
Sequence Clustering and Labeling for Unsupervised Query
Intent Discovery

Jackie Chi Kit Cheung
∗

Department of Computer Science
University of Toronto
Toronto, ON Canada

jcheung@cs.toronto.edu

Xiao Li
∗

Facebook Inc.
Palo Alto, CA USA
xiaol@fb.com

ABSTRACT
One popular form of semantic search observed in several
modern search engines is to recognize query patterns that
trigger instant answers or domain-specific search, producing
semantically enriched search results. This often requires un-
derstanding the query intent in addition to the meaning of
the query terms in order to access structured data sources.
A major challenge in intent understanding is to construct
a domain-dependent schema and to annotate search queries
based on such a schema, a process that to date has required
much manual annotation effort. We present an unsuper-
vised method for clustering queries with similar intent and
for producing a pattern consisting of a sequence of semantic
concepts and/or lexical items for each intent. Furthermore,
we leverage the discovered intent patterns to automatically
annotate a large number of queries beyond those used in
clustering. We evaluated our method on 10 selected do-
mains, discovering over 1400 intent patterns and automati-
cally annotating 125K (and potentially many more) queries.
We found that over 90% of patterns and 80% of instance
annotations tested are judged to be correct by a majority of
annotators.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—clustering

General Terms
Algorithms, Experimentation

Keywords
semantic search, query intent discovery, clustering

∗The work was done while both authors were with Microsoft
Research, Redmond.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WSDM’12, February 8–12, 2012, Seattle, Washington, USA.
Copyright 2012 ACM 978-1-4503-0747-5/12/02 ...$10.00.

1. INTRODUCTION
In the traditional IR model of search, a search engine is re-

sponsible for returning documents relevant to a search query.
Ranking algorithms using surface-level word statistics have
been developed which have made keyword search the dom-
inant form of web search today. Modern search engines are
moving beyond this paradigm by more deeply analyzing the
structure and semantics of search queries. Doing so can
not only improve ranking results, it can also allow domain-
dependent types of semantically enriched search results to be
displayed in addition to the standard ranked list of relevant
documents. For example, a search query that matches the
pattern “[city] weather” would trigger a weather forecast for
that city, while one that matches “[movie title] showtimes
[location]” would return an appropriate list of showtimes
at cinemas near the specified location. These instant an-
swers understand and directly address the information need
of the user, obviating the step of clicking into and searching
through an external document.

A related trend is the development of structured (or ver-
tical/specialized) search, which allows precise search within
a domain. Structured search requires a query understand-
ing component to extract structured information that is
matched with a back-end database. A query may be in
the form of a keyword search, which is relatively unstruc-
tured with free word order, such as “hotel seattle february”.
Or, a query may be in a more natural language form, as is
often the case with virtual assistant applications on mobile
devices. These applications take a voice command from a
user, such as “Book a reservation at an Italian restaurant for
7:30 tonight”, then perform the desired action, or automate
a substantial portion of it, such as by filling in an online
reservation form.

One key issue for these applications is to connect the
surface-level query to a structured data source according to
the intent of the user. Doing so requires an intent under-
standing system, which makes use of a schema. We define a
schema as consisting of a domain, a set of domain-dependent
intents, and slots or concepts. Slots are often assumed to be
shared among different intents in the same domain.

Given a schema, an intent understanding system consists
of the following: (1) domain classification, (2) intent detec-
tion, and (3) slot filling. For example, “harry potter show-
times boston” should be classified into the Movie domain
with the intent FindShowtimes and slots including Title =
“harry potter” and Location = “boston”. The first compo-
nent can be viewed as identifying a coarse semantic class
of query intent to limit the hypothesis space of the follow-

ing components. Next, intent detection and slot filling aim
at finding more fine-grained user intents within the domain
of interest and extracting the slots related to that intent.
The last two components are tightly coupled and are often
modeled jointly.

There have been two major approaches to doing schema
discovery to enable such an intent understanding system.
The first is to use a grammar-based approach, defining rules
in a domain and matching queries to these predefined rules,
often based on the schema of the back-end database. While
such an approach may work for simple domains and intents
such as accessing weather reports, it is difficult to scale up
to a larger number of domains. In addition, manually craft-
ing grammar rules imposes a high cognitive load on humans
and is often imprecise. Another approach is to use statistical
models to classify queries by intent and to label sequences for
slot filling. While this eliminates the need to specify rules,
it still requires, in addition to the predefined schema, much
annotation effort in the form of labeled data to train super-
vised machine learning models. Although semi-supervised
methods [14] have been developed to reduce this cost, a rea-
sonably large amount of labeled data is still needed as“seeds”
to bootstrap learning. Furthermore, by relying on a prede-
fined schema, both methods are susceptible to biases which
can result in a mismatch to a user’s real information need.
For example, in the Products domain, databases often con-
tain fields like “serial number” which are rarely queried by
users or used as search criteria. Human-designed schemata
generally do not cover all intents and their associated slots;
search engines to date know how to semantically interpret
a subset of user requests that are popular or important like
“[city] weather”, but there are many more that are yet to be
understood and answered.

The goal of this work is to discover popular user intents
and their associated slots, and to annotate query instances
accordingly in a completely unsupervised manner. As in
[1], we define intent as represented by a pattern or tem-
plate consisting of a sequence of semantic concepts or lex-
ical items. Continuing the above example, a pattern that
describes “harry potter showtimes boston”would be “[movie
title] showtimes [city]”, and other queries that would be an-
notated with the same pattern might include “madagascar
2 showtimes sydney” or “planet of the apes showtimes lon-
don”. We present a sequence clustering method for finding
such clusters of queries with similar intent, and an intent
summarization method for labeling clusters with such an
intent pattern that describes the queries in the cluster. As
such, our system not only discovers the patterns and slots
in a domain, it also produces annotated instances of each
pattern, and allows classification of new queries not used in
clustering into the discovered patterns. Figure 1 shows the
components of our system.

We evaluate our methods using Mechanical Turk judg-
ments, and find that over 90% of patterns and over 80% of
instances within a pattern are correct according to a major-
ity of judges. Our approach discovers patterns that cover
up to 20% of the traffic within a domain, and this number
can be easily adjusted at the cost of precision. It can thus
facilitate structured search, and is an important step toward
fully automating query intent understanding.

2. RELATED WORK
Query clustering has been applied to various tasks, such

Sequence Clustering

Feature Extraction

Intent Summarization

Unseen Instance Annotation

Figure 1: Components of our intent discovery system.

as to construct domains of similar documents or to find
documents that may be interesting to a user [4], to semi-
automatically improve identification of frequent natural lan-
guage queries [28], or for query refinement and recommen-
dation [2, 3, 24]. In contrast, this work aims to discover
common query intent patterns.

There has been work on concept (slot) discovery, which
aims to discover entities that belong to the same concept
(according to the IS-A relation) and to label these concepts.
One body of work discovers concepts by noting that they
often appear in the same patterns in context [15, 17], stem-
ming from work on hyponym and relation extraction [10, 23].
The related distributional hypothesis [9], which states that
words with similar meaning appear in similar contexts, mo-
tivates other work [18, 20]. In [7], named entities in queries
are classified into a list of predefined classes using a weakly
supervised method. Whereas the above approaches dis-
cover flat concepts, ontology building places lexical items
and named entities into a hierarchy [5, 26, 19]. Within the
framework of the Semantic Web, the discovered ontologies
can be used to facilitate inter-website communication [6, 12,
for example].

The algorithm of Sarkas et al. [25] maps a query to a table
of structured data and to attributes of the table. While
they train an unsupervised model to disambiguate between
possible mappings, their method requires a highly developed
and structured domain schema, which may be available for
some domains like the Products domain that they test their
method on, but is not appropriate for discovering intents in
new domains.

On automating sequence labeling of queries, the work
most related to ours is the use of supervised or semi-
supervised machine learning models for semantic annota-
tion. In [13], a distinction is defined between intent heads,
which are slot names indicative of the intent such as“movie”,
and intent modifiers, which are slot fillers such as rio or ma-
trix. Discriminative classifiers are trained on labeled data
to recognize the distinction. In contrast, our unsupervised
technique does not require making this decision and auto-
matically decides which words should be generalized into a
slot based on the clusters discovered. Semi-supervised and
supervised methods to do query tagging using conditional
random fields have also been proposed [14, 29], but these
methods still require a predefined schema.

The work of Agarwal et al. [1] studies the importance of
query templates and structured patterns. They find that
a large majority of queries follow some query template in
most domains they examined, and that most queries in a do-
main can be covered by a small number of templates (in the

hundreds). They also investigate the problem of template
discovery. Starting from a seed set of in-domain queries,
websites, or templates, a click graph, and at least a partial
schema for a domain, their method produces a ranked list
of templates relevant to that domain by an iterative graph
walking method. Our work is completely unsupervised and
does not require any seed annotations or schemata; while
we do use a semi-supervised method to extract queries in
a domain (Section 7.1), this is merely to speed up compu-
tation and facilitate analysis of the resulting clusters. Our
method can be applied to the full query log, and we describe
two algorithmic speed-ups to support this in Section 4.3. In
addition to supporting structured search, query templates
can also be used to improve query recommendations [27].

3. FEATURE REPRESENTATION
At the core of our approach is the use of feature vectors

to represent queries. The key advantages of a feature vec-
tor representation are that semantic and lexical information
about the queries can be encoded as features, and similarity
scores can be computed between queries, as we will describe.

We let q = (w1, w2, . . . , wM) denote a query consist-
ing of M word tokens. We create a feature vector of N
dimensions for each word token in the query, i.e., xi =
(xi,1, xi,2, . . . , xi,N)T , i = 1, 2, . . . ,M . We will discuss the
features shortly. A query, therefore, is represented by an
N × M matrix denoted as Xq = (xq

1, . . . ,x
q

M), where N is
fixed and M varies based on query length. Given a large set
of queries {q}, we would like to find query clusters based on
Xq . To find semantically meaningful clusters, it is crucial to
construct the features in such a way that semantically sim-
ilar words are close to each other in the vector space. We
leverage a knowledge base to achieve this goal.

3.1 Knowledge Base
Freebase is a large knowledge base with structured data

harvested from many sources such as Wikipedia. We used
the Freebase “Simple Topic Dump” data which consists of
over 20 million entities assigned to over 13K concepts. There
can be multiple concepts associated with one entity, and
multiple entities corresponding to the same surface form. We
created a list of concepts for each surface form by merging
the concepts of all entities for that surface form. Although
the Freebase concepts are hierarchical, we do not make use
of the structure of the hierarchy, because it is very flat and
uninformative, and because some of the concepts serve a
Freebase-internal functional purpose, such as to group to-
gether topics defined by a particular Freebase user.

We removed five concepts that each appear in more than
two million entities1, as these are too common to be infor-
mative. This results in 13647 concepts.

3.2 Feature Extraction
Our feature vector space consists of N = NS +NL dimen-

sions, where NS represents the number of semantic features
and NL is that of lexical features.

We extract semantic features based on the knowledge base
data: if an n-gram wt:t+n in q matches an entity surface form
in the freebase data, then for each xi, i = t : t + n, we set

1“/common/topic” (which appears in every entry), “mu-
sic/track”, “book/book edition”, “/book/written work” and
“book/book”

[car]
[episode]
[model]
[season]
[year]

...
review

test

2010 buick regal review
0 1 1 0
1 0 0 1
0 1 1 0
1 0 0 0
1 0 0 0
...
0 0 0 1
0 0 0 0

Figure 2: Sample query representation, abbreviated. Notice
that buick and regal share similar feature vectors because
they are found in a surface form buick regal in Freebase.

the value 1 to all the feature dimensions represented by the
Freebase concepts that contain this entity surface form.

Next, we extract domain-independent lexical features
from a corpus. Specifically, we extract all the word-types in
the Wall Street Journal corpus that are not predominantly
proper nouns or cardinal numbers (i.e., the most common
part-of-speech tag for that word-type is not CD, NNP or
NNPS). In other words, for each wi in q, we assign the value
1 to the feature dimension corresponding to the word iden-
tity. We removed such words because during intent sum-
marization, we would like our algorithm to generalize these
words into an appropriate semantic concept. For example,
many clusters in the Cars domain contain a specific model
year, like “2010”, and it would be more useful to generalize
this to the semantic concept [year] than to produce a pat-
tern containing the specific year “2010”. Figure 2 shows an
example of a query’s feature representation.

3.3 Inverse Entity Frequency
In standard information retrieval, it is well known that

not all words are equally important. Similarly, not all se-
mantic features extracted from Freebase are equally impor-
tant in determining query similarity. We define a measure
of inverse entity frequency that is analogous to inverse doc-
ument frequency in information retrieval. Intuitively, the
importance of a shared concept in determining query sim-
ilarity is inversely correlated with the number of entities
contained in that concept, so that sharing a very general
concept like [album] provides only weak evidence of similar-
ity, while sharing a specific concept like [sports car] provides
stronger evidence.

We experimented with several specific instantiations of
this idea, and we found that using the reciprocal entity fre-
quency worked best. That is,

REF (y) = 1/size(y), (1)

where y is a Freebase concept or lexical item, and size(y) is
the number of surface forms that concept y contains, or 1 if
y is a lexical item.

4. CLUSTERING
We now introduce our sequence clustering method to dis-

cover groups of queries with similar intents. Sequence clus-
tering is one of the most widely used techniques for pattern
discovery from sequential data, and is used in virtually ev-
ery field that deals with sequences, e.g., gene sequences in
biology or time series in telecommunications.

There are typically three strategies for clustering sequen-
tial data2. The first strategy relies on defining a similarity
metric between a pair of sequences. Based on a similarity
matrix constructed for the entire sequence collection, a good
number of clustering algorithms can be applied, including
agglomerative clustering such as single-link and complete-
link algorithms, partitional clustering such as medoid-based
method, and spectral clustering [16]. A second approach is
to transform sequences into feature vectors of fixed dimen-
sions, and then to perform any clustering algorithm that
operates on feature vectors, e.g., k-means. Note that since
similarity can be computed from feature vectors, the algo-
rithms mentioned above for the first strategy are applicable
here as well. Finally, there is a class of methods based on
generative models. Hidden Markov models, for example, are
widely used for modeling sequential data. Clustering is done
iteratively by alternately updating model parameters and
computing the likelihood of a cluster generating a sequence.
Non-parametric approaches are used to deal with the issue
of the unknown number of concepts (topics). However, we
expect a very large number of concepts in web queries, mak-
ing such an approach infeasible.

Orthogonal to the above strategies, clustering can be per-
formed in a bottom-up, top-down or partition-based fash-
ion. In this work, we adopt a bottom-up approach based on
a similarity metric. The reason is that the number of clus-
ters is likely on the same scale with the number of queries,
since there is a long tail of rare queries that each repre-
sent a unique intent. This prevents us from starting with
K-partitions or applying a top-down approach. Specifically,
we choose agglomerative clustering using a distance metric
based on dynamic time warping (DTW) between a pair of
sequences [21], which we will describe in more detail. While
there might be other clustering strategies that could work
well, but it is beyond the scope of this work to give a concise
evaluation of different clustering algorithms.

4.1 Distance Metric
First, we let d(xi,xj) denote a distance metric defined on

a pair of static feature vectors. Let ri be the REF-weighted
vector for xi. That is,

ri = (REF (1)× xi,1, . . . , REF (N)× xi,N)T . (2)

Then, we define the distance as

d(xi,xj) = log

(

1−
ri · rj
|ri||rj |

)

. (3)

Given a query pair (q, q′), we define an alignment as a set
of edges E connecting the two sequences of nodes such that
(1) every node has at least one edge, and (2) there are no
crossing edges (monotonic assumption). The optimal align-
ment is the one that produces the smallest total distance
computed by summing over all edges, i.e.,

E∗ = argmin
E

∑

(i,j)∈E

d(xq
i ,x

q′

j). (4)

The DTW distance can be efficiently computed by dynamic
programming (Algorithm 1). We normalize the DTW dis-
tance by the average query length to compensate for the

2See [11] for a general overview of clustering algorithms, and
[8] for one specific to clustering sequential data.

Algorithm 1 Dynamic Time Warping

1: DTW (0, 0) = 0
2: DTW (i, 0) = DTW (0, j) = ∞, i = 1..|q|, j = 1..|q′|
3: for i = 1 to |q| do
4: for j = 1 to |q′| do

5: DTW (i, j) =
d(xq

i ,x
q′

j) + Min(DTW (i− 1, j),
DTW (i, j − 1), DTW (i− 1, j − 1))

6: end for
7: end for
8: return DTW (|q|, |q′|)

impact of sequence lengths on distance scores. So,

dist(Xq, Xq′) =
min
E

∑

(i,j)∈E
d(xq

i ,x
q′

j)

(|q|+ |q′|)/2
. (5)

4.2 Agglomerative Clustering
Agglomerative clustering starts by treating each data

point (a sequence in our case) as a cluster, and then it-
eratively merging pairs of clusters with the lowest distance
(equivalently, highest similarity) until a stopping criterion is
satisfied. After each merging step, the cluster distances are
recalculated as necessary.

Different versions of agglomerative clustering exist de-
pending on their definition of cluster distance. In single-link
clustering,

dist(C,C′) = min
q∈C,q′∈C′

dist(Xq, Xq′), (6)

while in complete-link clustering,

dist(C,C′) = max
q∈C,q′∈C′

dist(Xq, Xq′). (7)

If D is the number of input data-points (sequences),
single-link clustering has time complexity O(D2), whereas
complete-link clustering has time complexity O(D2 logD)
[16]. In practice, single-link clustering is faster as well. In
our experiments, we evaluated both single- and complete-
link agglomerative clustering. Figure 3 shows a sample out-
put cluster in the Cars domain using single-link clustering.

There also exists average-link agglomerative clustering,
which takes the average distance between cluster instances
to be the cluster distance, but it is computationally more
expensive and its behavior would simply be intermediate
between single- and complete-link, so we did not use it in
our experiments.

The stopping criterion can be determined in several ways.
Two popular options are to threshold the minimum inter-
cluster distance of the remaining clusters, or to set a fixed
number of merging iterations. We opt for the former, be-
cause the number of queries with similar intent that should
be merged is unknown, and this number is different for each
domain. At this point, all singleton clusters are removed,
and the remaining non-singleton clusters are passed to intent
summarization. After the sequence clustering step, when we
say cluster we refer to non-singleton clusters.

4.3 Speed-up and Distributed Computation
The main computation bottleneck is to compute the sim-

ilarity matrix between sequences, which is quadratic in the
number of sequences. Since each similarity calculation is

Queries
2007 audi rs4 review
2007 infiniti m45 review
2004 audi s4 review
2010 jaguar xj review
2011 jaguar xj review
1987 bmw m6 review
2010 pontiac gto review
09 acura rl review

2010 audi tt review video
2010 buick regal review
2010 mazdaspeed 3 review
2010 acura zdx review
Pattern
[year] [model] review

Figure 3: Sample query cluster, with alignment and pattern
produced by intent summarization.

independent of other calculations, the matrix computation
can be naturally parallelized across the cells of the matrix.

Another possible algorithmic speed-up is to use the in-
verted index trick to filter out calculations for cells which
have no common features. To do so, an inverted index is
first constructed from the dimensions of the feature vectors
to the queries for which this dimension is non-zero. Then,
to compute the similarity between a query q and all of the
other queries, the inverted index is consulted for each non-
zero dimension in q to obtain a set of queries with at least
one overlapping feature. The similarity score calculation is
then only performed on this subset of queries, as the sim-
ilarity scores for the other queries are zero. We did not
implement this method, as we found computing the entire
similarity matrix to be feasible, but we mention this method
to show that our method can be scaled to many more query
instances if so desired.

5. INTENT SUMMARIZATION
After clustering, groups of queries with similar intent are

constructed. The next step is to produce a pattern (i.e., a
label sequence of slots and lexical items) that describes the
intent of the cluster, which we call intent summarization.
We denote a pattern by p = (y1, y2, . . . , yL), where L is the
length of the label sequence. This length is less than or equal
to the lengths of the queries being summarized, because one
semantic concept may consume multiple query words.

Intent summarization is useful for several reasons. First,
if these automatically discovered intents are to inform de-
velopment of structured search, a human-readable and in-
terpretable pattern would be highly useful to connect the
intents to a structured database, or to construct new knowl-
edge bases or tools based on the pattern. Second, the pat-
terns produced by intent summarization would allow gener-
alization of the intents to new query instances, as we will
demonstrate in Section 6.

In this work, we use Freebase concepts as slots. Doing
so allows us to avoid manually building domain-dependent
lists of slots. We use the head word of the name of the Free-
base concept as the slot name, unless it is the generic word
“topic”, in which case we use the concept’s parent concept
in the Freebase hierarchy. The head word is found by using

an in-house chunker with head-finding heuristics. So, “[city
with dogs]” would become “[city]”.

Intent summarization consists of the following steps.
First, the queries are segmented and aligned. Each align-
ment represents one slot in the pattern. Then, for each po-
sition in the pattern, we select a Freebase concept or lexical
item to represent the segments at that position. We now
describe these steps in more detail.

5.1 Segmentation and Alignment
We segment each query based on the feature vector rep-

resentation of the words in the query. As a result of the
feature extraction procedure discussed in Section 3.2, words
that belong to the same entity in Freebase have very simi-
lar feature vector representations; e.g., “san” and “francisco”
because of the city name “san francisco”. We thus segment
the query greedily by considering the cosine similarity of ad-
jacent feature vectors, merging words into a segment if the
similarity is below a low threshold.

After segmentation, all segments at the same absolute po-
sition are aligned and passed on to the concept selection step.
There may be errors in clustering or segmentation that lead
to some queries having more segments than others, in which
case we take the floor of the median to be the length of the
pattern. This is, however, rare, because the dynamic time
warping algorithm in the clustering step usually results in
low similarity in these cases. Also, our concept selection
method is robust to many such errors, as we will describe.

5.2 Concept Selection
Suppose we have a cluster of K queries. We define a

function, yi = generalize(Si = s1i , . . . , s
K
i), which, given a

multiset of segments Si at a fixed position i, returns a Free-
base concept or lexical item yi that summarizes the input
segments. Note that an arbitrary order is assigned to Si so
that all of its segments can be enumerated (as indexed by
the superscript), and that each segment comes from a dif-
ferent query in the cluster. We assume that the function is
independent of the position, so for clarity, we will omit the
subscript i in this section.

One natural way to do generalization is to pick the concept
that contains the most input segments according to Free-
base. This approach, however, turns out not to be robust.
Noise, whether from the clustering procedure, or, more com-
monly, from the Freebase concept omissions and ambiguity
of the segments can lead to incorrect generalizations.

For example, suppose we would like to generalize the first
position of the queries “2004 audi s4 review”, “2010 buick
regal review”, and “09 acura rl review” . The Freebase con-
cept for [year] contains “2004” and “2010”, but not “09”. On
the other hand, all three segments belong to the concept [tv
series episode], so this simple approach would incorrectly
select this concept to be the generalization. Furthermore,
there is usually no unique concept that maximizes the num-
ber of contained segments, and a procedure is needed to
select among these features.

To solve these problems, we use a generative model to im-
plement the generalization function with REF scores to ini-
tialize the parameters to the model. The intuition for choos-
ing this approach is that we want to prefer the most specific
concept (i.e., the concept with the highest REF score) that
contains all of the segments according to Freebase, but we

want to be flexible and account for the fact that Freebase
concepts are noisy and may contain omissions.

Assuming that each of the segments in the cluster can be
modeled independently of the others, the following model
gives the joint probability of the segments and the concept:

P (S , y) = P (y)
K
∏

k=1

P (sk|y). (8)

The parameters of the model P (s|y) are initialized using
REF scores with linear discounting for smoothing purposes:

P (s|y) =

γ ∗ REF (y) if concept y contains s
1− γ

F − size(y)
otherwise.

(9)

F represents the total number of surface forms in Free-
base. This initialization corresponds to the following sce-
nario for generating a segment from a concept. With prob-
ability γ, we randomly select a segment from the concept
using a uniform multinomial distribution according to Free-
base. With probability 1− γ, we select a segment not con-
tained by that concept according to Freebase (of which there
are F −size(y)). We set γ to be 0.5. The prior probabilities
are initialized uniformly. Inference means finding

y∗ = argmax
y

logP (S|y) + logP (y)

= argmax
y

K
∑

k=1

logP (sk|y) + logP (y). (10)

Given the parameters, the maximized expression is simple
to calculate for each concept and lexical item. It can be sped
up by considering only those concepts which contain at least
one of the input segments.

While this initialization prefers concepts with higher REF
scores and lexical items, it is not ideal because it is suscep-
tible to overly-specific concepts. For example, different sub-
sets of countries would generalize to different concepts, such
as [breed origin] or [olympic participating country], whereas
in most domains, the desired generalization is simply the
more natural [country] concept. To refine the parameters
to prefer such “natural” features, we reestimate the prior
probabilities using hard EM.

In the E-step, we use the above model to infer y∗ for
each aligned segment in the cluster. Then in the M-step, we
reestimate model parameters, i.e., the prior probabilities, in
the maximum likelihood sense:

P (y) =
count(y)

∑N

j=1 count(j)
, (11)

where count(y) is the number of times y appeared in the E-
step’s classification, and the denominator is the total number
of classifications made. These two steps are alternated until
convergence. In our experiments, we simply conduct one
iteration of the algorithm and empirically found the results
satisfactory, as will be shown in Section 7.2.

Finally, as a further refinement, any clusters that have the
same pattern after intent summarization are merged. Fig-
ure 3 shows the output of intent summarization on the ex-
ample query cluster. We could further merge clusters based
on semantic intent, as an intent may be expressed by sev-
eral different, but related patterns, such as “[city] map” and
“map of [city]”, but we leave this to future work.

[car]
[episode]
[model]
[season]
[year]

...
review

test

[year] [model] review
0 0 0
0 0 0
0 1 0
0 0 0
1 0 0
...
0 0 1
0 0 0

Figure 4: Pattern representation for instance annotation.

6. INSTANCE ANNOTATION
The procedure above produces a set of patterns within

a domain and classifies query instances into these patterns.
When encountering new query instances, we would like an
efficient method to classify them into one of the existing
patterns without having to perform clustering again, which
is expensive and would not yield substantially different re-
sults. Fortunately, the feature representation in our method
suggests a natural way to do this.

For each discovered pattern p = (y1, y2, . . . , yL), we define
zi to be a feature vector in the same space as the word tokens
that represents the ith element in the pattern. It thus has
dimension N , and the interpretation of the dimensions is
the same as before. Each zi is defined to be a zero vector,
except at the dimension corresponding to yi, where it has
value one. So,

zi = (zi,1, zi,2, . . . , zi,N)T

zi,j =

{

1 if yi = j
0 otherwise.

(12)

A pattern is then represented by a matrix of size N ×
L, Z = (z1, . . . , zL). See Figure 4 for a sample pattern
representation.

Given this representation of a pattern, a new instance can
be classified into one of the existing patterns, Z∗, by finding
the pattern that is the most similar to the new query, using
the same log REF-weighted cosine and DTW algorithm as
before to calculate similarity:

Z∗ =

{

argmin
Z

dist(Xq, Z) if dist(Xq, Z) < τ

undefined otherwise.
(13)

If the minimum distance is above a threshold τ , the query
is judged to be not similar enough to any of the existing
patterns and not classified into one. We set this threshold to
be the same as the termination threshold in agglomerative
clustering. Note that the inverted index speed-up applies
here as well, and would likely result in a great speed-up
because the pattern representations are very sparse.

7. EXPERIMENTS
Evaluating unsupervised methods is a challenging prob-

lem, especially if there is little labeled data available, as is
the case here. As a first evaluation, we elicited human judg-
ments on the output of the algorithms (Evaluations 1 and
2). We also measured the domain coverage of the extracted
patterns (Evaluation 3).

Domains 10
Sampled queries ∼101K

Single-link clusters

total 1069
min 13
max 203
std 63.5
avg. size 4.22

Complete-link clusters

total 1466
min 18
max 279
std 85.4
avg. size 2.68

Table 1: Data and cluster characteristics. The attributes
min, max and std refer to the number of non-singleton clus-
ters discovered over the domains. avg. size is the average
number of queries in non-singleton clusters.

We are interested in evaluating two aspects of our system:
the patterns that result from intent summarization and the
query instances that are classified into each cluster. For each
aspect, we can measure the precision; i.e., the quality of the
output of our system, or the recall; i.e., whether we have
extracted all of the useful patterns and instances that fit
a pattern. Naturally, recall is much harder to evaluate in
this case because there is no clear way to obtain all of the
possible patterns in a domain or query instances that belong
to a certain pattern. While one could approximate pattern
recall evaluation by comparing to the patterns in a human-
labeled dataset, no such labels are available for our dataset,
and the labeled datasets that are available, even in related
domains, are not appropriate due to differences in schema
and data creation. In particular, the schema in a domain
is often manually predefined, and queries that do not follow
the schema are not included, thus not being representative
of actual user needs in a domain.

7.1 Data set
We extracted search queries and segmented them into do-

mains using a click graph. The nodes in the click graph
are queries and URLs, while the edges connect queries to
URLs based on search engine click-through data. We ex-
tracted queries belonging to a particular domain by specify-
ing a number of seed URLs from each domain, and taking
the queries that are linked to these URLs. We created ten
domains in this manner: Cars, Celebrities, Gaming, Health,
Real estate, Sports, Travel, Jobs, Movies, and Education.

We sampled at least 10K queries3 from each domain and
ran our sequence clustering and intent summarization al-
gorithms on these samples as described above. When cal-
culating the similarity matrix for sequence clustering, we
split computation into fifteen processes, finishing all calcu-
lations within ten minutes, and we set the stopping criterion
for agglomerative clustering to be a threshold of 2.0 on the
minimum cluster distance. While we could have compared
our methods to a a bag-of-words baseline, we did not do
so because the outcome of our work is to produce grammar
rules in which word order is important. We cannot group
queries by a bag-of-words approach because it would be hard
to express the resulting clusters in this format.

3The Education domain contained less than 20K queries
overall, so we used all of the queries in that domain.

G N B Single Complete
3 0 0 497 (70.7%) 579 (62.6%)
2 1 0 26

(23.3%)
35

(28.6%)
2 0 1 138 230
1 2 0 2

(5.0%)
3

(8.0%)1 1 1 10 18
1 0 2 23 53
0 2 1 0

(1.0%)
2

(0.8%)0 1 2 3 1
0 0 3 4 4

Total: 703 925

Table 2: Evaluation 1 results in terms of annotator judg-
ments, separated by agglomerative clustering algorithm. G:
Good, N: Not sure, B: Bad.

G N B Before After
3 0 0 331 (43.2%) 184 (69.7%)
2 1 0 23

(32.1%)
8

(20.5%)
2 0 1 223 46
1 2 0 3

(22.3%)
2

(9.5%)1 1 1 32 5
1 0 2 136 18
0 2 1 2

(2.3%)
0

(0.4%)0 1 2 7 0
0 0 3 9 1

Total: 766 264

Table 3: Comparison of the subset of both single- and
complete-link clusters changed by EM prior reestimation.
The cases in the After column are a subset of the cases
shown in Table 2

The remaining queries from each domain were treated as
unseen queries and annotated using the method described
in Section 6. The only exceptions to the input to instance
annotation were that we did not run instance annotation
on the Gaming or Health domains, because we found rela-
tively few patterns in these domains. Overall, ∼7.8M unseen
queries were processed using the output of both clustering
algorithms, resulting in over 15M classification decisions. Of
this, ∼125K were classified into a pattern that was discov-
ered. Some other basic statistics on the data and the results
of the algorithms are presented in Table 1.

7.2 Evaluation 1: Cluster Pattern Precision
We first evaluated the quality of the cluster patterns

that are produced by sequence clustering and intent sum-
marization. For each pattern, we selected between two to
three compatible instances arbitrarily, and displayed these
to judges along with the pattern. Annotators were given
instructions and examples of what good and bad patterns
are, then asked to judge whether the pattern describes the
instances displayed. We asked annotators to consider the or-
der of the items and whether they fit the concepts in the pat-
tern, as well as the granularity of the concepts, but not the
spelling, punctuation, or capitalization. See Appendix A.1
for the complete guidelines. For each pattern, annotators
could indicate that the pattern was “good”, “bad”, or that
they were “not sure”. Each case was assigned to three dif-
ferent annotators to judge using Mechanical Turk, with a

G N B Single Complete
3 0 0 1282 (65.4%) 1286 (74.5%)
2 1 0 66

(16.3%)
93

(13.2%)
2 0 1 254 134
1 2 0 3

(14.9%)
5

(9.6%)1 1 1 54 30
1 0 2 236 131
0 3 0 2

(3.4%)

0

(2.7%)
0 2 1 6 1
0 1 2 10 7
0 0 3 48 39

Total: 1961 1726

(a) Original queries

G N B Single Complete
3 0 0 1059 (64.1%) 1012 (68.7%)
2 1 0 63

(20.3%)
76

(17.1%)
2 0 1 272 176
1 2 0 8

(11.0%)
8

(11.7%)1 1 1 46 49
1 0 2 128 116
0 3 0 1

(4.5%)

0

(2.5%)
0 2 1 12 1
0 1 2 13 9
0 0 3 49 27

Total: 1651 1474

(b) Unseen queries

Table 4: Evaluation 2 results.

resulting free-marginal kappa [22] of 0.657. Table 2 shows
the results of this evaluation.

Overall, more than 60% clusters were judged to be correct
by all three annotators, and over 90% were correct by at least
two annotators. The single-link clusters were more precise
than the complete-link ones (Mann-Whitney U p < 0.001),
but the complete-link algorithm discovered more clusters.
Intuitively, complete-link clustering prefers more coherent
clusters, which means that the average cluster size will tend
to be small, resulting in more non-singleton clusters.

To measure the impact of the EM prior reestimation, we
ran the same study on the subset of the clusters where EM
reestimation changed the pattern output, before EM rees-
timation was done. We compared this subset to the anal-
ogous subset after EM reestimation (Table 3). Because we
filtered out patterns with fewer than two compatible query
instances, a different number of patterns qualified before EM
reestimation (766 across both clustering algorithms com-
pared to 264). The results show that the hard EM proce-
dure was able to produce substantially more precise patterns
(Mann-Whitney U p < 1−14), at the cost of having fewer
patterns with at least two compatible instances according
to Freebase. Notice, however, that this is to be expected,
since the point of the prior reestimation is precisely to over-
come Freebase annotation errors and omissions.

7.3 Evaluation 2: Query Labeling Precision
In the second evaluation, we asked annotators to judge

the correctness of each query instance in a pattern, assuming
that the pattern itself is correct. For each case, annotators
were given one query (rather than several as in the previous
evaluation) and the pattern that describes it, and asked to
judge whether the query fits the pattern, does not fit, or
whether they are not sure. See Appendix A.2 for the guide-
lines given to the annotators. We filtered out the patterns
that were not judged to be correct by all three annotators
from Evaluation 1, as this evaluation is meaningless if the
pattern is not correct.

We performed this evaluation not only on the original 10K
samples as in Evaluation 1, but also on the classified unseen
queries from Section 6, to check the precision of instance an-
notation. To ensure that the sample sizes and distribution
between domains are comparable, we sampled from each do-
main the same number of unseen queries as were put into a
cluster in the original data.

G N B Incompatible
3 0 0 379 (57.3%)
2 1 0 29

(19.2%)
2 0 1 98
1 2 0 1

(19.0%)1 1 1 25
1 0 2 100
0 3 0 2

(4.5%)
0 2 1 5
0 1 2 6
0 0 3 17

Total: 662

Table 5: Evaluation of query labeling on subset not compat-
ible with the intent pattern according to Freebase.

The results of the second evaluation are presented in Ta-
ble 4. The inter-annotator agreement by kappa was 0.692.
In contrast to Evaluation 1, the precision of the instances
in complete-link clusters was greater (Mann-Whitney U
p < 1−10). Complete-link clustering is known to produce
more coherent clusters than single-link clustering in general,
which likely explains this result.

Since query labeling correctness and pattern correctness
are highly interconnected, we would expect the original
queries to be very precise, since we filtered out the pat-
terns not judged to be correct by all three annotators in
Evaluation 1. This is seen in the results, as the precision
of the original queries is slightly higher. However, instance
annotation results are only slightly lower, despite not be-
ing used in the original clustering algorithm. The difference
in precision between the original and the unseen cases was
statistically significant (Mann-Whitney U p < 0.01). Note,
however, that the large sample size means that even very
small differences in magnitude would be significant.

One interesting point to note is that our algorithms are
tolerant of Freebase omissions. For example, the pattern
“who is [celebrity] married to”contains many celebrities that
are not listed in this concept in Freebase, such as “alanis
morissette” and“julie berman”. Table 5 shows the results on
the subset of instances that do not fit the pattern accord-
ing to Freebase. As expected, the precision on this subset
is lower than the overall precision, but even so, the major-
ity of such instances do actually fit the discovered pattern

Domain Single Complete
cars 5.4% 5.9%
celebrities 1.2% 1.7%
real estate 0.31% 0.45%
sports 0.84% 9.4%
travel 20.2% 21.2 %
jobs 1.2% 1.2 %
movies 2.3% 9.2%
Average: 4.5% 7.0%

Table 6: Traffic-weighted domain coverage.

according to annotators. Thus, our algorithm can be used
to discover new intent-specific slot-fillers that cannot be di-
rectly predicted from the knowledge base.

7.4 Evaluation 3: Domain Coverage
Another measure of performance is the domain coverage

of the patterns that are extracted; i.e., the proportion of
the traffic in a particular domain that is described by one
of the patterns that are extracted. We approximate this by
calculating the proportion of unseen queries in each domain
that are classified into a cluster pattern, weighted by the
traffic of the queries. Table 6 shows the coverage results
by domain and clustering method. Complete-link clustering
results in higher domain coverage than single-link. There is
substantial variation in coverage between domains, ranging
from less than 0.4% in the Real estate domain to more than
20% in the Travel domain. This variation is likely due to
the Freebase coverage of the entities in that domain. For
example, the Real estate domain contains many queries that
are specific addresses in real estate listings, and many of the
local street names are not recognized in Freebase as such.
On the other hand, the Travel domain contains countries
and cities that are correctly recognized.

8. CONCLUSION
We have presented an unsupervised method to find clus-

ters of queries with similar intent, induce patterns to de-
scribe these clusters, and classify new queries into the clus-
ter that are discovered, all using only domain-independent
resources. Judgments by human annotators indicate that
the patterns and the instance annotations are done precisely,
and the domain coverage of the patterns that our algorithms
found reach up to 20% of traffic in certain domains. Our
work can facilitate structured search development by reduc-
ing the amount of manual labour needed to extend struc-
tured search into a new domain.

There are many avenues of future research. Besides re-
fining the sequence clustering and intent summarization al-
gorithms, it remains to merge patterns with the same in-
tent. For example, word order sometimes (but not always)
does not matter, as in “[movie] showtimes” and “showtimes
[movie]”, and there may be minor variations in the lexical
items, such as “[movie] review” and “[movie] reviews” which
convey the same intent. Another future direction is to au-
tomate the process of matching the slots discovered by our
method to a structured database. A modified version of our
algorithms could also be applied to match patterns to URLs
and website, which often contain structure that can be ex-
ploited. Doing so could further automate instant answer
generation for many more patterns and domains.

9. ACKNOWLEDGMENTS
The authors would like to thank Alex Acero and Ye-Yi

Wang for useful discussions.

References
[1] G. Agarwal, G. Kabra, and K. Chang. Towards rich

query interpretation: Walking back and forth for min-
ing query templates. In Proceedings of the 19th interna-
tional conference on World wide web, pages 1–10. ACM,
2010.

[2] R. Baeza-Yates, C. Hurtado, and M. Mendoza. Query
recommendation using query logs in search engines.
In Current Trends in Database Technology-EDBT 2004
Workshops, pages 395–397. Springer, 2005.

[3] R. Baeza-Yates, C. Hurtado, and M. Mendoza. Improv-
ing search engines by query clustering. Journal of the
American Society for Information Science and Technol-
ogy, 58(12):1793–1804, 2007.

[4] D. Beeferman and A. Berger. Agglomerative cluster-
ing of a search engine query log. In Proceedings of
the Sixth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 407–416.
ACM, 2000.

[5] S. Chuang and L. Chien. Enriching web taxonomies
through subject categorization of query terms from
search engine logs. Decision Support Systems, 35(1):
113–127, 2003.

[6] P. Clerkin, P. Cunningham, and C. Hayes. Ontology
discovery for the semantic web using hierarchical clus-
tering. Semantic Web Mining, page 27, 2001.

[7] J. Guo, G. Xu, X. Cheng, and H. Li. Named entity
recognition in query. In Proceedings of the 32nd In-
ternational ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 267–274.
ACM, 2009.

[8] V. Guralnik and G. Karypis. A scalable algorithm for
clustering sequential data. In Proceedings of the IEEE
International Conference on Data Mining, pages 179–
186. Published by the IEEE Computer Society, 2001.

[9] Z. Harris. Distributional structure. Word, 1954.

[10] M. A. Hearst. Automatic acquisition of hyponyms from
large text corpora. In Proceedings of the 14th Con-
ference on Computational Linguistics, pages 539–545,
1992.

[11] A. Jain, M. Murty, and P. Flynn. Data clustering: a
review. ACM Computing Surveys (CSUR), 31(3):264–
323, 1999.

[12] L. Karoui, M. Aufaure, and N. Bennacer. Ontology
discovery from web pages: Application to tourism. In In
the Workshop of Knowledge Discovery and Ontologies.
Citeseer, 2004.

[13] X. Li. Understanding the semantic structure of noun
phrase queries. In Proceedings of the 48th Annual Meet-
ing of the Association for Computational Linguistics,
pages 1337–1345. Association for Computational Lin-
guistics, 2010.

[14] X. Li, Y.-Y. Wang, and A. Acero. Extracting structured
information from user queries with semi-supervised con-
ditional random fields. In Proceedings of the 32nd In-
ternational ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 572–579.
ACM, 2009.

[15] D. Lin and P. Pantel. Concept discovery from text.
In Proceedings of the 19th International Conference on
Computational Linguistics, pages 1–7, 2002.

[16] C. Manning, P. Raghavan, and H. Schütze. Introduc-
tion to information retrieval, chapter 17. Cambridge
University Press, 2008.

[17] P. Pantel and D. Ravichandran. Automatically label-
ing semantic classes. In Proceedings of HLT/NAACL,
volume 4, pages 321–328, 2004.

[18] M. Pasca, D. Lin, J. Bigham, A. Lifchits, and A. Jain.
Organizing and searching the world wide web of facts-
step one: the one-million fact extraction challenge. In
Proceedings of the National Conference on Artificial In-
telligence, volume 21, pages 1400–1405, 2006.

[19] M. Pennacchiotti and P. Pantel. Ontologizing seman-
tic relations. In Proceedings of the 21st International
Conference on Computational Linguistics and the 44th
annual meeting of the Association for Computational
Linguistics, pages 793–800. Association for Computa-
tional Linguistics, 2006.

[20] M. Pennacchiotti and P. Pantel. Entity extraction via
ensemble semantics. In Proceedings of the 2009 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 238–247. Association for Computational
Linguistics, 2009.

[21] L. Rabiner and B. Juang. Fundamentals of Speech
Recognition, chapter 4. Prentice Hall, 1993.

[22] J. Randolph. Free-marginal multirater kappa (mul-
tirater κfree): An alternative to fleiss fixed-marginal
multirater kappa. In Joensuu Learning and Instruction
Symposium, 2005.

[23] E. Riloff. Automatically generating extraction patterns
from untagged text. In Proceedings of the National
Conference on Artificial Intelligence, pages 1044–1049,
1996.

[24] E. Sadikov, J. Madhavan, L. Wang, and A. Halevy.
Clustering query refinements by user intent. In Pro-
ceedings of the 19th International Conference on World
Wide Web. ACM, 2010.

[25] N. Sarkas, S. Paparizos, and P. Tsaparas. Struc-
tured annotations of web queries. In Proceedings of
the 2010 International Conference on Management of
Data, pages 771–782. ACM, 2010.

[26] R. Snow, D. Jurafsky, and A. Ng. Semantic taxonomy
induction from heterogenous evidence. In Proceedings
of the 21st International Conference on Computational
Linguistics and the 44th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 801–808.
Association for Computational Linguistics, 2006.

[27] I. Szpektor, A. Gionis, and Y. Maarek. Improving
recommendation for long-tail queries via templates.
In Proceedings of the 20th international conference on
World wide web, pages 47–56. ACM, 2011.

[28] J. Wen, J. Nie, and H. Zhang. Clustering user queries of
a search engine. In Proceedings of the 10th International
Conference on World Wide Web, pages 162–168. ACM,
2001.

[29] D. Yu, S. Wang, and L. Deng. Sequential labeling us-
ing deep-structured conditional random fields. IEEE
Journal of Selected Topics in Signal Processing, 4(6):
965–973, 2010.

APPENDIX

A. ANNOTATOR GUIDELINES

A.1 Evaluation 1 Guidelines
Do the phrases fit the pattern?
— A pattern contains category names in square brackets
(e.g., [movie]) and/or words or abbreviations (e.g. vs).
— Ignore misspellings or capitalization mistakes and treat
words as if they were spelled correctly.
— A good pattern fits the words in the phrases in the correct
order.
— A good pattern has categories that are neither too general
nor too specific.

Example.
1. kung fu panda 2 showtimes
2. pirates of the caribbean showtimes
GOOD: [movie] showtimes
BAD: [martial arts] 2 showtimes (doesnt́ generalize cor-
rectly)
BAD: [location] [artist] (irrelevant patterns)
BAD: [art] showtimes (too general)
BAD: [movies that i have watched] showtimes (too specific)

A.2 Evaluation 2 Guidelines
Does the phrase fit the pattern?
— A pattern contains category names in square brackets
(e.g. [movie]) and/or words or abbreviations (e.g. vs). It
will be italicized.
— Order matters; a phrase that fits the pattern should fit
it in the correct order.
— Think about whether the entire phrase fits in context;
not just whether each individual part fits.
— Ignore misspellings or capitalization mistakes and treat
words as if they were spelled correctly.
— Ignore any blank cases.

Examples.
1. “kung fu panda 2 showtimes” fits [movie] showtimes, be-
cause kung fu panda 2 is a movie and the word showtimes
matches and comes after the movie title.
2. “houses for sale in chicago” does not fit houses for sale in
[musical], because in this context, Chicago refers to the city,
not the musical.
3. “honda 2012”does not fit [year] [model], because the order
of the elements is reversed.

