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Abstract

Parsing German Topological Fields with Probabilistic Context-Free Grammars

Jackie Chi Kit Cheung

M. Sc.

Graduate Department of Computer Science

University of Toronto

2009

Syntactic analysis is useful for many natural language processing applications requiring fur-

ther semantic analysis. Recent research in statistical parsing has produced a number of high-

performance parsers using probabilistic context-free (PCFG) models to parse English text, such

as (Collins, 2003; Charniak and Johnson, 2005). Problems arise, however, when applying

these methods to parse sentences in freer-word-order languages. Such languages as Russian,

Warlpiri, and German feature syntactic constructions thatproduce discontinuous constituents,

directly violating one of the crucial assumptions of context-free models of syntax.

While PCFG technologies may thus be inadequate for full syntactic analysis of all phrasal

structure in these languages, clausal structure can still be fruitfully parsed with these methods.

In particular, we examine applying PCFG parsing to parse thetopological fieldstructure of

German. These topological fields provide a high-level description of the major sections of a

clause in relation to the clausal main verb and the subordinating heads and appear in strict

linear sequences amenable to PCFG parsing. They are useful for tasks such as deep syntactic

analysis, part-of-speech tagging and coreference resolution.

In this work, we apply an unlexicalized, latent variable-based parser (Petrov et al., 2006) to

topological field parsing, and achieve state-of-the-art parsing results on two German newspaper

corpora without any language- or model-dependent adaptation.

We perform a qualitative error analysis of the parser output, and identify constructions like

ellipses and parentheticals as the chief sources of remaining error. This is confirmed by a
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further experiment in which parsing performance improves after restricting the training and

test set to those sentences without these constructions.

We also explore techniques for further improving parsing results. For example, discrimina-

tive reranking of parses made by a generative parser could incorporate linguistic information

such as those derived by our qualitative analysis. Self-training is another semi-supervised tech-

nique which utilizes additional unannotated data for training.
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Chapter 1

Introduction

One important way in which languages differ from each other is in their syntactic structure.

A typical starting point in describing the syntax of a language is to describe the behaviour of

the subject and object of the sentence in terms of their position relative to the verb. It is thus

customary to classify languages into a language typology based on their “basic” word-order,

using some notion of the word “basic”, such as by specifying the clause type or grammatical

mood.

Many languages can be unproblematically classified in this way; for example, English ex-

hibits SVO order (subject-verb-object), Irish VSO, and so on. This does not mean that these

languages adhere to their basic order without exception. For example, English allows objects

and adjectives (among other types of constituents) in frontof the verb in certain contexts.

(1.1) (a) This tie,Fred bought.(OSV) (Cormack and Smith, 2000)

(b) So badwas the smell that nobody would go near the room.(Adjective-VS)

Other languages, however, are more problematic and defy an easy classification. For ex-

ample, Russian and other Slavic languages display considerably more variation in their word

orders than English, though they are generally ascribed a SVO basic word order (Siewierska,

1998). An even more extreme case is Warlpiri, an Australian Aboriginal language which has

famously been described asnon-configurational(Hale, 1983), meaning that syntactic relations

9
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such as notions of subject and object are not reflected in the phrase structure of the language.

This is illustrated in example 1.2, which shows that all possible orderings of the subject, verb,

and object are possible in a simple declarative sentence meaning. The only constant in word

order between the sentences is the second position auxiliary particleka.

(1.2) (a) Ngarrka-
man

ngku
ERG

ka
AUX

wawirri
kangaroo

panti-
spear

rni
NONPAST

‘The man is spearing the kangaroo.’

(b) Wawirri ka panti-rni ngarrka-ngku

(c) Panti-rni ka ngarrka-ngku wawirri.

And so on (Hale, 1983).

Looking beyond the order of the subject, verb, and object, wecan also consider the order of

other syntactic elements, such as the order of a head noun andits modifiers. It turns out Warlpiri

also offers much variation in word order in this respect. Thefollowing examples illustrate

possible orderings of the elements of the noun phrase ‘that kangaroo’wawirri yalumpu, where

the demonstrative ‘that’ does not have to occur next to the head noun ‘kangaroo’, which is an

example of adiscontinuous constituent.

(1.3) (a) Wawirri
kangaroo

kapi-rna
AUX

panti-
spear

rni
NONPAST

yalumpu
that

‘I will spear that kangaroo.’

(b) Wawirri
kangaroo

yalumpu
that

kapi-rna
AUX

panti-
spear

rni
NONPAST

(Hale, 1983)

Languages which display such variation in their word order have been called “free-word-

order” languages. This label is not unproblematic. First, most “free-word-order” languages,

including Warlpiri, as we have seen above, have a privilegedsecond position that is occupied

by clitics, auxiliaries, finite verbs, or sometimes also complementizers and subordinating con-

junctions. Second, while word order may be variable with respect to grammatical roles, they
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may not be completely “free” with respect to other factors, usually related to the information

structure of the discourse. Thus, in this paper, we will use the termfreer-word-orderlanguages,

keeping in mind these caveats.

The focus of this paper will be the task of automatically analyzing the clausal structure

of Standard German. German is a freer-word-order language in the West Germanic branch of

the Indo-European language family, and frequently exhibits freer-word-order phenomena like

topicalization, scrambling, andextraposition. Topicalization is the process where a constituent

is found at the beginning of a sentence or clause due to its status as the topic of a sentence

(loosely, what the sentence is about.) Scrambling refers tovariability in the order of the noun

phrases, and extraposition is the process in which prosodically heavy elements are optionally

placed at the right edge of a sentence.

Unlike English, which relies heavily on word order to indicate grammatical functions, Ger-

man possesses richer inflectional morphology for this purpose, which allows more latitude for

word order variation. Again, this is not to say that German has no constraints on its word

order. For example, one characteristic of German and closely related languages such as Dutch

is their verb-second word order, which means that the secondconstituent of a matrix clause in

a declarative sentence is a finite verb. Verb-second word order interacts with freer-word-order

phenomena to produce many possible renderings of a sentencethat differ in word order, but

have the same semantic content. Consider the following example, which involves scrambling

and topicalization. We first show the sentence in its prescriptively canonical word order.

(1.4) Die
the.NOM

Frau
woman

hat
has

dem
the.DAT

Mann
man

das
the.ACC

Buch
book

gegeben.
given.

‘The woman gave the man the book.’

All other logical orders of the noun phrases are possible, with the same semantic inter-

pretation, although some of the non-canonical orderings inthis and other examples may be

considered unusual and pragmatically highly marked.

(1.5) (a) Die Frau hat das Buch dem Mann gegeben.
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(b) Dem Mann hat die Frau das Buch gegeben.

(c) Dem Mann hat das Buch die Frau gegeben.

(d) Das Buch hat die Frau dem Mann gegeben.

(e) Das Buch hat dem Mann die Frau gegeben.

In the above examples, the first position before the finite verb ‘hat’ is occupied by a noun

phrase. Other constituents may also appear in this positionfor pragmatic reasons, such as the

past participle of the verb or an adverb.

(1.6) (a) Gegeben hat die Frau dem Mann das Buch.

(b) Gestern
yesterday

hat
has

die
the.NOM

Frau
woman

dem
the.DAT

Mann
man

das
the.ACC

Buch
book

gegeben.
given.

‘The woman gave the man the book yesterday.’

While these examples differ substantially in word order, some commonalities can be ob-

served. First, the finite verb is always in second position. Also, the past participlegegeben

always appears at the end of the sentence, except in the case where it was fronted to the first

position before the finite verb. In the rest of the sentence, however, there is much variation in

the order of the remaining elements.

German sentences can also exhibit discontinuous constituents. We will provide the follow-

ing example of a German subordinate clause from Duchier and Debusmann (2001). The two

syntactic constructions relevant to this example are scrambling, and extraposition.

(1.7) (a) dass
that

Maria
Maria.NOM

[einen
a.ACC

Mann
man

zu
to

lieben]
love

versucht.
tries.

‘that Maria tries to love a man.’

(b) dass Maria versucht [einen Mann zu lieben].

(c) dass Maria [einen Mann] versucht [zu lieben].

(d) dass [einen Mann] Maria [zu lieben] versucht.

(e) dass [einen Mann] Maria versucht [zu lieben].
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dass Maria einen Mann versucht zu lieben
COMP DET N V PTK V

NP

NP

VP

VP

S

Figure 1.1: A German subordinate clause displaying a discontinuous constituent,einen Mann

zu lieben

(f) * dass versucht Maria [einen Mann zu lieben].

1.7(a) shows the word order without scrambling of the noun phrasesMaria andeinen Mann.

1.7(b) shows the word order when the verb phraseeinen Mann zu lieben‘to love a man’ is

extraposed to the right. (This is also the most common word order of the clause.) In 1.7(c),

only the verbal headzu liebenpart of the verb phrase is extraposed, leading to it being separated

from the complement oflieben, resulting in a discontinuous constituent. 1.7(d) and 1.7(e) show

the resulting word orders wheneinen Mannis placed beforeMaria due to scrambling, without

and with the effect of partial extraposition, respectively.

Of these five possible orderings, we see that three of them result in a discontinuous verb

phrase. Trying to find a pattern in the word order is more difficult here, but some regularities

can be detected. First, the complementizerdassalways appears in first position. Also, the

finite verbversuchtno longer appears in second position as in the previous example. We will

shortly see that these two word-order observations are related. However, there is always at

most one constituent to the right of the finite verb, meaning that an ordering such as 1.7(f) is
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ungrammatical.

Discontinuous constituents pose a problem for standardcontext-free grammar(CFG) mod-

els of language, as well as for existing CFG-based parsing technology. Linguistic structures

produced by CFGs have the restriction that they must beprojective, meaning that crossing

branches in the constituency structure are disallowed. However, this is precisely what is needed

to model discontinuous constituents. Figure 1.1 shows a constituency tree for example 1.7(b),

where the crossing branches are necessary to model the dependencies in the example.

On the other hand, there is utility in simply modelling the clause-level patterns in word

order. With this information, we can identify the verbal head in a sentence as well as possible

locations for its arguments. This shallower form of parsingwould allow us to respect pro-

jectivity, because non-projectivity is a result of discontinuous constituents at the sub-clausal

level. To this end, we now describe the topological field model of German, which allows us to

characterize the observations about patterns in the word order that we have made above.

1.1 Topological Field Model of German

Topological fields are high-level syntactic units which appear in a prescribed linear order. They

exist in an enclosing syntactic region (Höhle, 1983), which is the clause in German, and de-

scribe the major sections of a German clause by identifying the verbal heads and subordinating

conjunctions.

Topological fields may have constraints on the number of words or phrases they contain,

and are not required to form a semantically coherent constituent. The main reason that topo-

logical fields are a good model of German clausal syntax is that the order of the topological

fields is mostly strict and unvarying, in contrast to the relatively free orderings possible at the

sub-clausal level.

In the German topological field model, clauses belong to one of three types: verb-last (VL),

verb-second (V2), and verb-first (V1), each with a specific sequence of topological fields (Table
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Type Fields

VL (KOORD) (C) (MF) VC (NF)

V1 (KOORD) (LV) LK (MF) (VC) (NF)

V2 (KOORD) (LV) VF LK (MF) (VC) (NF)

Table 1.1: Topological field model of German. Simplified fromthe annotation schema of the

German newspaper corpus, TüBa-D/Z (Telljohann et al., 2006). Parentheses indicate optional

elements.

1.1). VL clauses include finite and non-finite subordinate clauses, V2 sentences are typically

declarative sentences andwh-questions in matrix clauses, and V1 sentences include yes-no

questions, and certain conditional subordinate clauses. Below, we give brief descriptions of the

most common topological fields.

• VF (Vorfeldor ‘pre-field’) is the first obligatory constituent in sentences of the V2 type.

This is often the topic of the sentence.1

• LK (Linke Klammeror ‘left bracket’) is the position for finite verbs in V1 and V2sen-

tences. It is replaced by a complementizer with the field label C in VL sentences.

• MF (Mittelfeld or ‘middle field’) is an optional field bounded on the left by LKand

on the right by the verbal complex VC or by NF. Most verb arguments, adverbs, and

prepositional phrases are found here, unless they have beenfronted and put in the VF, or

are prosodically heavy and postposed to the NF field.

• VC is the verbal complex field. It includes infinite verbs, as well as finite verbs in VL

sentences.

1An anonymous reviewer to the ACL paper upon which this part ofthe paper is based pointed out that this
position does not correspond to a single function with respect to information structure. The reviewer suggested
this case, where VF contains the focus:
—Wer kommt zur Party?(Who is coming to the Party?)
—Peterkommt zur Party.(Peter is coming to the party.)
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• NF (Nachfeldor ‘post-field’) contains prosodically heavy elements suchas postposed

prepositional phrases or relative clauses.

• KOORD (Koordinationsfeldor ‘coordination field’) is a field for clause-level conjunc-

tions.

• LV (Linksversetzungor ‘left dislocation’) is used for resumptive constructions involving

left dislocation. For a detailed linguistic treatment, see(Frey, 2004a).

Exceptions to the topological field model as described abovedo exist. For instance, par-

enthetical constructions exist as a mostly syntactically independent clause inside another sen-

tence. Consider the following example taken from the German newspaper corpus T̈uBa-D/Z. In

this annotation scheme, parentheticals are attached directly underneath a clausal node without

any intervening topological field. In this example, the parenthetical construction is highlighted

in bold print. Some clause and topological field labels underthe NF field are omitted for clarity.

(1.8) (a) (SIMPX “(VF Man) (LK muß) (VC verstehen) ” ,(SIMPX sagte er), “ (NF daß diese

Minderheiten seit langer Zeit massiv von den Nazis bedroht werden)).”

(b) Translation: “One must understand,”he said, “that these minorities have been massively

threatened by the Nazis for a long time.”

1.2 Organization of Paper

In the following chapters, we will examine the problem of parsing topological field structures

in German. First, we will review previous work in statistical methods for constituency parsing

in general and topological field chunking and parsing in particular (Chapter 2). Then, Chapter

3 will describe applications of topological fields to other natural language processing tasks

like anaphora resolution. Next, we will show that a general statistical parser (Petrov et al.,

2006) achieves state-of-the-art performance on two Germannewspaper corpora, outperforming

previous parsers, many of which were tailored to this domain. We will also perform an analysis
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of our parsing results by examining some of the remaining errors made by the parser, and

consider constructions like ellipses and parentheticals which break the standard prescribed

topological field model presented above and affect parsing results (Chapter 4). After that, we

will explore reranking and self-training as strategies to improve on the results of the Berkeley

parser (Chapter 5). Finally, the last chapter concludes our discussion of German topological

fields with remarks on future directions of research.



Chapter 2

Related Work

The problem of phrase structure parsing can be defined as follows. Given an input string of

natural language text, return a phrase structure tree of thesentence according to a grammar of

the language. As we have seen in the last chapter, linguisticconstituents in freer-word-order

languages sometimes occur in discontinuous segments in a sentence, which causes problems

for many existing parsers that implicitly assume that constituents form continuous substrings.

In particular, parsers must deal with the problem ofnon-projectivity, the case of syntax trees

having crossing branches, which is classically disallowedby CFGs. Topological field parsing

as introduced in the previous chapter allows us to avoid the projectivity problem while still

providing us with useful information about the sentence.

In this chapter, we will review existing general statistical parsing methods suitable for topo-

logical field parsing. Then we will examine previous work in parsing and chunking topological

fields. Finally, we will provide a brief introduction to computational models of German syntax

making use of other grammar formalisms.

2.1 Statistical Parsing

We first provide a formal description of context-free grammars. A CFGG can be defined as

the following 4-tuple:

18
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G = (N,Σ,R,S), where

• N is a set ofnonterminal symbols.

• Σ is a set ofterminal symbols.

• R is a set ofrulesor productionsin the form ofA→ β , whereA∈ N andβ is an ordered

list of symbols drawn fromN∪Σ.

• S is the starting symbol.

Sentences can be generated from a CFG in the following derivational process. Starting

with S, rewrite a nonterminalA by replacing it with the right-hand side of a rule withA on the

left-hand side. Repeat this rewriting process until we end upwith a string of terminals. One

view of parsing is to recover this derivational process for atarget output sentence.

Probabilistic context-free grammars(PCFGs) are an extension of CFGs in which each rule

is associated with a probabilityp ∈ [0,1]. In a consistent PCFG, the probabilities of all the

rules with the same nonterminal on the left-hand side form a probability distribution (i.e., sum

to one). Because natural language is highly ambiguous, many CFG parses can result from a

single sentence. The main utility of PCFGs is to allow us to select the best parse for a sentence

among multiple parses, according to its probability model.Polynomial-time parsing algorithms

exist and are well known for CFGs and PCFGs.

The probability of a parse tree in a PCFG is the product of the probabilities of each of

the rules used in the parse tree. Consider example 2.1 and the associated sample PCFG (Fig-

ure 2.1). Two parse trees can be generated for this sentence,which are shown in Figure 2.1

along with the associated product of rule probabilities used to compute the probability of the

parse.

(2.1) Katzen
cats

fangen
catch

Mäuse,
mice

die
who

schnell
fast

sind.
are.

‘Cats catch mice who are fast.’
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S→ VF LK MF, 0.2

S→ VF LK MF NF, 0.3

S→ C MF VC, 0.1

VF → N, 0.55

LK → V, 0.95

MF → N, 0.25

MF → N S, 0.05

MF → ADJ, 0.15

C → COMP, 0.9

VC → V, 0.8

NF → S, 0.7

N → Katzen, 0.01

N → Mäuse, 0.02

V → fangen, 0.03

V → sind, 0.35

COMP→ die, 0.4

ADJ→ schnell, 0.05

...

Figure 2.1: Partial listing of rules and probabilities in a sample PCFG

Katzen fangen Mäuse, die schnell sind

N V N COMP ADJ V

VF LK MF

C MF VC

S

S

(a) Parse probability: 0.2× 0.55× 0.01× 0.95×

0.03× 0.05× 0.02× 0.1 × 0.9 × 0.4 × 0.15×

0.05× 0.8× 0.35 = 2.37×10−12

Katzen fangen Mäuse, die schnell sind

N V N COMP ADJ V

VF LK MF NF

C MF VC

S

S

(b) Parse probability: 0.3× 0.55× 0.01× 0.95×

0.03× 0.25× 0.02× 0.7× 0.1× 0.9× 0.4× 0.15

× 0.05× 0.8× 0.35 = 1.244×10−11

Figure 2.2: Ambiguous parses for the sentenceKatzen fangen M̈ause, die schnell sind.from

example 2.1 based on PCFG from Figure 2.1
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To create a PCFG parsing model then, we need to determine the rules in the grammar and

the rule probabilities. This is typically done by training the model on atreebank, a collection

of parse trees that have been carefully annotated (usually by humans). The simplest method

would be to take the set of rules present in the trees in a treebank, and assign to each rule a

probability equal to the frequency of their occurrence in the treebank divided by the frequency

of the LHS nonterminal. For example, if the treebank contains 110 occurrences of the rule

VF → N, and VF occurs 200 times in total, the rule would be assigneda probability of 0.55.

This method of probability estimation is a case ofmaximum likelihood estimation. We will

look at more sophisticated methods of training a parsing model in the next sections.

After training and parsing with a parsing model, we next facethe problem of evaluating the

output parses. To do this, we compare the generated parses ona test section of the treebank,

which we did not use in training or in developing the parser, against a gold standard anno-

tation of the same section. The usual method of doing this comparison is to use a family of

constituent-level PARSEVAL measures from Abney et al. (1991).

The most commonly used measures areprecision, andrecall. They are defined as would

be expected based on their usage in information retrieval:

Precision=
# Correctly parsed constituents

# Constituents identified by parser

Recall=
# Correctly parsed constituents

# Constituents in gold standard annotation

Precision and recall can be combined into one score called theF-measure, the harmonic mean

of the precision and recall. Different weights can be given to each of precision and recall, but

typically, F1 is used (equal weights on both).

F1 =
2× Precision × Recall

Precision+ Recall

A constituent is considered to be correctly parsed if the start and end of the constituent are

correctly identified. This is known asunlabelledconstituent accuracy. One can also impose the
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additional requirement that the label (i.e. nonterminal category) assigned by the parser must

match the gold standard annotation, which would be thelabelledconstituent accuracy.

Other measures defined by PARSEVAL consider the number ofcross-bracketsin the sen-

tence. A cross-bracket occurs when the elements spanned by aconstituent in the gold parse

and a constituent in the parser’s output partially overlap,but where neither is a subset of the

other. That is, for three elements (A B C), one posits a constituent over A and B, ((A B) C),

while the other posits one over B and C (A (B C)).

Most work in parsing has used treebanks of newspaper text fortraining and testing. In

English, the most widely used corpus is thePenn TreeBank(Marcus et al., 1993), specifically

sections of it that are drawn fromWall Street Journaltext. In German, three corpora are com-

monly used: NEGRA (Brants et al., 1999), TIGER (Brants et al., 2002), and T̈uBa-D/Z (Telljo-

hann et al., 2004). NEGRA and TIGER are copora based on the newspaperder Frankfurter

Rundschau, whereas T̈uBa-D/Z is based on another newspaper,die tageszeitung. The principal

difference between these German corpora lies in the type of tree structure that is used. NEGRA

and TIGER both emphasize dependency structures, and use crossing branches to model long-

distance dependencies. This means that they must be projectivized before they can be used in

(P)CFG parsing. T̈uBa-D/Z, on the other hand, respects projectivity, using additional annota-

tions on the edges between nonterminal nodes to mark long distance dependencies. Another

important difference is that only T̈uBa-D/Z is annotated with topological fields. This will have

ramifications for our experiments in the next chapter.

We now review existing techniques for parsing phrase structures. We will divide them into

two broad categories based on the type of probability model that they use:generativemodels,

anddiscriminativemodels.

2.1.1 Generative Approaches

In machine learning, learning a generative model involves learning the joint probability distri-

butionP(x,y), wherex is the observed input andy is the output. They are so named because
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sampling from the joint probability distribution can be done to generate instances of(x,y). In

parsing, the input is the sentence, and the output is the parse tree. Finding the best parse for a

sentence is then finding ˆy such that:

ŷ = argmax
y

P(x,y)

= argmax
y

P(x|y)P(y)

But P(x|y) = 1 if y yieldsx, and 0 otherwise. Thus, the above expression can be rewritten as

ŷ = argmax
y s.t. x=yield(y)

P(y)

As we saw in the previous section, one simple way to define a generative probability model

over a CFG is to define the probability of a parse tree to be the product of the probabilities of

the rules used in the derivation of the tree. One major problem with this approach is that it

wrongly assumes that the rule probabilities in the derivation can be determined independently

of each other. With a basic set of nonterminal symbols drawn from linguistic theories, this is

clearly wrong. Consider example 2.1, specifically the relative clausedie schnell sind, “that are

fast”. Relative pronouns in German are marked for gender, case, and number. In this example,

die marks the plurality and the nominative case. The finite verb in the clause,sind, must

agree in person and number with the subject of the sentence, which is the relative pronoun

in this example. Knowing that the relative pronoun isdie, as opposed to, say,das (neuter,

nominative), we can be more confident that the finite verb at the end of the clause issindrather

thanist (singular subject). This dependence, however, is not reflected in the simple PCFG rule

probabilities assigned in Table 2.1.

Strategies to correct this assumption involve refining nonterminal categories into more fine-

grained categories. These parsing models are able to deal with lexical and structural dependen-

cies in rule probabilities because the rule probabilities for each split nonterminal are estimated

separately from the treebank.

One approach is to incorporate lexical information into thenonterminals, in effect creat-

ing many more nonterminal categories. However, this approach creates a much larger model,
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and hence requires a much greater amount of data to estimate the probabilities of rules asso-

ciated with each lexical item. Since most lexicalized rulesare encountered a paltry number

of times in a treebank, sparsity of data and overfitting becomes a severe issue. The sparsity

problem must then be overcome by making other independence assumptions or by smoothing

and interpolating rule probabilities, for example towardstheir part-of-speech.

Collins (1996, 2003) describes three lexicalized statistical parsing models of increasing

linguistic sophistication. These models incorporate the parent, the head word and the part-of-

speech (POS) tag of the head word into nonterminals, and are simply named Model 1, Model 2,

and Model 3. As discussed above, treating the augmented nonterminals as independent labels

in a regular PCFG causes severe sparsity problems, hence further independence assumptions

must be made. In Model 1, the probability of phrase structurerules is decomposed into the

probabilities of generating the head of the right-hand side(RHS), and each of the non-terminals

in the RHS, given the parent node and the head node. Model 2 and Model 3 extend Model 1 to

model other complex linguistic structures, such as the subcategorization frames of words, and

wh-movement.

The Charniak parser1 (1997; 2000) is similar to the Collins Model 1 parser in the wayit

breaks down PCFG rules into probabilities of generating eachproduced nonterminal, given

the parent and the head of the constituent. It differs in conditioning on other information

from the context of the rule application, which is called the“history”, such as for example the

grandparent label.

While the above results have shown that lexicalization is beneficial for parsing of English,

the case is not as clear in German. In Dubey and Keller (2003),PCFG parsing of NEGRA is

improved by using sister-head dependencies, which outperforms standard head lexicalization

as well as an unlexicalized model. The best performing modelwith gold part-of-speech tags

available during parsing achieves anF1 of 75.60%. Sister-head dependencies are useful in

1Not to be confused with later discriminative reranking parsers based on this generative baseline such as
Charniak and Johnson (2005).
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this case because of the flat structure of NEGRA’s trees. Later, Dubey (2005) show that using

morphological information outperforms the lexicalized baseline, with anF1 of 76.3 on the same

corpus using the same training, development, and test sets.

These numbers are much lower than the reportedF1 for labelled English constituency pars-

ing, leading to a belief that parsing in German is harder. However, this may really be a function

of the annotation scheme used in the corpus used rather than the language. NEGRA’s anno-

tation scheme is very flat in the sense that internal structure of phrases is often omitted. So,

for example, the prepositional phraseauf die Bank‘to the bank’ would not contain a noun

phrase constituentdie Bank. Rather, (the part-of-speech tags of) the three words are attached

directly to the PP label. Internal structure, however, can considerably aid parsing. K̈ubler

et al. (2006) show that lexicalization and other parsing techniques used for English do indeed

improve parsing on the T̈uBa-D/Z corpus, which does contain internal structure, yielding F1

numbers comparable to English parsing. Since the German corpora being compared both con-

tain newspaper text, the large difference in performance isattributed to the annotation scheme.

Lexicalization is not the only way to split nonterminals. Other splits can be found based on

linguistic intuitions about subtypes of categories, or by statistical methods that maximize the

likelihood of generating the training data. Intuitively, phrases grouped under one nonterminal

in standard tagsets can be of many types. For example, the determinerthatcan stand on its own

as a noun phrase, or occur with other nominal material as inthat woman. These different uses

of a nonterminal would be expected to have different distributional properties with respect to

the rules of a PCFG, and thus can be usefully split.

Using this intuition, Klein and Manning (2003) designed an unlexicalized parser that is

competitive with lexicalized ones. They found splits such as the determiner split above man-

ually, based on their linguistic knowledge. Later work by Petrov et al. (2006) automates this

process by alternately splitting symbols to increase the expressiveness of the grammar, and

merging symbols to keep the problem size manageable and to reduce the risk of overfitting.

More details of their parser, called the Berkeley parser, will be provided in section 4.1.
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2.1.2 Discriminative Approaches

In contrast to the previous generative approach, discriminative models aim to learn the condi-

tional probability distributionP(y|x) directly. Approaches differ in how they define the prob-

ability of a tree given a sentence. Often, the probabilisticinterpretation is abandoned entirely,

so discriminative parsing boils down to determining the best parse of a sentence by optimiz-

ing some arbitrary function. This flexibility in being able to easily incorporate varied knowl-

edge about parse trees into the optimization function is themajor advantage of discriminative

parsers. There are two main types of discriminative parsers—discriminative reranking parsers,

and parsers using dynamic programming approaches.

In discriminative reranking, a number of “good” parses are generated by generative ap-

proaches as above. These N-best parse trees are then reranked by statistical methods such as

log-linear models, allowing human expert knowledge to be incorporated into the process. The

upper-bound of these methods is the maximum achievable parsing performance from the N-

best list, known as theoracle score. In general English phrase structure parsing, Charniak and

Johnson (2005) found that their 50-best oracleF1-measure is 96.8% on the PennTreebank cor-

pus, which is substantially better than their system’s actual performance of 91.0%, indicating

potential for further improvement under this approach. We return to reranking in Chapter 4.

In dynamic programming approaches, a large number of possible parse trees are represented

compactly in a parse tree forest or chart, and the best possible tree is decoded from this rep-

resentation. One example is the max-margin approach taken by Taskar et al. (2004), which

casts parsing as a classification problem of separating the correct parse of a sentence from the

other candidate parses. Henderson (2004) uses a left-corner history-based model, in which

parsing is viewed as a series of decisions made in sequence, and training a parser is to learn a

probability distribution of the next decision conditionedon the previous ones. Since the num-

ber of previous decisions in a parse is unbounded, a neural network-based approach is used to

learn a finite representation of the previous decisions. Thelarge number of features needed for

these approaches means that tractability is typically an issue, so local features which only con-
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sider information available at a particular production in the tree are used. More recent work by

Huang (2008) introducesforest reranking, which allows usage of non-local features in addition

to local features by an approximate decoding method. Non-local features are computed in a

bottom-up way by reranking subtrees at internal nodes. The performance of this parser on the

Wall Street Journalcorpus is the highest so far for parsers that do not use additional training

data, at anF1 of 91.7%.

2.2 Topological Field Chunkers and Parsers

Existing work in identifying topological fields can be divided into chunkers, which identify

the lowest-level non-recursive topological fields, and parsers, which also identify sentence and

clausal structure.

Veenstra et al. (2002) compare three approaches to topological field chunking based on

finite-state transducers, memory-based learning, and PCFGsrespectively. It is found that the

three techniques perform about equally well. The finite-state transducer approach provides a

F1 of 94.1% using POS tags from the TnT tagger, and 98.4% with gold tags, and the other

approaches provide similar results. In other work by Liepert (2003), a topological field chun-

ker is implemented using a multi-class extension to the canonically two-class support vector

machine (SVM) classification framework. Parameters to the machine learning algorithm are

fine-tuned by a genetic search algorithm, with a resultingF1-measure of 92.25%. Training the

parameters to SVM does not have a large effect on performance, increasing theF1-measure in

the test set by only 0.11%.

As for parsing, the corpus-based, stochastic topological field parser of Becker and Frank

(2002) is based on a standard treebank PCFG model, in which rule probabilities are estimated

by frequency counts. This model includes several enhancements, which are also found in the

Berkeley parser. First, they use parameterized categories,splitting nonterminals according

to linguistically based intuitions, such as splitting different clause types (they do not distin-
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guish different clause types as basic categories, unlike TüBa-D/Z). Second, they take into ac-

count punctuation, which may help identify clause boundaries. They also binarize the very

flat topological tree structures, and prune rules that only occur once. They test their parser

on a version of the NEGRA corpus, which has been annotated withtopological fields using a

semi-automatic method.

Ule (2003) proposes a process termedDirected Treebank Refinement(DTR). The goal of

DTR is to refine a corpus to improve parsing performance. DTR is comparable to the idea

of latent variable grammars on which the Berkeley parser is based, in that both consider the

observed treebank to be less than ideal and both attempt to refine it by splitting and merging

nonterminals. In this work, nonterminals are split and merged by considering the nontermi-

nals’ contexts (i.e., their parent nodes) and the distribution of their productions. Unlike in the

Berkeley parser, splitting and merging are distinct stages,rather than parts of a single iteration.

Multiple splits are found first, then multiple rounds of merging are performed. No smoothing

is done. As an evaluation, DTR is applied to topological fieldparsing of the T̈uBa-D/Z corpus.

We discuss the performance of these topological field parsers in more detail in Chapter 4.

2.3 Other Computational Models of German Syntax

Although we focus on (P)CFG-based models in this work, Germansyntax and parsing have

been studied using a variety of computational grammar formalisms. Here we briefly mention

some of this work. Hockenmaier (2006) has translated the German TIGER corpus (Brants

et al., 2002) into a CCG-based treebank to model word order variations in German. Foth et al.

(2004) consider a version of dependency grammars known asweighted constraint dependency

grammarsfor parsing German sentences. On the NEGRA corpus (Skut et al., 1998), they

achieve an accuracy of 89.0% on parsing dependency edges. InCallmeier (2000), a platform

for efficient HPSG parsing is developed. This parser is laterextended by Frank et al. (2003)

with a topological field parser for more efficient parsing of German. The system by Rohrer
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and Forst (2006) produces LFG parses using a manually designed grammar and a stochastic

parse disambiguation process. They test on the TIGER corpusand achieve anF1-measure of

84.20%.

Topological field parsing concerns itself with the surface syntactic structure that can be

parsed from a sentence using projective syntax trees, but wewould also like a deeper level

of representation that includes a more complete semantic interpretation of the tree structure.

There exist models which maintain both syntactic projectivity and semantic interpretability, by

creating one parse tree for each of these components for eachsentence. So, one parse tree

represents surface order, equivalent to the topological field parsing model described earlier,

and requires projectivity. The other is responsible for representing semantic interpretation and

dominance relations in the tree which correspond to linguistic realities. They may not require

projectivity and may not be fully ordered.

Penn and Haji-Abdolhosseini (2003) provide one such formalism, which combines topo-

logical phenogrammatical structures, with semantically interpretabletectogrammatical struc-

tures. They also provide a simple parsing algorithm for this formalism.

Another such formalism is offered by Duchier and Debusmann (2001), using dependency

trees to represent the two structures, instead of phrase structure trees. They distinguishlinear

precedence(LP) topological dependency trees, which are partially ordered and projective, from

immediate dominance(ID) syntax trees, which are unordered and non-projective.In these

dependency structures, the edges are labelled with either the grammatical function (for ID

trees) as in typical typed dependency trees, or the topological field for LP trees. Unfortunately,

parsing in this framework has been shown to be NP-complete (Koller and Striegnitz, 2002).



Chapter 3

Applications

We have seen in the last chapter that topological fields provide clause-level information about

the structure of German sentences. Here, we motivate the utility of topological field parsing by

examining their application to several NLP problems.

3.1 Part-of-Speech Tagging

In Müller and Ule (2002), part-of-speech tagging and topological field annotation are integrated

into a single process, with each component aiding the other.The system begins by tagging an

input sentence using the TnT trigram POS tagger (Brants, 2000). Each word is assigned a list

of possible POS tags ranked in decreasing order of probability. Then, these tags are fed into

a series of transducers which use hand-crafted finite-stategrammars to annotate topological

fields, embedded clauses, and NP chunks. If the transductionprocess does not result in a parse,

then the next-best POS tag from the ranked list is used and theannotation process is restarted.

If this results in a parse, the newly chosen POS tag is considered the correct tag.

This process was found to reduce POS tagging errors, primarily for verbs and comple-

mentizers. The tagset used in the experiment distinguishesbetween finite and infinite verbs,

and between different kinds of subordinating complementizers, which can be morphologically

identical in German. The clausal context would be able to select the proper category, because

30
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recall that the position of the finite verb depends on the sentence type. The initial POS tagger,

however, relies only on the local trigram context. The main benefit of this combined approach

is that the topological field annotation process injects clausal context into the POS tagging pro-

cess to allow proper disambiguation. Overall tagging erroris reduced from 2.98% to 2.77%.

Another benefit is an increase in parser coverage, though no quantitative evaluation is done to

determine if the increased coverage comes at the price of decreased parsing accuracy.

The authors provide the following example (Example 3.1), where the verbzustimmen

‘agree’, occurs in the exact same local context, though it isinfinite in 3.1(a), and finite in

3.1(b).

(3.1) (a) Gestern
yesterday

wollten
wanted

weder
neither

die
the

Konservativen
conservatives

noch
nor

die
the

Liberalen
liberals

dem
the

Antrag
motion

zustimmen.
accept-INFINITE

‘Yesterday, neither the conservatives nor the liberals wanted to accept the motion.’

(b) Kommentatoren
commentators

erwarten,
expect

dass
that

weder
neither

die
the

Konservativen
conservatives

noch
nor

die
the

Liberalen
liberals

dem
the

Antrag
motion

zustimmen.
accept-FINITE

‘Commentators expect that neither the conservatives nor theliberals will accept
the motion.’

3.2 HPSG Parsing

Like other forms of shallow parsing, topological field parsing is useful as the first stage to

further processing and eventual semantic analysis. In Frank et al. (2003), topological field in-

formation is used to guide parsing in thehead-drive phrase structure grammar(HPSG) frame-

work.

HPSG is a highly lexicalized grammar theory in which lexicalitems are feature structures

that include detailed information about the feature structure’s syntax, semantics, and form,

including requirements on how this feature structure combines with other feature structures.
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Parsing in HPSG consists of finding a way to combine feature structures such that these re-

quirements are satisfied (throughunification). From a computational perspective, the main

problems in parsing HPSGs are parser efficiency and coveragerather than accuracy, since

HPSG grammars are so detailed that any parse for a sentence islikely to be correct.

Also because of the highly lexicalized nature of HPSG, HPSG parsers typically take a

bottom-up approach to parsing, where structures are hypothesized for an input sentence starting

at the level of the lexical items. The main utility of topological fields is to provide top-down

clausal information that can guide the parsing process. They can be useful because topological

fields or field sequences often correspond to phrases in an HPSG parse. For example, the

Vorfeld is an HPSG constituent, and the span from the left bracket containing the finite verb to

the end of the clause is also a constituent in HPSG.

Using this knowledge available from the topological fields,they encode a set of soft con-

straints for the parsing algorithm. In particular, the potential HPSG constituents identified by

the topological fields are used to affect the priority of tasks in the chart parsing algorithm used

for parsing HPSG structures so that parsing decisions that are consistent with the boundaries

of the potential constituent are preferred over those that contradict it.

Testing on the manually annotated test set of Becker and Frank(2002) and using the topo-

logical field parser in that work, HPSG parsing performance was sped up by a factor of about

2 with a coverage loss of less than 1%. The authors further show that using NP and PP chunks

in a similar fashion do not lead to a speed increase, indicating that their hypothesis about the

usefulness of topological fields because of their high-level nature is correct.

3.3 Anaphora Resolution

Anaphora resolution is the task of identifying pairs of linguistic expressions in which one (the

anaphor) refers to the other (the antecedent). Strictly speaking, the antecedent must occur

before the anaphor; if the order is reversed, the phenomenonis known as cataphora.
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Anaphora can take a variety of forms including reflexive pronouns, non-reflexives pro-

nouns, and full noun phrases. These different types of anaphora realization are subject to

different syntactic constraints; for example, a regular pronoun cannot be the direct object of

the clause in which its antecedent is the subject. (*Hei saw himi, where the indices indicate

thatHe andhim refer to the same person.) In theoretical linguistics, these constraints form the

basis of Binding Theory (Haegeman (1994) provides an introduction to the topic), and previous

work in computational anaphora resolution made heavy use ofsyntactic parses using insights

drawn from this theory (Hobbs, 1978; Lappin and Leass, 1994).

Becker and Pecourt (2002) present an approach to anaphora resolution which does not make

use of full syntactic parses. Rather, the algorithm relies ona topological parser to provide the

same type of information regarding the domain that different forms of anaphora can take.

Two levels of domains which can be retrieved from a topological parse are defined: thelocal

domain, which is the immediately dominating finite clause, and themother domain, which

is the clause immediately dominating the local domain. Then, the following constraints are

derived. First, personal pronouns and full noun phrases in the same local domain may not be

coreferential. Second, antecedents of reflexive pronouns must be in the same local domain.

Finally, the antecedent of relative pronouns must be outside of the local domain, in the mother

domain.

The interaction between these three constraints for anaphora resolution can be seen in ex-

ample 3.2. The reflexivesichresolves tosiein the same local domain, and the relative pronoun

die resolves todie Fragen. Thus, the personal pronounsiemust resolve toDie Studenten, since

it may not resolve to the same antecedent as the relative pronoun which is in the same local

domain, as that would render the two coreferential.

(3.2) [Die
the

Studenten]1
students

formulierten
formulated

[die
the

Fragen]2,
questions,

[die]2

that
[sie]1

they
[sich]1

themselves
gestellt
asked

hatten.
had.
‘The students formulated the questions which they had askedthemselves’
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Unfortunately, this work lacks a quantitative analysis, soit is unclear how large a contribu-

tion topological field information made.

3.4 Summary

In this chapter, we have seen three tasks which benefit from topological field information: part-

of-speech tagging, HPSG parsing, and anaphora resolution.The common thread in how topo-

logical fields aid in these tasks is that they provide high-level information which supplements

the available local information. In POS tagging, they provide clausal context to disambiguate

the finiteness of verbs, and the type of complementizer; in HPSG parsing, they provide top-

down information to guide a chart parser to select likely edges to expand; and in anaphora

resolution, they demarcate relevant boundaries for constraints on different kinds of anaphora.

Another area where topological fields may prove to be useful is computational discourse.

Topic-focus ordering in German is known as correlate with topological field structure (Frey,

2004b). One fruitful area of future research would be to explore if topological information

could be helpful for identifying sentential topics and hence aid in modelling the information

structure of a passage.



Chapter 4

Parsing Experiments1

We have seen that topological fields are a useful model of German clausal syntax which can

be handled by a phrase structure parser. In this chapter, we describe our experiments to parse

the TüBa-D/Z and NEGRA newspaper corpora using an unlexicalized latent-variable parser,

and show that we achieve results that are better than the previous state-of-the-art with mini-

mum domain-specific adaption. We also provide an in-depth analysis of the results and show

that systematic exceptions to the topological field model including elliptical and parenthetical

constructions are the main source of remaining errors.

4.1 A Latent-Variable Parser

For our experiments, we used thelatent-variable-based Berkeley parser (Petrov et al., 2006).

Latent-variable parsing assumes that an observed treebankrepresents a coarse approximation

of an underlying, optimally refined grammar which makes morefine-grained distinctions in the

syntactic categories. For example, the noun phrase category NP in a treebank could be viewed

as a coarse approximation of two noun phrase categories corresponding to subject and object,

NPˆS, andNPˆVP.

1Parts of this chapter and the next chapter have been previously published as (Cheung and Penn, 2009).

35
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The Berkeley parser automates the process of finding such distinctions. It starts with a sim-

ple X-bar grammar style backbone (that is, binarized with intermediate ‘bar’ levels), and goes

through iterations of splitting and merging nonterminals,in order to maximize the likelihood

of the training set treebank. In the splitting stage, an Expectation-Maximization algorithm is

used to find a good split for each nonterminal. In the merging stage, categories that have been

oversplit are merged together to keep the grammar size tractable and reduce sparsity. Finally,

a smoothing stage occurs, where the probabilities of rules for each nonterminal are smoothed

toward the probabilities of the other nonterminals split from the same syntactic category.

The Berkeley parser has been applied to the TüBaD/Z corpus in the constituent parsing

shared task of the ACL-2008 Workshop on Parsing German (Petrov and Klein, 2008), achieving

anF1-measure of 85.10% and 83.18% with and without gold standardPOS tags respectively.

This evaluation considered all nodes, not just topologicalfields, and considered grammatical

functions as well as the syntactic category. We chose the Berkeley parser for topological field

parsing because it is known to be robust across languages, and because it is an unlexicalized

parser. Lexicalization has been shown to be useful in more general parsing applications due

to lexical dependencies in constituent parsing (e.g. (Kübler et al., 2006; Dubey and Keller,

2003) in the case of German). However, topological fields explain a higher level of structure

pertaining to clause-level word order, and we hypothesize that lexicalization is unlikely to

be helpful. Furthermore, lexicalized parsing models require a notion of headedness for each

constituent, which may be difficult to define for topologicalfields like theMittelfeld which do

not form a semantically coherent constituent2.

4.2 Data

For our experiments, we primarily used the TüBa-D/Z (Tübinger Baumbank des Deutschen

/ Schriftsprache) corpus, consisting of 26116 sentences (20894 training, 2611 development,

2Thanks to Christopher Manning for bringing this point to ourattention.
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VROOT

SIMPX

VF

NX-OA NX-ON ADVX-MOD
PX-VMOD

VXINF-OV VXINF-HD

$. $[

PDS-HD VAFIN-HD PPER-HD ADV-HD APPR

NX-HD

ADV-HD VVINF-HD VMINF-HDADJX NN-HD

ADJA-HDDas hätte ich schon aus

ästhetischen

Gründen niemals tun können

. ”

ADVX-MODVXFIN-HD

LK MF VC

Figure 4.1: “I could never have done that just for aesthetic reasons.” Sample T̈uBa-D/Z tree

with topological field annotations. Edge labels appear after a node label, separated by a hyphen.

Topological field layer in bold.

2089 test, with a further 522 sentences held out for future experiments)3 taken from the Ger-

man newspaperdie tageszeitung. The corpus consists of four levels of annotation: clausal,

topological, phrasal (other than clausal), and lexical. The annotation scheme is based on a

context-free backbone, contains no traces or empty categories, and encodes grammatical func-

tions. See Figure 4.1 for an example of a tree in the TüBa-D/Z corpus. We define the task

of topological field parsing to be recovering the first two levels of annotation, following Ule

(2003).

We also tested the parser on a version of the NEGRA corpus derived by Becker and Frank

(2002), in which syntax trees have been made projective and topological fields have been au-

tomatically added through a series of linguistically informed tree modifications. All internal

phrasal structure nodes have also been removed. The corpus consists of 20596 sentences, which

we split into subsets of the same size as described by Becker and Frank (2002)4. The set of

topological fields in this corpus differs slightly from the one used in T̈uBa-D/Z, making no dis-

3These are the same splits into training, development, and test sets as in the ACL-08 Parsing German work-
shop. This corpus does not include sentences of length greater than 40.

416476 training sentences, 1000 development, 1058 testing,and 2062 as held-out data. We were unable to
obtain the exact subsets used by Becker and Frank (2002). We will discuss the ramifications of this on our
evaluation procedure.
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Gold tags Edge labels LP% LR% F1% CB CB0% CB≤ 2% EXACT%

− − 93.53 93.17 93.35 0.08 94.59 99.43 79.50

+ − 95.26 95.04 95.15 0.07 95.35 99.52 83.86

− + 92.38 92.67 92.52 0.11 92.82 99.19 77.79

+ + 92.36 92.60 92.48 0.11 92.82 99.19 77.64

Table 4.1: Parsing results for topological fields and clausal constituents in the T̈uBa-D/Z cor-

pus. CB refers to cross-bracketing. Best results in bold.

tinction between clause types, nor consistently marking field or clause conjunctions. Because

of the automatic annotation of topological fields, this corpus contains numerous annotation er-

rors. Becker and Frank (2002) manually corrected their test set and evaluated the automatic

annotation process, reporting labelled precision and recall of 93.0% and 93.6% compared to

their manual annotations. There are also punctuation-related errors, including missing punctu-

ation, sentences ending in commas, and sentences composed of single punctuation marks. We

test on this data in order to provide a better comparison withprevious work. Although we could

have trained the model in Becker and Frank (2002) on the TüBa-D/Z corpus, it would not have

been a fair comparison, as the parser depends quite heavily on NEGRA’s annotation scheme.

For example, T̈uBa-D/Z does not contain an equivalent of the modified NEGRA’s parameter-

ized categories; there exist edge labels in TüBaD/Z, but they are used to mark head-dependency

relationships, not subtypes of syntactic categories.

4.3 Results

We first report the results of our experiments on the TüBa-D/Z corpus. For the T̈uBa-D/Z

corpus, we trained the Berkeley parser using the default parameter settings. The grammar

trainer attempts six iterations of splitting, merging, andsmoothing before returning the final
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grammar. Intermediate grammars after each step are also saved. There were training and test

sentences without clausal constituents or topological fields, which were ignored by the parser

and by the evaluation. As part of our experiment design, we investigated the effect of providing

gold POS tags to the parser, and the effect of incorporating edge labels into the nonterminal

labels for training and parsing. In all cases, gold annotations which include gold POS tags were

used when training the parser.

We report the standard PARSEVAL measures of parser performance in Table 4.1, obtained

by theevalb program by Satoshi Sekine and Michael Collins. This table shows the results

after five iterations of grammar modification, parameterized over whether we provide gold

POS tags for parsing, and edge labels for training and parsing. The number of iterations was

determined by experiments on the development set. In the evaluation, we do not consider edge

labels in determining correctness, but do consider punctuation, as Ule (2003) did. If we ignore

punctuation in our evaluation, we obtain anF1-measure of 95.42% on the best model (+ Gold

tags,− Edge labels).

Whether supplying gold POS tags improves performance depends on whether edge labels

are considered in the grammar. Without edge labels, gold POStags improve performance by

almost two points, corresponding to a relative error reduction of 33%. In contrast, performance

is negatively affected when edge labels are used and gold POStags are supplied (i.e.,+ Gold

tags,+ Edge labels), making the performanceworsethan not supplying gold tags. Incorpo-

rating edge label information does not appear to improve performance, possibly because it

oversplits the initial treebank and interferes with the parser’s ability to determine optimal splits

for refining the grammar.

To facilitate a more direct comparison with previous work, we also performed experiments

on the modified NEGRA corpus. In this corpus, topological fields areparameterized, meaning

that they are labelled with further syntactic and semantic information. For example, VF is split

into VF-REL for relative clauses, and VF-TOPIC for those containing topics in a verb-second

sentence, among others. All productions in the corpus have also been binarized. Tuning the
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Parser LP% LR% F1%

TüBa-D/Z

This work 95.26 95.04 95.15

Ule unknown unknown 91.98

NEGRA—from Becker and Frank (2002)

BF02 (len.≤ 40) 92.1 91.6 91.8

NEGRA—our experiments

This work (len.≤ 40) 90.74 90.87 90.81

BF02 (len.≤ 40) 89.54 88.14 88.83

This work (all) 90.29 90.51 90.40

BF02 (all) 89.07 87.80 88.43

Table 4.2: BF02 = (Becker and Frank, 2002). Parsing results fortopological fields and clausal

constituents. Results from Ule (2003) and our results were obtained using different training

and test sets. The first row of results of Becker and Frank (2002) are from that paper; the rest

were obtained by our own experiments using that parser. All results consider punctuation in

evaluation.

parameter settings on the development set, we found that parameterized categories, binariza-

tion, and including punctuation gave the bestF1 performance. First-order horizontal and zeroth

order vertical markovization after six iterations of splitting, merging, and smoothing gave the

bestF1 result of 91.78%. We parsed the corpus with both the Berkeley parser and the best

performing model of Becker and Frank (2002).

The results of these experiments on the test set for sentences of length 40 or less and for all

sentences are shown in Table 4.2. We also show other results from previous work for reference.

We find that we achieve results that are better than the model in Becker and Frank (2002) on

the test set. The difference is statistically significant (p = 0.0029, Wilcoxon signed-rank).
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The results we obtain using the parser of Becker and Frank (2002) are worse than the

results described in that paper. We suggest the following reasons for this discrepancy. While

the test set used in the paper was manually corrected for evaluation, we did not correct our test

set, because it would be difficult to ensure that we adhered tothe same correction guidelines.

No details of the correction process were provided in the paper, and descriptive grammars of

German provide insufficient guidance on many of the examplesin NEGRA on issues such

as ellipses, short infinitival clauses, and expanded participial constructions modifying nouns.

Also, because we could not obtain the exact sets used for training, development, and testing,

we had to recreate the sets by randomly splitting the corpus.

Comparing across the two corpora, there also is a difference in performance of the parser

on TüBa-D/Z and on NEGRA. Aside from a slightly different set of topological and clausal

categories, the principal difference between the two corpora is that T̈uBa-D/Z contains internal

phrasal annotation, while NEGRA does not. Our results indicate that internal annotation can

improve parsing results on topological fields and clause labels, which complements the result

of Kübler (2005) that parsing topological field labels also improves the parsing performance of

internal phrasal structure.

4.4 Analysis

While PARSEVAL measures provide a good aggregate picture of the performance of a parser,

we also need a more in-depth error analysis in order to identify remaining errors made by the

parser. We now return to the TüBa-D/Z corpus for a series of such analyses.

4.4.1 Category-Specific Results

We first examine the category-specific results for our best performing model (+ Gold tags,

− Edge labels). Overall, Table 4.3 shows that the best performing topological field categories

are those that have constraints on the type of word that is allowed to fill it (finite verbs in
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Topological Fields

Category # LP% LR% F1%

PARORD 20 100.00 100.00 100.00

VCE 3 100.00 100.00 100.00

LK 2186 99.68 99.82 99.75

C 642 99.53 98.44 98.98

VC 1777 98.98 98.14 98.56

VF 2044 96.84 97.55 97.20

KOORD 99 96.91 94.95 95.92

MF 2931 94.80 95.19 94.99

NF 643 83.52 81.96 82.73

FKOORD 156 75.16 73.72 74.43

LV 17 10.00 5.88 7.41

Clausal Constituents

Category # LP% LR% F1%

SIMPX 2839 92.46 91.97 92.21

RSIMPX 225 91.23 92.44 91.83

PSIMPX 6 100.00 66.67 80.00

DM 28 59.26 57.14 58.18

Table 4.3: Category-specific results using grammar with no edge labels and using gold POS

tags
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Problem Freq.

Misidentification of parentheticals 19

Coordination problems 13

Too few SIMPX 10

Paired punctuation problem 9

Other clause boundary errors 7

Other 6

Too many SIMPX 3

Clause type misidentification 2

MF/NF boundary 2

LV 2

VF/MF boundary 2

Table 4.4: Types and frequency of parser errors in the fifty worst scoring parses byF1-measure,

using parameters (+ Gold tags,− Edge labels)

LK, verbs in VC, complementizers and subordinating conjunctions in C). VF, in which only

one constituent may appear, also performs relatively well.Topological fields that can contain

a variable number of heterogeneous constituents, on the other hand, have poorerF1-measure

results. MF, which is basically defined relative to the positions of fields on either side of it, is

parsed several points below LK, C, and VC in accuracy. NF, which contains different kinds of

extraposed elements, is parsed at a substantially worse level.

Poorly parsed categories tend to occur infrequently, including LV, which marks a rare re-

sumptive construction; FKOORD, which marks topological field coordination; and the dis-

course marker DM. The other clause-level constituents (PSIMPX for clauses in paratactic con-

structions, RSIMPX for relative clauses, and SIMPX for otherclauses) also perform below

average.
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4.4.2 Qualitative Error Analysis

As a further analysis, we extracted the worst scoring fifty sentences byF1-measure from the

parsed test set (+ Gold tags,− Edge labels), and compared them against the gold standard

trees, noting the cause of the error. The major mistakes madeby the parser are summarized in

Table 4.4.

Misidentification of Parentheticals Parenthetical constructions do not have any dependen-

cies on the rest of the sentence, and exist as a mostly syntactically independent clause inside

another sentence. They can occur at the beginning, end, or inthe middle of sentences, and are

often set off orthographically by punctuation. The parser has problems identifying parenthet-

ical constructions, often positing a parenthetical construction when that constituent is actually

attached to a topological field in a neighbouring clause. Thefollowing example shows one

such misidentification in bracket notation. Clause-internal topological fields are omitted for

clarity.

(4.1) (a) TüBa-D/Z: (SIMPXWeder das Ausmaß der Schönheit noch der fr̈uhere oder sp̈atere

Zeitpunkt der Geburt macht einen der Zwillinge für eine Mutter mehr oder weniger echt /

authentisch /̈uberlegen).

(b) Parser: (SIMPXWeder das Ausmaß der Schönheit noch der fr̈uhere oder sp̈atere Zeitpunkt

der Geburt macht einen der Zwillinge für eine Mutter mehr oder weniger echt)

(PARENTHETICAL / authentisch /überlegen.)

(c) Translation: “Neither the degree of beauty nor the earlier or later time ofbirth makes one

of the twins any more or less real/authentic/superior to a mother.”

We hypothesized earlier that lexicalization is unlikely togive us much improvement in

performance, because topological fields work on a domain that is higher than that of lexical

dependencies such as subcategorization frames. However, given the locally independent nature

of legitimate parentheticals, a limited form of lexicalization or some other form of stronger

contextual information might be needed to improve identification performance.
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Coordination Problems The second most common type of error involves field and clause

coordinations. This category includes missing or incorrect FKOORD fields, and conjunctions

of clauses that are misidentified. In the following example,the conjoined MFs and following

NF in the correct parse tree are identified as a single long MF.

(4.2) (a) TüBa-D/Z:Auf dem europ̈aischen Kontinent aber hat (FKOORD(MF kein Land und

keine Macht ein derartiges Interesse an guten Beziehungen zu Rußland) und(MF auch

kein Land solche Erfahrungen im Umgang mit Rußland))(NF wie Deutschland).

(b) Parser:Auf dem europ̈aischen Kontinent aber hat(MF kein Land und keine Macht ein

derartiges Interesse an guten Beziehungen zu Rußland und auch kein Land solche

Erfahrungen im Umgang mit Rußland wie Deutschland).

(c) Translation: “On the European continent, however, no land and no power has such an

interest in good relations with Russia (as Germany), and also no land (has)such

experience in dealing with Russia as Germany.”

Other Clause Errors Other clause-level errors include the parser predicting too few or too

many clauses, or misidentifying the clause type. Clauses aresometimes confused with NFs,

and there is one case of a relative clause being misidentifiedas a main clause with an intransi-

tive verb, as the finite verb appears at the end of the clause inboth cases. Some clause errors

are tied to incorrect treatment of elliptical constructions, in which an element that is inferable

from context is missing.

Paired Punctuation Problems with paired punctuation are the fourth most commontype of

error. Punctuation is often a marker of clause or phrase boundaries. Thus, predicting paired

punctuation incorrectly can lead to incorrect parses.

Other Issues Other incorrect parses generated by the parser include problems with the in-

frequently occurring topological fields like LV and DM, inability to determine the boundary
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between MF and NF in clauses without a VC field separating the two, and misidentifying ap-

positive constructions. Another issue is that although theparser output may disagree with the

gold standard tree in T̈uBa-D/Z, the parser output may be a well-formed topological field parse

for the same sentence with a different interpretation, for example because of attachment ambi-

guity. Two judges including the author independently checked the fifty worst-scoring parses,

and determined whether each parse produced by the Berkeley parser could be a well-formed

topological parse. Where there was disagreement, the judgesdiscussed their judgments until

they came to a consensus. Of the fifty parses, it was determined that nine, or 18%, could be

legitimate parses. Another five, or 10%, differ from the goldstandard parse only in the place-

ment of punctuation. Thus, theF1-measures we presented above may be underestimating the

parser’s performance.

4.4.3 Results on Subsets

Another method of examining the results of the parser is to remove suspected problematic

cases—in this domain, sequences of topological fields whichdo not follow the canonical model

described in section 1.1—and determine whether performance improves on the remainder. If

performance is substantially improved, then the filtered-out constructions may be considered

unexplained variance from the standard topological field model, which is currently not well

accounted for. We now define and motivate four levels of restrictions on the topological field

sequences in the TüBa-D/Z corpus. They are presented in increasing order of restrictiveness.

Model A: Full Model This model consists of the full topological field annotations found in

TüBa-D/Z without any restrictions.

Model B: Clauses with Finite Verbs and Infinitival Clauses In this model, all clauses

must be headed by a main verb, either a finite one in the LK or VC field, or an infinitival one in

infinitival clauses. Excluded are sentences like elliptical constructions where a verb is omitted.
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Model C: Only Clauses with Finite Verbs This model also disallows infinitival clauses.

Infinitival clauses do not strictly follow the topological field model, because although they are

assigned a clause-label by TüBa-D/Z’s annotation scheme, no finite verb heads the clause,and

no complementizer or C field is found, even though they are verb-last constructions.

Model D: “Textbook” Model This model is the most restrictive. Only sentences which meet

the following criteria are permitted:

• Clauses follow either the C (MF) VC (NF) verb-last pattern of topological fields, or the

(VF) LK (MF) (VC) (NF) pattern for verb-initial and verb-second clauses.

• Sentence contains at least one clause (this eliminates headlines and meta-data).

• Sentence contains exactly one clause label at the top level,with nothing else other than

punctuation (this weeds out more headlines and parenthetical constructions at the top

level).

• The clause node SIMPX must be a child of the top level, or NF, orVF (this weeds out

more parenthetical constructions).

To create a parser based on each model, we filtered out sentences in the training set that do

not conform to the restrictions imposed by each model, then trained the Berkeley parser on the

remaining sentences. Similarly, we created four test sets by filtering out sentences that do not

fit the model. We tested the four grammars on each of the test sets (Table 4.5).

In general, restricting the power of the model leads to an improvement in parsing perfor-

mance on the corresponding test set. In the full test set (Test Set A), the original model gives the

best parsing performance. As we increase the level of restrictiveness of the test set, however,

this is no longer the case. Test Set B is about equally well parsed by Models A and B, with the

difference not being statistically significant (two-tailed Wilcoxon signed-rankp > 0.99). For

Test Set C, Models A and B still tie for best performance up to statistical significance (p> 0.9),

and interestingly, they outperform Model C itself (p = 0.013). Finally, in the most restrictive
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Test Set\Model Training Set A Training Set B Training Set C Training Set D

M = 20894 M = 19326 M = 17922 M = 10949

Test Set A 95.26/95.04 94.07/93.71 91.82/89.49 81.49/82.78

N = 2089 95.15 93.89 90.64 82.13

Test Set B 95.78/96.08 95.87/96.08 93.98/91.95 82.53/85.54

N = 1945 95.93 95.98 92.95 84.01

Test Set C 95.97/96.41 96.08/96.41 95.65/95.85 81.96/87.31

N = 1802 96.19 96.24 95.75 84.55

Test Set D 97.99/97.90 97.61/97.54 96.31/95.68 98.43/98.42

N = 1076 97.95 97.58 96.00 98.42

Table 4.5: Labelled constituency results on subsets of the test set, using parameters (+ Gold

tags,− Edge labels), after five iterations of splitting and merging. First row shows labelled

precision/recall, second row in italics showsF1 (in %). M is training set size,N is test set size.

Test Set D, Model D outperforms the other models (p < 0.03 for each of the models to Model

D).

These results support the conclusion that non-canonical sequences of topological fields

present in the full test set are not well accounted for by the current topological field model. As

we remove constructions such as parentheticals and ellipses, theF1 of the best model increases

from 95.15% from Test Set A to 98.42% for Test Set D. Also, the significance tests show that

the restrictive models we designed, especially the textbook model, are meaningful subsets of

the original corpus. These results corroborate the findingsof the analysis of the most frequent

error types in the fifty worst parses in section 4.4.2.
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4.4.4 Merging Topological Field Labels

In a similar vein, we can also determine whether the parser isconsistently confusing topological

field labels by performing an experiment where we merge labels in the training set and in the

evaluation. For example, we can determine how widespread confusion between MF and NF is.

We define the following three models, decreasing in their level of discrimination of topological

field labels:

Full Model This is again the original T̈uBa-D/Z model of topological fields.

VF/MF/NF Merged In this model, the three topological fields which can containa hetero-

geneous mix of constituents, VF, MF, and NF, are merged into asingle TOPONODE.

All Merged In this model, all topological field labels are renamed TOPONODE.

Once again, we trained grammars using the Berkeley parser after merging these labels in

the training set, and performed an evaluation using the sameset of topological fields that the

model was trained on.

We see that performance does not improve when we merge topological field labels in train-

ing and testing. In fact, the full model is statistically significantly better than the unlabelled

model (p = 0.0251). These results show that topological field distinctions are useful to the

parser, and that it is the identification of topological fieldboundaries, rather than identification

of the field labels, that is the leading source of remaining errors.

Test Set Full Model VF/MF/NF Merged All Merged

LP/LR 95.26/95.04 94.98/95.12 94.67/94.58

F1 95.15 95.05 94.63

Table 4.6: Parsing results after selectively merging labels in the test set by labelled precision,

recall, andF1-measure (in %), using parameters (+ Gold tags,− Edge labels), after five itera-

tions of splitting and merging



Chapter 5

Improving Topological Field Parsing

While we have achieved good parsing results from the Berkeley parser in the previous chapter,

we have also identified some of the remaining types of errors in the parse output, indicating

that further performance gains are possible. In this chapter, we explore two approaches to this

end—reranking, and self-training.

5.1 Reranking for Paired Punctuation

As a general method, reranking has become popular in a variety of NLP problems outside

of parsing, including machine translation and sentence boundary detection (Shen et al., 2004;

Roark et al., 2006). We have also presented some work on reranking in section 2.1.2 which

uses a discriminative statistical model together with a large number of features (for example,

1.3M in Charniak and Johnson (2005)) to improve parsing results.

Here, we take a far simpler approach of reranking based on onefeature using a hard con-

straint. The main result of this section is not primarily theimprovement in parsing performance

that this simplistic procedure produces, but rather it is toshow that reranking is a promising

area for further research.

The feature over which we perform reranking concerns punctuation which occurs in pairs,

such as quotation marks, parentheses, and brackets. While experimenting with the development

50
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Set N LP% LR% F1% CB CB0% CB≤ 2% EXACT%

All Unreranked 2089 95.26 95.04 95.15 0.07 95.35 99.52 83.86

All Reranked 2089 95.39 95.09 95.24 0.07 95.55 99.57 83.92

Problematic Unreranked 38 81.56 82.84 82.19 0.61 60.53 94.74 28.95

Problematic Reranked 38 85.35 84.20 84.77 0.39 71.05 97.37 31.58

Table 5.1: Effect of constrained reranking, using gold tagsand without edge labels. Problem-

atic here refers to sentences where paired punctuation doesnot occur in the same clause in the

initial parser output.

set of T̈uBa-D/Z, we noticed that the parser sometimes returns parsesin which paired punctu-

ation is not placed in the same clause—a linguistically implausible situation. In these cases,

the high-level information provided by the paired punctuation is overridden by the overall like-

lihood of the parse tree. To rectify this problem, we performed a simple post-hoc reranking

of the 50-best parses produced by the best parameter settings (+ Gold tags,− Edge labels),

selecting the first parse that places paired punctuation in the same clause, or returning the best

parse if none of the 50 parses satisfy the constraint. This procedure improved theF1-measure

to 95.24% (LP = 95.39%, LR = 95.09%).

Overall, 38 sentences were parsed with paired punctuation in different clauses, of which

16 were reranked. The reranked results for both the entire test set as well as the 38 sentences

are shown in Table 5.1. Of the 38 sentences, reranking improved performance in 12 sentences,

did not affect performance in 23 sentences (of which 10 already had a perfect parse), and

hurt performance in three sentences. A two-tailed sign testsuggests that reranking improves

performance (p = 0.0352).

Example 5.1 illustrates how reranking can improve performance. Here, the parser’s best

parse predicts a spurious SIMPX clause spanning the text of the entire sentence, but this causes

the second pair of quotation marks to be parsed as belonging to two different clauses. The
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parser also predicts an incorrect LV field. Using the paired punctuation constraint, our rerank-

ing procedure was able to correct these errors.

(5.1) (a) “ Auch (SIMPX wenn der Krieg heute ein Mobilisierungsfaktor ist) ” , so Pau, “ (SIMPX

die Leute sehen , daß man für die Arbeit wieder auf die Straße gehen muß) . ”

(b) Parser:(SIMPX “ (LV Auch (SIMPX wenn der Krieg heute ein Mobilisierungsfaktor ist))

” , so Pau , “ (SIMPX die Leute sehen , daß man für die Arbeit wieder auf die Straße

gehen muß)) . ”

(c) Translation: “Even if the war is a factor for mobilization,” said Pau, “thepeople see, that

one must go to the street for employment again.”

Surprisingly, there are cases in which paired punctuation does not belong inside the same

clause in the gold parses. These cases are either extended quotations, in which each of the

quotation mark pair occurs in a different sentence altogether, or cases where the second of

the quotation mark pair must be positioned outside of other sentence-final punctuation due to

orthographic conventions. Sentence-final punctuation is typically placed outside a clause in

this version of T̈uBa-D/Z.

More work can be done to find and motivate features for reranking, and to employ a rerank-

ing method more sophisticated than using a hard constraint.For example, more features could

be designed based on the qualitative error analysis done in the previous section to deal with

problematic constructions like parentheticals and ellipses. To investigate the upper-bound in

performance that this type ofN-best reranking is able to achieve, we present some statistics

on our (+ Gold tags,− Edge labels) 50-best list. We found that the average rank of the best

scoring parse byF1-measure is 2.61, and the perfect parse is present for 1649 ofthe 2088 sen-

tences at an average rank of 1.90. The oracleF1-measure is 98.12%, indicating that a more

comprehensive reranking procedure might allow further performance gains. Table 5.2 shows

more statistics on the characteristics of the best parse in terms ofF1 in the 50-best list.
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N 2088

Oracle Labelled Recall 98.01

Oracle Labelled Precision 98.23

Oracle LabelledF1 98.12

Mean best rank 2.61

Median best rank 1

Standard dev. of best rank 6.29

# Perfect rerank possible 1649

# Best rank is not the first parse 278

Mean best rank when not the first parse 13.13

Median best rank when not the first parse 7

Standard dev. when best is not the first parse13.04

Table 5.2: Oracle statistics for 50-best list of TüBa-D/Z test set

5.2 Self-Training

Another area worth exploring for improving parsing performance is to utilize external resources

for training outside of the corpus from which the training and test sets are drawn. Currently,

the best parser performance on the standard test section of theWall Street Journaltreebank in

English uses the method ofself-trainingto make use of more training data (McClosky et al.,

2006). Self-training is a kind of semi-supervised method inwhich a learning algorithm is

trained on its own output. Basically, the parser is first trained on an initial training set, is then

used to parse a new unlabelled data set, and then retrained onthe original training set together

with the recently parsed, additional data set. In McClosky etal. (2006), the standard training

sections of the WSJ (∼40k sentences in total including training and test sections) is used as

the initial training set, and a section of the much larger, but unlabelled, North American News
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Text corpus (Graff, 1995) is used as the additional data set (2M sentences from theLA Times

section). Using the Charniak parser with reranking (Charniakand Johnson, 2005), labelledF1

performance on the test set improves from 91.3% without self-training to 92.1%.

A related method is that ofco-training, where multiple “views” of a problem cooperate

to produce annotations for unlabelled data, which can then be used as training data. Let us

illustrate with the procedure described by Sarkar (2001). In this work, a small set of labelled

data is used to train two “views” into the parsing problem. The first (called H1) is a supertag-

ging model that assigns elementary trees in theLexicalized Tree-Adjoining Grammar(LTAG)

formalism to input words. The second (called H2) is a model that creates attachments between

elementary trees to produce a parse for the sentence.

Co-training proceeds as follows. First, H1 and H2 are trainedon the labelled data set.

Then, a small portion of the unlabelled data set is processedthrough H1 and H2. The most

probablen sentences of this portion that H1 and H2 annotate are added tothe labelled set, and

the process iterates. After each iteration,n increases, in effect relaxing the confidence threshold

necessary for a parse to be added to the labelled set. After all the unlabelled data is exhausted,

the combined originally labelled and newly labelled set canbe used to train a final parser. On

WSJ, this procedure improves parsing performance from 70.6%F1 before co-training to 79.8%.

While these semi-supervised methods are able to reduce reliance on labelled data, they can

also easily magnify errors in the parser’s model. McClosky etal. (2006) find that self-training

does not work well in conjunction with the base generative parser alone, and only improves

the performance of the reranking parser. Sarkar (2001)’s improvement in performance can be

attributed to the small initial labelled training set that he uses (9695 sentences). Our goal then

is to expand the availability of training data without compromising on the data quality.

We overcome this problem by using information from another labelled treebank, NEGRA.

As mentioned in Chapter 4, we have obtained a version of NEGRA that has been made projec-

tive and semi-automatically annotated with topological fields. After parsing NEGRA with our

initial parser trained on T̈uBa-D/Z data, we can then use the NEGRA annotations as a guide
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From NEGRA From TüBa-D/Z

CL SIMPX, RSIMPX, PSIMPX

LK C

VF

MF MF, MFE

RK VC VCE

NF

DF DM, LV

Table 5.3: Equivalence classes between the TüBa-D/Z and NEGRA annotation schemes for

topological fields and clause labels. Each row defines one equivalence class.

to control the quality of the parses by filtering out parses where the parse and the annotations

disagree.1

We use the following filtering mechanism. First, we define a set of equivalence classes

over the sets of topological fields and clausal labels found in the two corpora in order to enable

a comparison over the different annotation schemes used (Table 5.3). Then, we require that

the topological field and clause nodes in the NEGRA annotationand the initial parse made

by the model trained on T̈uBa-D/Z agree in terms of their start, end, and label according to

the equivalence classes defined. Any mismatch results in theparse being excluded from the

self-training training set.

We tested four versions of the self-training procedure by varying two binary parameters:

whether we use filtering or not, and whether we used all of NEGRA, or one quarter of the

sentences randomly drawn from the full set. Of the 16476 sentences in the full NEGRA, 6488

passed the filtering mechanism. Of the one quarter subsection, 1621 sentences of 4119 passed

1The other logical possibility is to use TüBa-D/Z as a guide to parsing NEGRA. However, as we noted earlier,
NEGRA’s topological field annotations were done semi-automatically and contain noise and errors, and are thus
not as reliable an evaluation standard.
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Proportion Added Filtering LP% LR% F1% CB CB0% CB≤ 2% EXACT%

No self-training 95.26 95.04 95.15 0.07 95.35 99.52 83.86

1/4 − 94.99 94.99 94.99 0.08 94.78 99.14 83.53

1/4 + 95.32 95.21 95.26 0.07 95.07 99.43 83.63

Full − 95.26 95.00 95.13 0.08 94.59 99.23 83.87

Full + 95.43 95.18 95.31 0.08 94.83 99.43 84.16

Table 5.4: Parsing results for topological fields and clausal constituents in the T̈uBa-D/Z cor-

pus’s test set after self-training. Best results in bold.

filtering. The results of self-training after incorporating these sentences are presented in Table

5.4. All results use gold POS tags, no edge labels, and are based on the Berkeley parser after

five iterations of splitting and merging.

Although the differences in parsing performance are not significant between the four mod-

els using self-training and the original without self-training, we can comment on some trends

in the results. These results seem to confirm the finding by McClosky et al. (2006) that self-

training by itself is not useful for improving performance over a baseline generative parser,

reducingF1 from 95.15% to 95.13% using the full NEGRA corpus. On the otherhand, per-

formance improves slightly to 95.31% if only filtered sentences are added to the training set.

These results suggest that some source of information outside of the generative parsing pro-

cess is necessary for self-training to be successful. This could be a reranker, which considers

additional features that can be designed by human experts, or filtering, which acts as a kind of

quality control mechanism for the new trees to be added to thetraining set.

Much work remains to be done in working out the specific filtering settings that would

maximize performance gains, as well as in determining a moresophisticated weighting system

that would better reflect the higher confidence in the TüBa-D/Z training sentences over the

parsed sentences from NEGRA.



Chapter 6

Conclusions

In this paper, we examined applying the latent-variable Berkeley parser to the task of topo-

logical field parsing of German, which aims to identify the high-level surface structure of

sentences. Without any language or model-dependent adaptation, we obtained results which

compare favourably to previous work in topological field parsing. We further examined the

results of doing a simple reranking process, constraining the output parse to put paired punc-

tuation in the same clause. We also considered self-training as a method of gathering more

training data, using a version of NEGRA with topological fieldannotation as a filter to assure

quality of the additional parses that we are feeding back into the parser. Finally, we considered

some applications of topological fields.

The following is a summary of the contributions of this paperin more detail with comments

on areas of future work.

The Berkeley parser for parsing topological fields We have shown that the Berkeley parser

is a good generative model of parsing German topological field and clause structure. The parser

performs extremely well in identifying the traditional left and right brackets of the topological

field model; that is, the fields C, LK, and VC. The parser achievesbasically perfect results on

these fields in the T̈uBa-D/Z corpus, withF1-measure scores for each at over 98.5%. These

scores are higher than previous work in the simpler task of topological field chunking.

57
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Noise in the TüBa-D/Z corpus Through a qualitative analysis of the worst parsed sentences

and through experiments on subsets of the corpus, we have found that infrequently occurring

topological fields and constructions are poorly parsed and not well accounted for by the canon-

ical topological field model. Parenthetical constructionsand ellipses are of particular concern.

Reranking and self-training While we have explored simple reranking and self-training

methods which have given small accuracy improvements, muchmore work can be done to

refine the proposals in this paper. A more comprehensive discriminative reranking of the parser

output would be able to incorporate more contextual information; for example, it would be able

to include features dealing with parentheticals and ellipses, which are problematic as we have

discussed. Also, a more sophisticated self-training process utilizing other German corpora

could provide a valuable source of additional training data.

Applications We have looked at three applications of topological fields inthe literature: part-

of-speech tagging, deep parsing, and anaphora resolution.The utility of topological fields in

these applications is due to their high-level clausal nature which complements local information

available for these tasks. Future work on applying topological fields will also likely share this

property. In addition, topological fields may be useful in computational discourse, due to their

correlation with the information structure of a passage.
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