clause.

for the first clause). The internal structure of the
clause is generated by conditioning on the state of
Et, including the head of the clause, and the slots
for each argument in the clause.

Slot Variables Categorical latent variables with
NS possible states represent the slot that an argu-
ment fills, and are conditioned on the event vari-
able in the clause, Et (i.e., PS(Sta|Et), for the
ath slot variable). The state of Sta is then used to
generate an argument Ata.

Head and Argument Emissions The head of
the clause Ht is conditionally dependent on Et,
and each argument Ata is likewise conditioned on
its slot variable Sta. Unlike in most applications of
HMMs in text processing, in which the represen-
tation of a token is simply its word or lemma iden-
tity, tokens in DSHMM are also associated with a
vector representation of their meaning in context
according to a distributional semantic model (Sec-
tion 3.1). Thus, the emissions can be decomposed
into pairs Ht = (lemma(Ht), sem(Ht)) and
Ata = (lemma(Ata), sem(Ata)), where lemma
and sem are functions that return the lemma iden-
tity and the semantic vector respectively. The
probability of the head of a clause is thus:

PH(Ht|Et) = PH
lemm(lemma(Ht)|Et) (1)

× PH
sem(sem(Ht)|Et),

and the probability of a clausal argument is like-
wise:

PA(Ata|Sta) = PA
lemm(lemma(Ata)|Sta) (2)

× PA
sem(sem(Ata)|Sta).

All categorical distributions are smoothed using
add-δ smoothing (i.e., uniform Dirichlet priors).
Based on the independence assumptions described
above, the joint probability distribution can be fac-



tored into:

P ( ~H, ~A, ~E, ~S) = PE
init(E1) (3)

×
T∏
t=2

PE(Et|Et−1)
T∏
t=1

PH(Ht|Et)

×
T∏
t=1

Ct∏
a=1

PS(Sta|Et)P
A(Ata|Sta).

3.1 Vector Space Models of Semantics
In this section, we describe several methods for
producing the semantic vectors associated with
each event head or argument; i.e., the function
sem. We chose several simple, but widely studied
models, to investigate whether they can be effec-
tively integrated into DSHMM. We start with a de-
scription of the training of a basic model without
any contextualization, then describe several con-
textualized models based on recent work.

Simple Vector Space Model In the basic ver-
sion of the model (SIMPLE), we train a term-
context matrix, where rows correspond to target
words, and columns correspond to context words.
Training begins by counting context words that ap-
pear within five words of the target word, ignor-
ing stopwords. We then convert the raw counts
to positive pointwise mutual information scores,
which has been shown to improve word similarity
correlation results (Turney and Pantel, 2010). We
set thresholds on the frequencies of words for in-
clusion as target and context words (given in Sec-
tion 4). Target words which fall below the thresh-
old are modelled as UNK. All the methods below
start from this basic vector representation.

Component-wise Operators Mitchell and Lap-
ata (2008) investigate using component-wise op-
erators to combine the vectors of verbs and their
intransitive subjects. We use component-wise op-
erators to contextualize our vectors, but by com-
bining with all of the arguments, and regardless
of the event head’s category. Let event head h
be the syntactic head of a number of arguments
a1, a2, ...am, and ~vh, ~va1 , ~va2 , ...~vam be their re-
spective vector representations according to the
SIMPLE method. Then, their contextualized vec-
tors ~cM&L

h ,~cM&L
a1 , ...~cM&L

am would be:

~cM&L
h = ~vh � (

m⊙
i=1

~vam) (4)

~cM&L
ai = ~vai � ~vh,∀i = 1...m, (5)

where � represents a component-wise operator,
addition or multiplication, and

⊙
represents its

repeated application. We tested component-wise
addition (M&L+) and multiplication (M&L×).

Selectional Preferences Erk and Padó (2008)
(E&P) incorporate inverse selectional preferences
into their contextualization function. The intu-
ition is that a word should be contextualized such
that its vector representation becomes more sim-
ilar to the vectors of other words that its depen-
dency neighbours often take in the same syntactic
position. For example, suppose catch is the head
of the noun ball, in the relation of a direct object.
Then, the vector for ball would be contextualized
to become similar to the vectors for other frequent
direct objects of catch, such as baseball, or cold.
Likewise, the vector for catch would be contextu-
alized to become similar to the vectors for throw,
hit, etc. Formally, let h take a as its argument in
relation r. Then:

~cE&P
h = ~vh ×

m∏
i=1

∑
w∈L

freq(w, r, ai) · ~vw, (6)

~cE&P
a = ~va ×

∑
w∈L

freq(h, r, w) · ~vw, (7)

where freq(h, r, a) is the frequency of h occur-
ring as the head of a in relation r in the train-
ing corpus, L is the lexicon, and × represents
component-wise multiplication.

Dimensionality Reduction and Vector Emission
After contextualization, we apply singular value
decomposition (SVD) for dimensionality reduc-
tion to reduce the number of model parameters,
keeping the k most significant singular values and
vectors. In particular, we apply SVD to the m-by-
n term-context matrix M produced by the SIM-
PLE method, resulting in the truncated matrices
M ≈ UkΣkV

T
k , where Uk is a m-by-k matrix, Σk

is k-by-k, and Vk is n-by-k. This takes place af-
ter contextualization, so the component-wise op-
erators apply in the original semantic space. Af-
terwards, the contextualized vector in the original
space, ~c, can be transformed into a vector in the
reduced space, ~cR, by ~cR = Σ−1k V T

k ~c.
Distributional semantic vectors are traditionally

compared by measures which ignore vector mag-
nitudes, such as cosine similarity, but a multivari-
ate Gaussian is sensitive to magnitudes. Thus, the
final step is to normalize ~cR into a unit vector by
dividing it by its L2 norm, ||~cR||.



We model the emission of these contextualized
vectors in DSHMM as multivariate Gaussian dis-
tributions, so the semantic vector emissions can be
written as PH

sem, P
A
sem ∼ N (µ,Σ), where µ ∈ Rk

is the mean and Σ ∈ Rk×k is the covariance
matrix. To avoid overfitting, we regularize the
covariance using its conjugate prior, the Inverse-
Wishart distribution. We follow the “neutral” set-
ting of hyperparameters given by Ormoneit and
Tresp (1995), so that the MAP estimate for the co-
variance matrix for (event or slot) state i becomes:

Σi =

∑
j rij(xj − µi)(xj − µi)T + βI∑

j rij + 1
, (8)

where j indexes all the relevant semantic vectors
xj in the training set, rij is the posterior respon-
sibility of state i for vector xj , and β is the re-
maining hyperparameter that we tune to adjust the
amount of regularization. To further reduce model
complexity, we set the off-diagonal entries of the
resulting covariance matrix to zero.

3.2 Training and Inference

Inference in DSHMM is accomplished by the stan-
dard Inside-Outside and tree-Viterbi algorithms,
except that the tree structure is fixed, so there
is no need to sum over all possible subtrees.
Model parameters are learned by the Expectation-
Maximization (EM) algorithm. We tune the hy-
perparameters (NE , NS , δ, β, k) and the number
of EM iterations by two-fold cross-validation1.

3.3 Summary and Generative Process

In summary, the following steps are applied to
train a DSHMM:

1. Train a distributional semantic model on a
large, domain-general corpus.

2. Preprocess and generate contextualized vec-
tors of event heads and arguments in the
small corpus in the target domain.

3. Train the DSHMM using the EM algorithm.
The formal generative process is as follows:
1. Draw categorical distributions PE

init;
PE , PS , PH

lemm (one per event state);
PA
lemm (one per slot state) from Dirichlet

priors.
2. Draw multivariate Gaussians PH

sem, P
A
sem for

each event and slot state, respectively.
1The topic cluster splits and the hyperparameter set-

tings are available at http://www.cs.toronto.edu/
˜jcheung/dshmm/dshmm.html.

3. Generate the documents, clause by clause.

Generating a clause at position t consists of
these steps:

1. Generate the event state Et ∼ PE (or PE
init).

2. Generate the event head components
lemm(Ht) ∼ PH

lemm, sem(Ht) ∼ PH
sem.

3. Generate a number of slot states Sta ∼ PS .
4. For each slot, generate the argument compo-

nents lemm(Ata) ∼ PA
lemm, sem(Ata) ∼

PA
sem.

4 Experiments

We trained the distributional semantic models us-
ing the Annotated Gigaword corpus (Napoles et
al., 2012), which has been automatically prepro-
cessed and is based on Gigaword 5th edition. This
corpus contains almost ten million news articles
and more than 4 billion tokens. We used those ar-
ticles marked as “stories” — the vast majority of
them. We modelled the 50,000 most common lem-
mata as target words, and the 3,000 most common
lemmata as context words.

We then trained DSHMM and conducted our
evaluations on the TAC 2010 guided summa-
rization data set (Owczarzak and Dang, 2010).
Lemmatization and extraction of event heads and
arguments are done by preprocessing with the
Stanford CoreNLP tool suite (Toutanova et al.,
2003; de Marneffe et al., 2006). This data set con-
tains 46 topic clusters of 20 articles each, grouped
into five topic categories or domains. For exam-
ple, one topic cluster in the ATTACK category is
about the Columbine Massacre. Each topic cluster
contains eight human-written “model” summaries
(“model” here meaning a gold standard). Half of
the articles and model summaries in a topic cluster
are used in the guided summarization task, and the
rest are used in the update summarization task.

We chose this data set because it allows us
to conduct various domain-modelling evaluations.
First, templates for the domains are provided, and
the model summaries are annotated with slots
from the template, allowing for an intrinsic eval-
uation of slot induction (Section 5). Second, it
contains multiple domain instances for each of the
domains, and each domain instance comes anno-
tated with eight model summaries, allowing for an
extrinsic evaluation of our system (Section 6).



5 Guided Summarization Slot Induction

We first evaluated our models on their ability to
produce coherent clusters of entities belonging to
the same slot, adopting the experimental proce-
dure of Cheung et al. (2013).

As part of the official TAC evaluation proce-
dure, model summaries were manually segmented
into contributors, and labelled with the slot in
the TAC template that the contributor expresses.
For example, a summary fragment such as On 20
April 1999, a massacre occurred at Columbine
High School is segmented into the contributors:
(On 20 April 1999, WHEN); (a massacre oc-
curred, WHAT); and (at Columbine High School,
WHERE).

In the slot induction evaluation, this annotation
is used as follows. First, the maximal noun phrases
are extracted from the contributors and clustered
based on the TAC slot of the contributor. These
clusters of noun phrases then become the gold
standard clusters against which automatic systems
are compared. Noun phrases are considered to be
matched if the lemmata of their head words are the
same and they are extracted from the same sum-
mary. This accounts for the fact that human an-
notators often only label the first occurrence of a
word that belongs to a slot in a summary, and fol-
lows the standard evaluation procedure in previ-
ous information extraction tasks, such as MUC-4.
Pronouns and demonstratives are ignored. This
extraction process is noisy, because the meaning
of some contributors depends on an entire verb
phrase, but we keep this representation to allow
a direct comparison to previous work.

Because we are evaluating unsupervised sys-
tems, the clusters produced by the systems are not
labelled, and must be matched to the gold stan-
dard clusters. This matching is performed by map-
ping to each gold cluster the best system cluster
according to F1. The same system cluster may be
mapped multiple times, because several TAC slots
can overlap. For example, in the NATURAL DIS-
ASTERS domain, an earthquake may fit both the
WHAT slot as well as the CAUSE slot, because it
generated a tsunami.

We trained a DSHMM separately for each of the
five domains with different semantic models, tun-
ing hyperparameters by two-fold cross-validation.
We then extracted noun phrase clusters from the
model summaries according to the slot labels pro-
duced by running the Viterbi algorithm on them.

Method P R F1
HMM w/o semantics 13.8 64.1 22.6*
DSHMM w/ SIMPLE 20.9 27.5 23.7
DSHMM w/ E&P 20.7 27.9 23.8
PROFINDER 23.7 25.0 24.3
DSHMM w/ M&L+ 19.7 36.3 25.6*
DSHMM w/ M&L× 22.1 33.2 26.5*

Table 2: Slot induction results on the TAC guided
summarization data set. Asterisks (*) indicate
that the model is statistically significantly differ-
ent from PROFINDER in terms of F1 at p < 0.05.

Results We compared DSHMM to two base-
lines. Our first baseline is PROFINDER, a state-
of-the-art template inducer which Cheung et al.
(2013) showed to outperform the previous heuris-
tic clustering method of Chambers and Jurafsky
(2011). Our second baseline is our DSHMM

model, without the semantic vector component,
(HMM w/o semantics). To calculate statistical
significance, we use the paired bootstrap method,
which can accommodate complex evaluation met-
rics like F1 (Berg-Kirkpatrick et al., 2012).

Table 2 shows that performance of the mod-
els. Overall, PROFINDER significantly outper-
forms the HMM baseline, but not any of the
DSHMM models by F1. DSHMM with contextu-
alized semantic vectors achieves the highest F1s,
and are significantly better than PROFINDER. All
of the differences in precision and recall between
PROFINDER and the other models are significant.
The baseline HMM model has highly imbalanced
precision and recall. We think this is because the
model is unable to successfully produce coher-
ent clusters, so the best-case mapping procedure
during evaluation picked large clusters that have
high recall. PROFINDER has slightly higher preci-
sion, which may be due to its non-parametric split-
merge heuristic. We plan to investigate whether
this learning method could improve DSHMM’s
performance further. Importantly, the contextual-
ization of the vectors seems to be beneficial, at
least with the M&L component-wise operators.
In the next section, we show that the improve-
ment from contextualization transfers to multi-
document summarization results.



6 Multi-document Summarization: An
Extrinsic Evaluation

We next evaluated our models extrinsically in the
setting of extractive, multi-document summariza-
tion. To use the trained DSHMM for extractive
summarization, we need a decoding procedure for
selecting sentences in the source text to include in
the summary. Inspired by the KLSUM and HI-
ERSUM methods of Haghighi and Vanderwende
(2009), we develop a criterion based on Kullback-
Leibler (KL) divergence between distributions es-
timated from the source text, and those estimated
from the summary. The assumption here is that
these distributions should match in a good sum-
mary. We describe two methods to use this crite-
rion: a basic unsupervised method (Section 6.1),
and a supervised variant that makes use of in-
domain summaries to learn the salient slots and
events in the domain (Section 6.2).

6.1 A KL-based Criterion

There are four main component distributions from
our model that should be considered during extrac-
tion: (1) the distribution of events, (2) the distri-
bution of slots, (3) the distribution of event heads,
and (4) the distribution of arguments. We estimate
(1) as the context-independent probability of being
in a certain event state, which can be calculated
using the Inside-Outside algorithm. Given a col-
lection of documents D which make up the source
text, the distribution of event topics P̂E(E) is es-
timated as:

P̂E(E = e) =
1

Z

∑
d∈D

∑
t

Int(e)Outt(e)

P (d)
, (9)

where Int(e) and Outt(e) are the values of the
inside and outside trellises at timestep t for some
event state e, and Z is a normalization constant.
The distribution for a set of sentences in a can-
didate summary, Q̂E(E), is identical, except the
summation is over the clauses in the candidate
summary. Slot distributions P̂S(S) and Q̂S(S) (2)
are defined analogously, where the summation oc-
curs along all the slot variables.

For (3) and (4), we simply use the MLE es-
timates of the lemma emissions, where the esti-
mates are made over the source text and the can-
didate summary instead of over the entire train-
ing set. All of the candidate summary distribu-
tions (i.e., the “Q̂ distributions”) are smoothed by

a small amount, so that the KL-divergence is al-
ways finite. Our KL criterion combines the above
components linearly, weighting the lemma distri-
butions by the probability of their respective event
or slot state:

KLScore = (10)

DKL(P̂E ||Q̂E) +DKL(P̂S ||Q̂S)

+

NE∑
e=1

P̂E(e)DKL(P̂H(H|e)||Q̂H(H|e))

+

NS∑
s=1

P̂S(s)DKL(P̂A(A|s)||Q̂A(A|s))

To produce a summary, sentences from the
source text are greedily added such thatKLScore
is minimized at each step, until the desired sum-
mary length is reached, discarding sentences with
fewer than five words.

6.2 Supervised Learning

The above unsupervised method results in sum-
maries that closely mirror the source text in terms
of the event and slot distributions, but this ig-
nores the fact that not all such topics should be
included in a summary. It also ignores genre-
specific, stylistic considerations about character-
istics of good summary sentences. For example,
Woodsend and Lapata (2012) find several factors
that indicate sentences should not be included in
an extractive summary, such as the presence of
personal pronouns. Thus, we implemented a sec-
ond method, in which we modify the KL criterion
above by estimating P̂E and P̂S from other model
summaries that are drawn from the same domain
(i.e. topic category), except for those summaries
that are written for the specific topic cluster to be
used for evaluation.

6.3 Method and Results

We used the best performing models from the slot
induction task and the above unsupervised and su-
pervised methods based on KL-divergence to pro-
duce 100-word summaries of the guided summa-
rization source text clusters. We did not com-
pare against PROFINDER, as its structure is dif-
ferent and would have required a different proce-
dure than the KL-criterion we developed above.
As shown in the previous evaluation, however, the
HMM baseline without semantics and DSHMM

with SIMPLE perform similarly in terms of F1,



Method ROUGE-1 ROUGE-2 ROUGE-SU4
unsup. sup. unsup. sup. unsup. sup.

Leading baseline 28.0 − 5.39 − 8.6 −
HMM w/o semantics 32.3 32.7 6.45 6.49 10.1 10.2
DSHMM w/ SIMPLE 32.1 32.7 5.81 6.50 9.8 10.2
DSHMM w/ M&L+ 32.1 33.4 6.27 6.82 10.0 10.6
DSHMM w/ M&L× 32.4 34.3* 6.35 7.11ˆ 10.2 11.0*
DSHMM w/ E&P 32.8 33.8* 6.38 7.31* 10.3 10.8*

Table 3: TAC 2010 summarization results by three settings of ROUGE. Asterisks (*) indicate that the
model is statistically significantly better than the HMM model without semantics at a 95% confidence
interval, a caret ˆ indicates that the value is marginally so.

so we consider these competitive baselines. We
did not evaluate with the update summarization
task, because our method has not been adapted to
it. For the evaluation measure, we used the stan-
dard ROUGE suite of automatic evaluation mea-
sures (Lin, 2004). Note that the evaluation con-
ditions of TAC 2010 are different, and thus those
results are not directly comparable to ours. For in-
stance, top performing systems in TAC 2010 make
use of manually constructed lists of entities known
to fit the slots in the provided templates and sam-
ple topic statements, which our method automat-
ically learns. We include the leading baseline re-
sults from the competition as a point of reference,
as it is a well-known and non-trivial one for news
articles. This baseline summary consists of the
leading sentences from the most recent document
in the source text cluster up to the word length
limit.

Table 3 shows the summarization results for the
three most widely-used settings of ROUGE. All
of our models outperform the leading baseline by
a large margin, demonstrating the effective of the
KL-criterion. In terms of unsupervised perfor-
mance, all of our models perform similarly. Be-
cause the unsupervised method mimics the distri-
butions in the source text at all levels, the method
may negate the benefit of learning and simply pro-
duce summaries that match the source text in the
word distributions, thus being an approximation
of KLSUM. Looking at the supervised results,
however, the semantic vector models show clear
gains in ROUGE, whereas the baseline method
does not obtain much benefit from supervision. As
in the previous evaluation, the models with con-
textualized semantic vectors provide the best per-
formance. M&L× performs very well, as in slot
induction, but E&P also performs well, unlike in

the previous evaluation. This result reinforces the
importance of the contextualization procedure for
distributional semantic models.

Analysis To better understand what is gained by
supervision using in-domain summaries, we ana-
lyzed the best performing M&L× model’s output
summaries for one document cluster from each
domain. For each event state, we calculated the
ratio P̂E

summ(e)/P̂E
source(e), for the probability of

an event state e as estimated from the training
summaries and the the source text respectively.
Likewise, we calculated P̂S

summ(s)/P̂S
source(s) for

the slot states. This ratio indicates the change in
state’s probability after supervision; the greater the
ratio, the more preferred that state becomes after
training. We selected the most preferred and dis-
preferred event and slot for each document clus-
ter, and took the three most probable lemmata
from the associated lemma distribution (Table 4).
It seems that supervision is beneficial because it
picks out important event heads and arguments in
the domain, such as charge, trial, and murder in
the TRIALS domain. It also helps the summarizer
avoid semantically generic words (be or have),
pronouns, quotatives, and common but irrelevant
words (home, city, restaurant in TRIALS).

7 Conclusion

We have shown that contextualized distributional
semantic vectors can be successfully integrated
into a generative probabilistic model for domain
modelling, as demonstrated by improvements in
slot induction and multi-document summariza-
tion. The effectiveness of our model stems from
the use of a large domain-general corpus to train
the distributional semantic vectors, and the im-
plicit syntactic and word sense information pro-



Domain Event Heads Slot Arguments
+ − + −

ATTACKS
say2, cause,
doctor

say2, be, have
attack, hostage,
troops

he, it, they

TRIALS
charge, trial,
accuse

say, be, have
prison, murder,
charge

home, city, restau-
rant

RESOURCES
reduce, increase,
university

say, be, have
government,
effort, program

he, they, it

DISASTERS
flood, strengthen,
engulf

say, be, have
production,
statoil, barrel

he, it, they

HEALTH
be, department,
have

say, do, make
food, product,
meat

she, people, way

Table 4: Analysis of the most probable event heads and arguments in the most preferred (+) and dispre-
ferred (−) events and slots after supervised training.

vided by the contextualization process. Our ap-
proach is modular, and allows principled train-
ing of the probabilistic model using standard tech-
niques. While we have focused on the overall clus-
tering of entities and the distribution of event and
slot topics in this work, we would also like to in-
vestigate discourse modelling and content struc-
turing. Finally, our work shows that the applica-
tion of distributional semantics to NLP tasks need
not be confined to lexical disambiguation. We
would like to see modern distributional semantic
methods incorporated into an even greater variety
of applications.
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