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Abstract Business intelligence (BI) offers tremendous
potential for business organizations to gain insights into their
day-to-day operations, as well as longer term opportunities
and threats. However, most of today’s BI tools are based on
models that are too much data-oriented from the point of
view of business decision makers. We propose an enterprise
modeling approach to bridge the business-level understand-
ing of the enterprise with its representations in databases
and data warehouses. The business intelligence model (BIM)
offers concepts familiar to business decision making—such
as goals, strategies, processes, situations, influences, and
indicators. Unlike many enterprise models which are meant
to be used to derive, manage, or align with IT system imple-
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mentations, BIM aims to help business users organize and
make sense of the vast amounts of data about the enterprise
and its external environment. In this paper, we present core
BIM concepts, focusing especially on reasoning about situ-
ations, influences, and indicators. Such reasoning supports
strategic analysis of business objectives in light of current
enterprise data, allowing analysts to explore scenarios and
find alternative strategies. We describe how goal reasoning
techniques from conceptual modeling and requirements engi-
neering have been applied to BIM. Techniques are also pro-
vided to support reasoning with indicators linked to business
metrics, including cases where specifications of indicators
are incomplete. Evaluation of the proposed modeling and
reasoning framework includes an on-going prototype imple-
mentation, as well as case studies.

Keywords Business intelligence · Business model ·
Conceptual modeling languages · Influence diagrams ·
Goal · Situation · Key performance indicators ·
Strategic planning

1 Introduction

Business intelligence (BI) offers tremendous potential for
business organizations to gain insights into their day-to-day
operations, as well as longer term opportunities and threats.
The past decade has seen unprecedented interest in BI tech-
nologies and services, and a corresponding growth of the BI
market. By now, most large organizations worldwide have
a significant investment in BI. However, most BI systems
are closely linked to the structure of available data, provid-
ing detailed statistics that may be hard to understand with
respect to overall business strategy. A recent survey indicates
that BI system users are less satisfied with system flexibility
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and the ability to manage risk than they are with the system
as a whole [1]. However, the flexibility required to mod-
ify BI queries, posing what-if analysis questions exploring
risk factors, often requires technical knowledge concerning
the structure of available data. Even state-of-the-art systems
that raise the abstraction level of BI systems require detailed
knowledge of queries and data dimensions (e.g., [2]). This
need for technical knowledge poses a serious conceptual
obstacle for most business users, who are interested in having
their business data analyzed in their terms: strategic objec-
tives, business models1 and strategies, business processes,
markets, trends and risks. BI data and statistics often focus
on specific measures of current operations, without providing
a clear link to how these measures affect business strategies,
or how they facilitate planning and decision making. Conse-
quently, the gap between the world of business and the world
of IT-supplied data remains one of the greatest barriers to the
adoption of BI technologies [3].

As in the broader area of enterprise modeling, there is a
need to provide modeling support at the strategic business
level, so that data residing in databases and data warehouses
can be interpreted and understood in business terms, thereby
facilitating reasoning over strategic decisions. To bridge this
business-data gap in BI, we have proposed a strategic busi-
ness modeling approach that makes use of concepts from
existing modeling approaches or methodologies familiar to
business decision makers (e.g., strategy maps [4], SWOT
analysis [5], the business motivation model [6]). The busi-
ness intelligence model (BIM) [7,8] is a business model-
ing language that offers concepts such as goals, strategies,
processes, situations, influences, and indicators, and tech-
niques for reasoning about them. Unlike many enterprise
models meant to be used to derive, manage, or align with
IT system implementations, BIM aims to help business users
organize and make sense of the vast amounts of data about the
enterprise and its external environment. An enterprise model
such as BIM may be viewed as the business-level counterpart
to conceptual data models (e.g., entity-relationships mod-
els), so that strategic objectives, business processes, risks and
trends can all be represented in a BIM model, for purposes
of analysis and monitoring.

Consider for example, a consumer electronics retailer with
vast amounts of data from diverse sources available for analy-
sis through BI tools. Business analysts and strategists want to
be able to pose a variety of analysis questions, without being
constrained by the structure of current BI reports and queries,
which are often technically-oriented and difficult to modify.
Instead, they want to pose questions at the business level,

1 We use the terms “enterprise model” and “business model” in a con-
ceptual modeling sense, i.e., a collection of elements and relationships
typically having a graphical representation, and not in the business sense
of how an organization creates, delivers, and captures value.

facilitating reasoning over and comparison of potential busi-
ness strategies. For example: Should we develop technology
in-house or acquire technology through acquisition? Which
option is better for maintaining revenue growth and reducing
risks? Given the state of the business according to current
data, will we be able to maintain revenue growth without
new strategic partnerships or technology acquisitions?

In this paper, we build on existing work to show how con-
struction and analysis of BIM models (also called schemas,
by analogy to database schemas) could allow organizations
to answer such questions. We capture the necessary business
objectives, risks, and measures by focusing on three key con-
cepts in BIM: situation, influence and indicator. BIM models
can also be used to reason about strategic objectives, such
as “increase sales volume” or “maintain revenue growth”,
by estimating the degree to which they are achieved, or the
probability that they will be achieved. Reasoning over BIM
models can use current business data from indicators, or can
use hypothetical data in “what if?” scenarios, facilitating both
exploration and monitoring of business objectives. Although
reasoning over BIM can allow analysts to formulate ques-
tions at the level of business strategies, it is challenging to
completely elicit or specify all necessary links to business
data (indicators, business metrics). Accordingly, our pro-
posed techniques support reasoning even if BIM models are
incomplete, missing information regarding indicators, busi-
ness metrics, or probabilistic information, especially during
intermediate stages of model development. Supporting rea-
soning over incomplete indicators requires use of qualitative
reasoning techniques, which come with different information
requirements.

Our previous work has introduced elements of the BIM
language, describing key concepts and applications of rea-
soning techniques [8–10]. Further work describes BIM rea-
soning with indicator values from business data [11,12]. The
work presented in this paper is an extension, improvement
and integration of our published work, combining existing
BIM papers into one consistent description of language con-
cepts and reasoning. Specifically, we build on existing work
by:
• Offering a more precise and detailed account of core BIM

concepts;
• Using a consistent running example from real-world

analysis reports to demonstrate all concepts and reasoning
techniques;

• Describing in more detail a methodology for constructing
BIM models;

• Providing an overview of BIM reasoning techniques,
summarizing information requirements and linking them
to our proposed methodology;

• Providing more detail concerning the use of existing rea-
soning approaches for BIM, including details concerning
the mapping of BIM to existing languages and tools;
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• Extending and revising the description of reasoning with
indicators, including composite indicators;

• Describing how to reason with incomplete indicators
using a hybrid reasoning approach;

• Consolidating the description of tool support for BIM,
including use of existing model reasoning tools and
custom-build BIM prototypes.

• Summarizing ongoing studies applying BIM to real-
world cases, including a consideration of model scala-
bility.

This research is conducted in the context of the Business
Intelligence Network, a Canada-wide strategic research net-
work with academic and industry partners.

The rest of the paper is organized as follows. Section 2
introduces BIM concepts. Section 3 presents alternative rea-
soning techniques for BIM models. Some of these are based
on existing proposals. Others are novel, such as the indicator
reasoning techniques that depend on the availability of indi-
cator and probabilistic information. Section 4 describes use
of existing tool support as well as in-progress implementa-
tions of prototype tools. We summarize the results of ongoing
case studies using BIM in Sect. 5. Section 6 discusses related
work, while Sect. 7 provides conclusions and outlines future
work.

2 Strategic business models

In this section, we provide a description of the key compo-
nents of the BIM, including goal, situation, influence, and
indicator. A version of the metamodel linking these concepts
can be found in [7,8]. A running example is introduced to
illustrate these concepts and the reasoning techniques pro-
posed in later sections.

2.1 Running example: BestTech

The example presents the viewpoint of BestTech, a gen-
eric company developing and selling consumer electronics.
Model contents have been extracted from real-world analysis
reports, published by DataMonitor, a company that special-
izes in industry analysis for a number of industry sectors. The
example, presented incrementally in the following sections
(Figs. 1, 2, 3), contains an interrelated network of goals, situa-
tions, processes, indicators, and domain assumptions relevant
to BestTech.

2.2 BIM concepts and relationships

This section describes BIM’s key concepts and relation-
ships—goal, situation, influence, and indicator—in detail,

using our running example for illustration. This section is
an expansion and consolidation of the BIM description in
[8–12].

2.2.1 Goal

The concept of goal has a long history as part of enterprise
modeling (e.g. [13,14]) and requirements analysis (e.g., [15–
18]). A goal represents an objective of a business. Goals may
be (AND/OR) refined into sub-goals so that their satisfaction
depends on that of their sub-goals. Moreover, a goal may be
satisfied in multiple ways if it or its sub-goals are OR-refined,
in which case a choice needs to be made among alternatives.
In addition, a goal’s satisfaction may be affected by that of
goals other than its sub-goals. Using typical goal model syn-
tax such as in [15,17,18] goal-oriented elicitation within an
enterprise produces a goal model consisting of an AND/OR
refinement graph including positive/negative contributions.

Examples of goals in the BIM language are shown in
Fig. 1. Notice how the “To increase sales” goal is AND-
decomposed into sub-goals “To increase sales volume” and
“To maintain gross margin”. Similarly, the “To increase
sales volume” goal is OR-decomposed into two alterna-
tive sub-goals, namely “To open sales channels”, and “To
offer promotions”. Further concepts in this figure (e.g., situ-
ation, influence, and indicator) are explained in the following
sections.

The satisfaction of a goal can be inferred from the satisfac-
tion level of other goals using label propagation algorithms
[19,20]. We describe how these algorithms can be applied to
BIM in Sect. 3.

In addition to goals, the BIM language supports the notion
of processes within an enterprise, as well as domain assump-
tions describing properties required for goal satisfaction.
Domain assumptions can be thought of as situations required
to be true in order to achieve a goal. Domain assumptions can
be part of a goal refinement alongside other sub-goals. We see
an example of a domain assumption in Fig. 1 where “High
demand” must be true in order for “Increase Sales” to be sat-
isfied. A domain assumption may, in fact, be false (broken),
in which case goal fulfillment is not possible.

Processes can be associated with a particular goal. We say
that a process achieves a goal, represented by an achieves
link. When used in this way, processes provide a “how”
dimension to complement the intentional “why” dimen-
sion of goals. We further connect these concepts to busi-
ness processes with the notion of indicator, explored in later
sections.

2.2.2 Situation

During strategic planning, SWOT analysis [5] is often used
to identify internal and external factors that may influence
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Fig. 1 Example of goals, situations, and influences for BestTech

the fulfillment, favorable or unfavorable, of strategic goals.
SWOT stands for Strengths (internal, favorable), Weaknesses
(internal, unfavorable), Opportunities (external, favorable),
and Threats (external, unfavorable). We propose to model
these in terms of the notion of situation. Intuitively, a situation
defines a partial state of affairs (partial model of the world)
in terms of things that exist in that state, their properties, and
interrelations [21]. Since we are interested in strategic busi-
ness models, we focus on organizational situations. The same
situation may be favorable for some organizational goals,
represented via positive influence links on model concepts,
but unfavorable for others, represented via negative influ-
ence. In our example, the situation “Increased competition”
constitutes a threat to the goal “To open sales channels”),
while “low cost financing” is an opportunity for “Healthy bal-
ance sheet” and therefore “Sufficient Funds”, and “economic
slowdown” is a threat for “High Demand”.

Analogously to satisfaction levels for goals, we have
occurrence levels for situations, which denote the degree to
which a situation occurs in the current state-of-affairs.

2.2.3 Influence

To express the influence of situations on strategic goals
and other situations, we extend the contribution relation
from goals to situations. In order to support both reason-
ing over goal satisfaction/denial and reasoning using con-
ditional probabilities, BIM supports two types of influence

links: logical and probabilistic. Quantitative logical influence
links are an estimation of the positive or negative influence
of an object on another, while probabilistic influence links
estimate the probability of an object being satisfied (denied)
given the satisfaction (denial) of another object. In either
case, influence links can have varying strengths specified in
qualitative or quantitative terms.

Logical influence. As in many goal modeling approaches
(e.g, [15,17,18]), one goal influences another if its sat-
isfaction/denial implies (partial) satisfaction/denial of the
other. Such relations also hold between situations and goals.
We call this type of influence logical.

The influence strength is modeled using qualitative
values: + (weak positive), ++ (strong positive), − (weak
negative), and−− (strong negative)), as in existing goal mod-
eling frameworks. When logical qualitative values are not
expressive enough to capture the difference between influ-
ence strengths, quantitative logical values in some standard
range (e.g., [−1, 1]) can be used. For example, + may corre-
spond to 0.5 and ++ to 1.0. If the modeler wants to express a
strength in between, a number (e.g., 0.7) may be used, instead
of further qualitative values.

Figure 1 shows some examples of influences from situ-
ations to goals, e.g., the “Increased competition” situation,
representing an external threat for the company, influences
negatively the “To open sales channels” goal. Similarly, the
situation “Economic slowdown” negatively influences the
domain assumption “High demand”. An example of influ-
ence among goals can be seen in the negative link from “To
offer promotions” to “To maintain gross margins”.

Probabilistic influences. To support probabilistic reason-
ing, we also support probabilistic influences among situa-
tions, goals and domain assumptions. In this case influence
links represent the conditional probability of satisfaction.
For example, in Fig. 1, if the partial positive influence link
between “To reduce costs” and “To maintain gross margins”
had a probabilistic type with a strength of 0.7, it would
mean that the probability of “To maintain gross margin”
occurring given the satisfaction of “To reduce costs” is
0.7 (P(T o reduce costs | T o maintain gross margin) =
0.7). These strengths can be quantitative (e.g., 0.7, 70%
chance of satisfaction) or quantitative (e.g., high chance of
satisfaction). In Sect. 3.3, we show how this type of influence
is used to support decision-theoretic analysis. We summa-
rize supported influence types in Table 1, showing example

Table 1 Example influence strengths for each combination of indicator
and measurement type

Influence Types
Logical Probabilistic

Qualitative ++, +, -, --
Quantitative +0.7, -0.7, +0.2, -0.2, 1.0

A
B
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To increase 
sales volume

Sales 
volume

Increase 
Sales

Evaluates Measures

Why What

Fig. 2 Detailed view of an example indicator

influence strengths for each combination of influence and
measurement types.

2.2.4 Indicator

A successful business depends both on its initial strategic
planning and subsequent business operations. Performance
measures play an important role in helping businesses align
their daily activities with their strategic objectives. Generally
speaking, performance measures quantify various aspects
of business activities, including their input, execution and
output, for monitoring, control and improvement purposes
[22]. We model performance measures through indicators.
An indicator (or in some cases, a key performance indicator)
is a metric that evaluates performance with respect to some
objective, be it the degree of fulfillment for a strategic goal,
or the quality of a business process or product. Such metrics
can be directly derived from data, or can use a formula to
combine values. In BIM, indicators constitute a conceptual
bridge connecting a BIM model to enterprise data found in a
variety of data sources.

In BIM, each indicator is associated with a particular
model element (e.g., goal, situation). Indicators associated
with a goal are also associated with a process which achieves
the goal. Associating an indicator with a goal provides the
“why” dimension, motivating the need for a specific measure,
while association with a process provides the “how” dimen-
sion, linking the indicator to a concrete business process.
We say that an indicator evaluates a particular goal (or sit-
uation) while it measures a process. A simple example is
shown in Fig. 2, extracted and expanded from Fig. 1. Here
the “Sales volume” indicator evaluates the “To increase sales
volume” goal and measures the “Increase Sales” process. In
order to simplify model presentation, we often omit the con-
crete processes which may be associated with indicators.

Further, example indicators can be found in Fig. 1, where
“Gross margin” evaluates “To maintain gross margin” and
“Total sales” evaluates “Increase Sales”.

Performance measures employed in a business environ-
ment often form an aggregation hierarchy—a higher-level
measure is defined in terms of lower-level ones. Top level
measures (e.g., “Total sales”, “Sales volume”) usually give
a clear picture whether a business is moving towards fulfill-

ing its strategic objectives, while leaf level measures (e.g.,
“Number of competitors”, “Number of promotions”) are usu-
ally tied to specific actions and responsibilities.

When eliciting or defining hierarchies of composite indi-
cators, the value of an indicator measuring a model ele-
ment should depend on the values of indicators measuring
elements one level lower in the hierarchy. Unfortunately,
there are no guidelines on how this dependency should be
defined consistently for a given BIM model. We address these
issues, including indicator measurement and propagation, in
Sect. 3.4.

2.3 Construction of BIM models: sample methodology

In practice, BIM models can be built iteratively, either
by starting with business goals and then working in a
“top-down” fashion to derive required indicators and pro-
cesses by asking “how” questions. Alternatively, one can
start with indicators and processes and work “bottom-up”
to elicit goals and situations by asking “why” questions. For
illustration purposes, we describe here a hybrid method, per-
forming “top-down” goal and situation elicitation based on
the Tropos goal-modeling methodology [23], then matching
existing indicators to elicited business goals and situations.
This approach can reveal the need for indicators that do not
yet exist in the current BI implementation. Such a hybrid
approach is often applicable in practice, as many organiza-
tions have an existing set of business indicators and data
sources.

We start our example by identifying business goals and
their interrelationships. Such a process can be viewed as part
of strategic planning [24], usually starting with the defini-
tion of an organization’s mission, followed by the specifica-
tion of goals for fulfilling the mission, and the strategies to
achieve these goals. In our Fig. 3 example, we have two root
goals: “To maintain revenue growth” and “To reduce risks”.
To achieve the first one, we need to achieve both “To increase
sales” and “To maintain competitive advantage”. Influences
are also identified among sub-goals. One of several alterna-
tive ways to maintain competitive advantage is “To acquire
technology through partnership”. This alternative helps to
reduce financial risk, but increases the dependence on exter-
nal partners. A goal can be decomposed into both sub-goals
and domain assumptions. For example, in addition to achiev-
ing the goals “To increase sales volume” and “To main gross
margin”, the domain assumption “High demand” (for our
products/services) needs to be true, in order fulfill the goal
“To increase sales” (in dollar amount).

After goal modeling, we identify the internal and external
factors that may influence fulfillment of the goals identified
previously. Specifically, we start with domain assumptions in
the model, and ask the question: what observable evidence
could potentially support or challenge these assumptions.
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Fig. 3 BestTech model example

In our example, “High R&D expenditure” (strength) posi-
tively contributes to the domain assumption “Strong R&D
capability”, while “Healthy balance sheet” (strength) sug-
gests with a high degree of certainty that there are “Sufficient
funds” available to make strategic investment. Situations may
also influence goals directly. For example, the fact “Increased
competition” (threat) may hinder the fulfillment of the goal
“To open sales channels”. Influences may also occur among
situations. For example, “Low cost financing” (opportunity),
caused by “Economic slowdown”, positively contributes to
“High R&D expenditure” and “Healthy balance sheet”.

To choose the right indicators for a given object, be it a
goal, process or product, one must have a good understand-
ing of what is important to the organization. Moreover, this
importance is generally contextual. For instance, indicators
useful to a finance team may be inappropriate for a sales force.
Because of the need to develop a good understanding of what
is important, performance indicators are closely associated
with techniques for assessing the present state of the busi-
ness. A very common method for choosing indicators is to
apply a management framework such as the Balanced Score-
card [25], whereby indicators measure a range of factors in a
business, rather than a single one (e.g., profits). Approaches
such as Basili’s Goal-Question-Metric [26] are also avail-
able to help identify and validate indicators measuring goal
satisfaction.

In our example, some indicators are associated with the
goals under “To increase sales”. Note that these indicators

are composite indicators, and may be further decomposed.
For example, “Gross margin” may be broken down by prod-
uct/service categories, fiscal periods, or geographical loca-
tions. Also notice that although not shown, “Total sales”
(in dollar amount) can be mathematically determined by
“Sales volume” and “Gross margin”, entailing a hierarchical
relation among these indicators. We return to the topic
of composite indicators, including further examples, in
Sect. 3.4.

Elicitation of business goals, relevant situations, and cur-
rent indicators can be accomplished through a series of
interviews, focus groups, or a review of available strategy
documentation. Ideally, model construction would be iter-
ative and participatory, involving business stakeholders at
varying levels of the organization (e.g., management, techni-
cal personnel) in a process of model construction and valida-
tion. In practice, the number of relevant business goals and
indicators may be large. Our Fig. 3 example is kept relatively
simple for illustrative purposes, not reflecting realistic com-
plexity. Uses of BIM in practice, including suggestions for
modularization of BIM models to allow for scalability, are
described in Sect. 5.

3 Reasoning with BIM models

Although the construction of a BIM model is useful as
a means to clarify and communicate business objectives,
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Table 2 Reasoning techniques
applied to BIM including
required information and
corresponding paper section

Reasoning technique Required information Described
in section

Goal model reasoning Initial reasoning values 3.2
Probabilistic decision analysis Conditional probability tables, Utility functions 3.3
Reasoning with indicators Atomic indicator values, Business formulae, Unit

conversion factors
3.4

Hybrid reasoning (reasoning with
incomplete indicators)

Atomic indicator values, (optional) business
formulae, (optional) unit conversion factors,
(optional) initial reasoning values

3.4.7

strategies, and organizational situations, much of the ben-
efits of BIM models come from the capability to support
reasoning. Reasoning with BIM allows an organization to
answer strategic or monitoring questions. For example, Best-
Tech may want to pose the following questions:

• Should we develop technology in-house or acquire tech-
nology through acquisition? Which option is better for
maintaining revenue growth and reducing risks?

• Is it possible to maintain revenue growth while reducing
risks? What strategies can achieve these goals?

• Given business metrics and target values, what increase
in sales volume can be expected from the current number
of sales channels and new promotions?

• Given the state of the business according to current data,
will we be able to maintain revenue growth without new
strategic partnerships or technology acquisitions?

In order to support a variety of analysis questions over
BIM models, several types of reasoning approaches can be
applied, including existing reasoning approaches for similar
types of models and approaches making using of business
metrics and indicators. The selection of a reasoning approach
depends on the types of analysis questions posed, the method-
ological phase, and the availability of specific information.
An end-user may prefer a reasoning approach over others
depending on the quantity of domain information that she/he
possesses, or on the available time she/he has for encoding
such information into the model. Table 2 summarizes the
types of reasoning described in this paper, including a sum-
mary of the information required for each procedure, and the
paper section in which the reasoning approach is described.
Earlier descriptions of each of the first three types of reason-
ing were provided in [10–12]. We provide an overview of
each type of reasoning in the next section.

3.1 Overview of reasoning approaches

Goal model reasoning. If a BIM model is constructed
in a top-down manner, eliciting relevant goals and strate-
gies before deriving or eliciting indicators, reasoning must

operate in the absence of indicator values. Such models, used
as part of strategic planning, often results in alternative strate-
gies. It is important to be able to analyze and comparing
strategies at a high-level. Techniques that facilitate strate-
gic analysis using enterprise goals have long been used as
part of goal-oriented analysis [15,19,27–30]. These proce-
dures propagate either qualitative or quantitative evidence
through links in the model in order to evaluate the satis-
faction of goals in the model given a particular strategy or
target. Although quantitative propagation is supported, most
techniques for goal model reasoning operate in the absence
of concrete business measures, making them appropriate for
high-level, strategic analysis in the absence of indicators.
These approaches are suitable when the user is interested in
an early analysis of the domain, exploring and improving
the model while it may not yet be sufficiently complete or
correct [29].

In this work, we select a particular goal reasoning tech-
nique (introduced by Giorgini et al. and described in [19,
20,31]) and demonstrate how this technique can be used to
analyze alternative strategies in BIM models. Other proce-
dures, such as those described in [15,27–29] could be simi-
larly adapted.

Probabilistic decision analysis. In some cases it may be
possible to derive probabilistic information concerning the
likelihood of goal achievement given the achievement of
other model elements. This information can be collected from
business experts, depending on their level of expertise and
confidence, or from past statistical data. If such information
is available, probabilistic decision analysis can be applied to
BIM models, providing an alternative method for choosing
among business strategies. During strategic planning, a strat-
egy is normally produced by making decisions at a number
of decision points. At each point, a decision option is chosen
from a pool of available options. Probabilistic decision analy-
sis facilitates automated decision making, selecting strate-
gies, using conditional probabilities and utility functions.

Reasoning with Indicators. If BIM model construction is
performed in a bottom-up manner, indicators and their data
sources will be derived or elicited from the business. In
this case, reasoning techniques must support reasoning over
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Fig. 4 Alternative view of Fig. 3 separating goal/strategy and indicator hierarchies showing application of reasoning techniques

indicators, using current values to calculate composite indi-
cators, indicators whose values are obtained from those of
their components. These components themselves may also be
composite, leading to an aggregation hierarchy of indicators.
In order to support indicator reasoning, we wish to propagate
values of indicators from a lower level in a hierarchy to ones
higher up. In some cases, a business metric or mathematical
function may exist to combine composite indicator values.
Such formulae may or may not include unit conversion fac-
tors. We describe methods which calculate composite indi-
cator values using either available unit conversion factors or
unit normalization, allowing for optional indicator weights.

In other cases, there is no well-defined mathematical func-
tion that relates atomic indicators to a composite one. This
might simply be due to lack of knowledge about the indica-
tors, or the intrinsic nature of the indicators at hand. We adapt
existing techniques for goal model reasoning for reasoning
with indicators, deriving values of composite indicators, even
when the relationship between a composite indicator and
its components cannot be fully described using well-defined
mathematical functions.

Hybrid reasoning: reasoning with incomplete indicators.
As described in our example methodology (Sect. 2.3), model
construction may typically consist of a mix of strategic
planning and goal identification combined with the elicita-
tion and understanding of existing business indicators. As
a result, models will often not have indicators correspond-
ing to all model elements. By combining techniques for rea-
soning with indicators with existing reasoning techniques,

we can create a hybrid technique which supports reason-
ing with incomplete indicators. Figure 4 shows an abstract
view of our BestTech example, separating the strategic goal
hierarchy from the indicator hierarchy. Here we can see that
the indicator hierarchy is not complete with respect to the
BIM model, and yet we would like to reason over the entire
model. Existing reasoning techniques can be applied to the
hierarchy on the left hand side, while indicator reasoning
techniques can be applied to the right. Hybrid techniques,
reasoning with incomplete indicators, can be used to bridge
the gap between these views, propagating values from right
to left (forward in the direction of the links) using quantitative
normalization.

3.2 Reasoning with BIM models using goal modeling
techniques

In this section, we explore application of an existing goal
model reasoning technique in order to evaluate specific strate-
gies and discover alternative strategies.

3.2.1 Evaluation of specific strategies

Goal-oriented requirements engineering has studied the
problem of systematic exploration of alternative designs for
achieving specified goals. In some cases, a manager has spe-
cific strategies and she wants to compare them relative to
given root goals (in order to eventually select one). A bottom-
up/forward reasoning algorithm (e.g., [15,19,27–30]) starts
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Table 3 Qualitative
propagation rules from Giorgini
et al. [19] (the (OR), (+D),
(−D), (++D), (− − D) cases are
dual w.r.t. (AND), (+S), (−S),
(++S), (− − S) respectively)

(G2, G3)
and�→ G1 G2

+S�→ G1 G2
−S�→ G1 G2

++S�→ G1 G2
− −S�→ G1

Sat(G1) min

{
Sat(G2),

Sat(G3)

}
min

{
Sat(G2),

P

}
N Sat(G2) N

Den(G1) max

{
Den(G2),

Den(G3)

}
N min

{
Sat(G2),

P

}
N Sat(G2)

with an assignment of satisfaction values to some goals in a
goal model. Such an assignment corresponds to a particular
strategy to fulfill root goals. It then forward propagates these
input values to the root goals, according to a set of pre-defined
propagation rules.

Most goal-oriented analysis procedures support either
qualitative or quantitative reasoning. Qualitative or quantita-
tive values or label are assigned to or computed for each con-
nected goal in the model. These values represent the level of
positive and/or negative evidence received via relationships
from other goals, which themselves have positive and/or
negative evidence. Goal model propagation specifies what
level of evidence propagated through what relationships pro-
duces what resulting level of evidence. Procedures described
in [15,19,28,29] support a qualitative scale of satisfied and
denied levels. For example, the procedure in [19] supports
two variables over each goal: goals have satisfiability (S)
values but also deniability (D) values. During label propaga-
tion, a goal can be both “partially/fully satisfied” (PS/FS) and
“partially/fully denied” (PD, FD). For a goal, G1, these values
are recorded by functions Sat(g1) and Den(g1), respectively.
Sat and Den values belong to the set {N, P, F} (none, partial,
full). For simplicity, the same information can be recorded
using predicates FS, PS, PD, and FD, over goals, to repre-
sent their level of satisfaction or denial (e.g., PS(g) being
true corresponds to Sat(g) =’P’). Typically, predicate labels
are written on models as shorthand representing the level of
satisfaction or denial in analysis results.

In this procedure, qualitative satisfaction and denial is
propagated through the model using the semantics of model
links (decomposition, contribution, etc.) For example, in

Table 3, the rule (G2, G3)
and�→ G1 states how labels are propa-

gated when there is an AND-decomposition relation between
goal G1 and sub-goals G2 and G3.

Contribution links between goals, as used in this proce-
dure, can be negative or positive, symmetric or asymmetric,
and can have varying strengths. Polarity and strength are rep-
resented by a number of +/− symbols, specifically +, ++, −,
and −−. In this case, symmetry refers to whether the links
propagates only positive evidence (S), negative evidence (D)

or both. For example, G2
−S�→ G1 states how labels are prop-

agated when there exists a weak asymmetric negative rela-
tion between goals G2 and G1. If G2 is satisfied, then there
is so evidence that G1 is denied, but if G2 is denied, then

nothing is said about the satisfaction of G1 (see [19] for fur-
ther details.)

In order to use this procedure with the BIM syntax, we
require a mapping between BIM and goal model concepts.
The languages contain many overlaps, for example, goals
and operationalization into processes. Giorgini et al. describe
propagation over goals, but such propagation can be applied
to the BIM concepts of situation, goal, and domain assump-
tion. For the purpose of BIM concepts, propagation through
AND/OR refinement can be treated in the same way as in
existing goal reasoning techniques. The achieves link, can
be thought of as a more specific type of AND/OR refine-
ment. When applying reasoning, it is indistinguishable from
AND/OR.

For the purpose of applying existing goal reasoning tech-
niques to BIM, if influence links are qualitative logical influ-
ences as described in Table 1, we can apply contribution
link propagation rules directly to influence links. Quantita-
tive propagation is discussed later in this section.

Propagation using indicators, including measures and
evaluates links, will be explored in Sect. 3.4, on reasoning
with indicators.

Running example. In the context of BestTech, we have
asked: Should we develop technology in-house or acquire
technology through acquisition? Which option is better for
maintaining revenue growth and reducing risks? Consider
the input assignment depicted in Fig. 5, where we choose
“To maintain competitive advantage” by partially fulfilling
the goal “To develop new technology in-house”; we also
assume that we fully satisfy the goal “To increase sales”.
Notice that goals with input assignment are shaded. Bottom-
up reasoning propagates these input labels up the goal hier-
archy all the way to the two root goals (see Sect. 4 for a
description of the various tools which can be used to facil-
itate this type of reasoning). When propagating evidence in
this example, we treat all influence links as symmetric (prop-
agating both positive and negative evidence). As described,
each model element has two values (Sat and Den). However,
we use the common shortcut of only displaying values which
are not none (N ).

As we can observe from the result (shown in Fig. 5), this
strategy leads to “To maintain revenue growth” being par-
tially satisfied, while “To reduce risks” is both partially sat-
isfied and partially denied, producing a conflicting situation
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Fig. 5 Bottom-up goal reasoning example

for this goal. The analyst can use these results to investi-
gate the cause of the conflict, looking for strategies which
effectively achieve the “To reduce risks” goal.

Quantitative propagation. Figure 5 demonstrates a partic-
ular qualitative reasoning for goal modeling [19] adapted
for BIM. Several existing procedures provide similar prop-
agation using quantitative scales. For example, in Giorgini
et al. [30], an expansion of the procedure in [19], satis-
faction and denial values each range from 0 to 1. Here,
positive or negative links (+,−) are assigned a quantita-
tive strength or weight, also between 0 and 1. Propagation
rules are adjusted to accommodate quantitative values, using
link strengths and min/max operators over AND/OR links.
This procedure intends for the resulting numbers to represent
probabilistic values, as in a Bayesian network. If it were to be
applied to BIM models, quantitative probabilistic indicators,
as described in Table 1, would be used.

In the quantitative approaches to goal model reasoning,
including the Giorgini et al. approach, the sources of ini-
tial quantitative satisfaction and denial values, as well as the
numeric link weights, is controversial. Giorgini et al. advo-
cate collecting the numbers from domain experts, but the
accuracy and meaningfulness of such numbers have been
questioned [32,33]. There is a need to ground these num-
bers in realistic business measures. We address this issue
by attaching indicators to goals and other model elements,
grounding quantitative data in real data. We describe the use
of indicators in BIM reasoning in Sect. 3.4.

3.2.2 Discovering alternative strategies

In other cases, a manager may be interested in finding
possible viable alternatives within a model, given certain con-
straints. Given a goal model and an assignment of desired sat-
isfaction values (either qualitative or quantitative) to its root
goals, a top-down/backward reasoning algorithm [30,34] can
look for an assignment (strategies) to leaf goals, processes
and domain assumptions that lead to the desired satisfaction
values of those root goals.

Running example. We have asked: Is it possible to main-
tain revenue growth while reducing risks? What strategies
can achieve these goals? We add as targets to our two root
goals, FS(“To maintain revenue growth”) i.e., we strongly
desire revenue growth, and PS(“To reduce risks”). The algo-
rithm generates a possible strategy, shown in Fig. 6, which
makes the required assignments true (here, the root goals
with required assignments are shaded).

In this strategy, for example, the goal “To establish strate-
gic partnership” is preferred to “To invest in new technolo-
gies”, while the goal “To offer promotion” is preferred to
“To open sales channels”. However, similar to our bottom-
up reasoning, the selection of these alternatives produces
conflicting results for “To reduce risks” and “To reduce
external dependencies”. Had we not wanted such conflicts,
we could have also tried to specify ¬ PD(“To reduce
risk”), though there may be no solution that satisfies these
conditions.
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Fig. 6 Top-down reasoning

3.3 Probabilistic evaluation of strategies

Decision analysis techniques rest on an empirically verified
assumption that humans are capable of framing a decision
problem, listing possible decision options, and quantifying
uncertainty, but are rather weak in combining information
into a rational decision. An influence diagram [35] is a deci-
sion model that supports decision-making by computing the
expected utility value of each decision option; the option
with the highest utility value is optimal and should be cho-
sen by the decision maker. Influence diagrams include: deci-
sion nodes for specifying decision options, chance nodes for
quantifying uncertainty, and value nodes for quantifying user
preferences using utility functions.

To carry out decision analysis, a BIM model needs to be
projected into an influence diagram. Such projections require
a set of translation rules. We summarize these rules here:

• Goals, processes, domain assumptions and situations
are translated to Chance Nodes, meaning that they are
they represent uncertain quantities relevant to the deci-
sion problem; the uncertainties quantified by conditional
probability distributions.

• Each AND-decomposition link is translated into an influ-
ence link if the target node is a goal; it is removed if the
target is a domain assumption (since its truth value is not
influenced by whether the parent goal is been pursued or
not). Also notice, an AND-decomposition is not really a

decision problem; however its translation is necessary in
case it belongs to an OR-decomposed sub-tree.

• Each OR-decomposition link in BIM is translated into a
decision node.

• Influence links among domain assumptions and situa-
tions, as well as those having goals as the source or tar-
get node, are translated into influence links. Note that the
strength of the original influence link will not be used in
the influence diagram; instead the user needs to define
the conditional probability table for the source and target
nodes.

Running example. We outline how probabilistic reasoning
would work for a BIM model using a subset of our example.
In Fig. 7, we focus on a subset of the goal model rooted at the
goal “To increase sales”. The nodes directly involved in the
decision analysis are shaded. In particular, to pursue the goal
“To increase sales volume”, two decision options are avail-
able (according to the OR decomposition in the original goal
model): pursue either the goal “To open sales channels” or
“To offer promotions”. We have previously asked: Should we
develop technology in-house or acquire technology through
acquisition? Here we show an alternative means to answer
this analysis question. Notice that the goal “To maintain
gross margin” and the domain assumption “High demand”
are involved in this analysis through influence links. A deci-
sion analysis amounts to answering the question: which of
these two sub-goals should be pursued in order to maximize
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Fig. 7 Decision analysis

expected gain for the indicators “Sales volume” and “Gross
margin” (which could then be combined into “Total sales”)?

To reason with an influence diagram, we need to esti-
mate conditional probabilities of various events, such as high
demand (domain assumption) for a certain product given eco-
nomic slowdown (its parent node), or high sales volume given
that we open a sales channel vs. we offer a promotion; these
events directly or indirectly affect the outcome of a decision.
The possible outcome of a chance node is not restricted to
be binary. For example, we can talk about “high demand”
being true, partially true or false. These probabilities are rep-
resented by a conditional probability tables (CPTs) for each
event; the one for the event “High demand”, given its parent
event “Economic slowdown”, is shown in Fig. 7. To support
this form of reasoning, influence links must be probabilistic
with strengths corresponding to the conditional probabilities
in the probability tables.

In addition to CPTs, we also need to specify the utility
function of each value node. A utility function introduces
a measure of preference by mapping possible outcomes of
a decision process on the set of real numbers. For exam-
ple, the utility function for “Sales volume” given “To open
sales channels”, “To offer promotions” and “High demand”
is shown in Fig. 7. In particular, it maps {“High demand”
= high, “To open sales channels” = FS; “To offer promo-
tion” = FS} to the number 40,000, while {“High demand” =
high, “To open sales channels” = FS, “To offer promotion” =
PS} to 35,000. Notice it is the relative ordering of the utility
function values that are important, not the absolute values.
However, if values are very close (e.g., 35,000 and 34,950),

this may indicate that the models should be expanded to bet-
ter differentiate between outcomes.

Given the CPTs for each event and the utility functions
for each value node in the model, the algorithm produces
utility values for the value nodes for all possible decision
options (in our example, we have two decision options: “To
open sales channels” and “To offer promotions”). The results
show that the utility for “To open sales channels” is 11,100,
which is higher than the 3,700 for “To offer promotions”. In
this example, the option “To open sales channels” is prefer-
able over “To offer promotions” as far as “Sales volume” is
concerned.

3.4 Reasoning with indicators

In this section, we describe how indicators, linking to busi-
ness data, can be used in analysis, including performance
levels for indicators, composite indicators, and a variety of
techniques for reasoning with indicators as part of BIM.
Reasoning techniques include use of mathematical equations
derived from business metrics to propagation rules derived
from model structure, making use of unit conversion or nor-
malization when needed. This section is an expansion and
reorganization of material presented in [11,12].

3.4.1 Indicator performance levels

As described in Sect. 2.2.4, an indicator is a measure, quan-
titative or qualitative, of the progress or degree of fulfill-
ment of organization goals. The subject of an indicator is
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Fig. 8 Indicator goal example with performance region

a particular feature or quality of an element in the business
environment, e.g., the workload of an employee, or the com-
pliance of an internal process with respect to external reg-
ulations. To express why an indicator is needed, we rely on
the evaluates relation. For example, the indicator “Sales vol-
ume” is needed (why) to evaluate the goal “To increase sales
volume”.

Each indicator, has a current value (cv) which is evaluated
against a set of parameters: target (value), threshold (value)
and worst (value) [22]. The result of such an evaluation is a
normalized value (ranging in [−1, 1] ⊂ R), which is often
referred to as the performance level for an indicator.

Note that a current value can be assigned by: (i) extracting
it at run-time from back-end data sources, (dimensions and
levels [22] can be used to filter data from data warehouses);
or (ii) supplied by users to explore “what-if” scenarios; or
(iii) calculated by a metric expression in the case of composite
indicators, as explored in Sect. 3.4.4.

An indicator can be positive, negative, or bidirectional,
meaning that we want to maximize, minimize or balance
its target. Performance regions are defined for each type of
indicator by properly combining the indicator’s parameters.
Figure 8 shows an example of performance region for a pos-
itive indicator, i.e., we want to maximize sales volume, in
which Target ≥ Threshold ≥ Worst value.

The relative position of indicator current values within
such regions allows calculation of the performance level for
an indicator, as shown in Fig. 9. Notice how the worst and
target values are mapped respectively to −1 and +1, while
the threshold value is mapped to 0. A linear interpolation is
used to approximate performance levels, as also described
by Eq. (1) [36]:

pl(current v.)

=

⎧⎪⎪⎨
⎪⎪⎩

|current v. − threshold v.|
|target v. − threshold v.| , if current v.≥ threshold v.

|current v. − threshold v.|
|threshold v. − worst v.| , if current v.< threshold v.

(1)

Fig. 9 Example of interpolation [36] to calculate performance levels

Other forms of interpolation can be used, e.g., polynomial,
spline, etc. For instance, the performance level (pl) for Fig. 9,
given a threshold of 100 (thousands of dollars in sales) and
a target of 210 is:

pl (155) = |155 − 100|
|210 − 100| = 0.5

Performance levels are, in turn, propagated to the corre-
sponding goals to evaluate satisfaction levels. For example,
in Fig. 8, the performance level 0.5 is propagated to the sat-
isfaction level of the corresponding goal which, in turn, is
mapped to a “partial satisfied” state (orange color).

Indicators can also be used to evaluate situations in a sim-
ilar way as for goals, by propagating a performance level of
an indicator to the occurrence level of the situation evalu-
ated by the indicator. For example, the indicator “Number of
competitors” can measures occurrence level of the situation
“Increased competition”.

3.4.2 Composite indicators

In a BIM model, indicators are associated with various busi-
ness elements (e.g., goals, situations). These elements are
generally composite, consisting of hierarchies of elements.
Such structure implies hierarchies for indicators. For exam-
ple in Fig. 10, the goal hierarchy results in a hierarchy for
associated indicators. More specifically, “Number of sales
channels” and “Number of Promotions” are atomic indica-
tors of “Sales volume”’, since they evaluate goals which are
a sub-goal of “To increase sales volume”.

An alternative way to represent Fig. 10 is shown in Fig. 11,
where the mirroring hierarchies of BIM concepts and indica-
tors are shown separately. In this work, we follow the style of
Fig. 10 in order to make the figures more visually compact.
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To open sales 
channels (g2)

To increase 
sales volume 

(g1)

To offer 
promotions (g3)

Sales 
volume 

(i1)

OR

Number of 
New Sales 

Channels (i2)

Number of 
Promotions 

(i3)

Increased 
Competition 

(s1)

-

Number of 
New 

Competitors 
(i4)

Fig. 10 Example composite indicator and goal hierarchy

We have not yet considered how composite indicators should
be combined (represented by “?”). Techniques to calculate
the values for composite indicators are explored in the rest
of this section and in the next one.

An alternative way to capture composite indicator val-
ues would be to avoid composite values and apply com-
bined atomic indicators values directly to parent elements
(goals, situations, etc.) as input for reasoning. For example,
in Fig. 10, the composite value derived from combining the
indicators “Number of sales channels” and “Number of Pro-
motions” could be applied as the input analysis value for
the goal “To increase sales volume”. However, business met-
rics often already form a hierarchy of compositions, and it
is useful to retain this structure, keeping it separate from the
conceptual business elements. We wish to explicitly differ-
entiate between the goals and processes of the business and
the metrics which evaluate the satisfaction levels of these
elements; and we wish to make this differentiation not only
at model leaves, but at all levels of the model. For example,
“To increase sales volume” is a business goal which differs
from the measure “Sales volume”. Keeping this separation
emphasizes the links between the BI model and realistic data,
differentiating the framework from existing intentional mod-
eling frameworks.

In the rest of this section, we focus on algorithms that prop-
agate values of indicators from a lower level in a hierarchy to
higher-level indicators. In other words, we introduce a vari-

ety of ways to describe the combination of atomic indicators
(the “?” in Fig. 11). These algorithms bear similarity to the
label propagation in goal reasoning summarized in Sect. 3.

3.4.3 Indicator reasoning with varying levels of information

In an ideal case, all relations between atomic and composite
indicators will be fully described using mathematical equa-
tions derived from business metrics. We call such equations
business formulae, formulae used to calculate desired quan-
tities using available data. Such formulae make computation
of composite indicators computationally simple, precise, and
automatable. For example, profits can be calculated directly
from revenues and costs.

Depending on the units of atomic indicators, business for-
mulae may require unit conversion factors. For example,
costs may be calculated from both unit costs and employee
hours, which can be converted into a currency value. In
other cases, if unit conversion factors are not available, val-
ues can be converted to the same scale using normalization
into a set range, producing performance levels as described
in Sect. 3.4.1. We describe these methods in Sects. 3.4.4
and 3.4.5, respectively

Collecting precise domain formulae can require much
effort, especially if business formulae do not already exist in
the organization. In less ideal cases, when business formulae
do not (yet) exist, indicator values have to be derived using
estimation/approximation techniques based on the structure
of a BIM model. Although such techniques may produce
results which are less precise, their use allows reasoning with
incompletely defined indicators. We describe such a tech-
nique in Sect. 3.4.6. We can further consider the case when
indicators are incomplete with respect to concepts in a BIM
model, i.e., not all concepts are (yet) measured via an indi-
cator. We describe a hybrid technique to allow for reasoning
with incomplete indicators in Sect. 3.4.7.

We classify different levels of propagation into four cat-
egories, as described in Table 4, based on the availability
of unit conversion factors and the information required for
reasoning. The first column describes the type of indicator
reasoning. The second column describes the means of unit
conversion, either not required, using unit conversion fac-

Fig. 11 Alternative
representation of Fig. 10
showing separate hierarchies of
goals and indicators

To open sales 
channels (g2)

To increase 
sales volume 

(g1)

Sales 
volume (i1)

OR

Number of 
Sales 

Channels (i2)

Number of 
Promotions 

(i3)

Increased 
Competition 

(s1)

-

Number of 
Competitors 

(i4)

? ?
To offer 

promotions (g3)
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Table 4 Classification of indicator reasoning technique based on unit
conversion and required information

Indicator 
reasoning 
without 
Business 
Formula

Unit 
Normalization
(Performance 

Levels)

Atomic Indicator 
Values

3.4.6

Hybrid 
Reasoning

(with 
Incomplete 
Indicators)

Qualitative 
Normalization

Atomic Indicator 
Values, (Optional) 

{Business Formulae, 
Unit conversion 
factors, Initial 

Reasoning Values}

3.4.7

tors, or quantitative or qualitative normalization. The third
column describes the type of information required from the
organization in order to use this type of indicator reasoning.
The last column indicates in what sub-section of the paper
this type of reasoning is described.

3.4.4 Indicator reasoning using business formulae and unit
conversion

When business formulae which combine atomic indicators
exist or can be reasonably derived, these expressions should
be used to derive the values of composite indicators. Such
formulae should take into account values of atomic indica-
tors associated with sub-goals (sub-elements). For example,
in Fig. 10, the atomic indicators associated with the sub-
goals “To open sales channels” and “To offer promotions”
all contribute in some way to the composite indicator, “Sales
volume”. In this case, our knowledge of the example enter-
prise tells us that the atomic indicator values can be aggre-
gated together, as each value can make a positive, additive
contribution to the sales volume. Other indicator values may
be combined using a variety of mathematical operators (e.g.,
division, multiplication). If, for example, all atomic indica-
tors used the same unit (e.g., time in hours), then no unit
conversion is necessary, and the values could be combined
with an appropriate metric elicited from the enterprise. How-
ever, in this case, each indicator is measured in a different unit
(number of channels, number of promotions), and cannot be
summed directly.

The definition or elicitation of equations calculating the
values of composite indicator will often require some form
of unit conversion. We account for this conversion via the
elicitation or definition of a conversion factor for each atomic
indicator having a different unit of measure.

Unit conversion example. For example, consider the two
simple indicators “Employee cost” and “Working time” (not
in our example model). Specifically, “Employee cost” can
be defined as a composite indicator whose value relies on
the atomic indicator “Working time”. In order to calculate
the composite metric, we need to convert “Working time”

values measured in hours into “Employee cost” units. One
possible conversion factor is to take the average of the wage
per hour for all employees. Assuming that such an average
is $20/h and that the current value for “Working time” is
160 h, we can calculate an approximated current value for
Employee cost as:

1. 20 dollars = 1 h → $20
h = 1,

where 20 is the conversion factor (cf)
2. 160 h · $20 h = $3, 200

We will refer to a conversion factor using a function that
maps the indicator being converted to the composite indica-
tor using the conversion: cf(source, destination). Notice that
in many cases a conversion factor is an estimate based on
previous experience or statistics. For example, the average
wage per hour could be $30 instead of $20 for a different
company.

Running example. In our Fig. 10 example, elicitation in the
particular enterprise could reveal that during a certain time
period each sales channel produces, on average, an addi-
tional $20,000 in sales, and that each promotion produces,
on average, $7,000 in sales. Thus, if sales volume is measured
in thousands of dollars, the conversion factors for each sub-
goal are 20 and 7, respectively. Potentially, an indicator could
have multiple conversion factors, if, for example, it influences
or is a refinement in more than one expression measuring
a composite indicator. The conversion factors (cf) for our
example subgoals are cf(i2, i1) = 20 and cf(i3, i1) = 7,
respectively.

When conversions are impossible, e.g., converting gal-
lons to square feet, we have to fall back to a “normal-
ized” approach or to a “qualitative” one; these are presented,
respectively, in Sects. 3.4.5 and 3.4.6.

Once the conversion factors have been determined, the
expression representing the business metric can be con-
structed. In this case, “Sales volume” is calculated by:

cv(i2) cf (i2, i1) + cv(i3) cf (i3, i1) = 20cv(i2) + 7cv(i3)

where cv(i) is the current value of an indicator, i , derived from
data sources. In addition to factors from indicators associated
with sub-goals, we must consider other business elements
such as goals or situations that influence the goal. In the previ-
ous example, we have the situation “Increased competition”,
which influences negatively the “To open sales channels”
goal. The “Increased competition” situation is evaluated by
the indicator “Number of competitors”. We can use a math-
ematic expression to capture the influence of the situation
on the goal by expressing how the indicator associated with
the situation (i4) affects the value for the indicator asso-
ciated with the goal (i2). Elicitation within the enterprise
could reveal that each competitor reduces the number of sales
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Fig. 12 Example of reasoning with conversion factors and weights (cf
= conversion factor, cv = current value, w = weight)

channels by, on average, two channels (cf(i4, i2) = 2). This
parameter must be chosen accurately by the designer who
must rely on her/his domain experience and/or estimates of
historical data. We can express the combined effect of situa-
tion s1 on goal g2 using the following expression:

cv(i2) − cv (i4) cf (i4, i2) = cv(i2) − 2cv(i4)

In particular, i4 is the current value of the indicator “Num-
ber of competitors”, and cf(i4, i2) is the conversion factor (in
this case, 2) used to convert the indicator value into a number
of sales channels (the unit of i2).

Combing formulae, the value for the composite indicator
“Sales volume” can be expressed via:

(cv(i2) − cv(i4)cf(i4, i2)) cf (i2, i1) + cv(i3) cf (i3, i1)

= 20 (cv(i2) − 2cv(i4)) + 7cv(i3)

This expression is used in Fig. 12 to calculate the cur-
rent value of the “To increase sales volume” indicator, cor-
responding to our desired BestTech analysis question: Given
business metrics and target values, what increase in sales
volume can be expected from the current number of sales
channels and new promotions? In this example, the corre-
sponding current value for each indicator is extrapolated from
the data sources. In particular, for the indicator “Number of
sales channels” we have a current value of 10.

Indicator weights. The effect of goals or influencing situa-
tions can be further refined by adding weights or importance
to the value of each element. These optional values could be
derived, for example, from domain experts using a prioritiza-
tion elicitation method such as AHP [37]. As with conversion
factors, indicators could have multiple weights if their values
are used as part of the expression for more than on composite
indicator. We express these values as w(source, destination);

for example the weight for “Number of sales channels” used
to compute indicator “Sales volume” is w(i2, i1). The influ-
ence from sub-goals and situations, including conversion fac-
tors and weights, can be used to compute a final value for the
composite indicator. In our Fig. 10 example, the final equa-
tion is as follows:

(cv(i2) − cv(i4)w (i4, i2) cf (i4, i2)) w (i2, i1) cf (i2, i1)

+ cv(i3)w (i3, i1) cf (i3, i1)

Although, in this case we sum indicator values, the
designer can customize each expression depending on the
influence of situations and sub-goals as elicited from the
domain. We allow users to express rich and flexible expres-
sions capturing business formulae using the off-the-shelf
grammar of the Jep Java Library (see Sect. 4).

3.4.5 Indicator reasoning using business formulae and
performance levels

When conversion factors are not available, current values for
composite indicators can be derived using range normaliza-
tion, which takes values spanning a specific range and repre-
sents them in another range. In the case of indicators, we take
the current indicator value and convert this value to a perfor-
mance level, as described in Sect. 3.4.1. Once performance
levels have been produced for the required indicators, these
values can be combined using business metrics, as described
in the previous section. As with reasoning using conversion
factors, other, more complex metrics could be used to com-
bine results for composite indicators. After applying each
formulae, results which lie outside the [1, −1] range must
again be normalized.

Running example. In our previous example for calculating
the “Sales volume” composite indicator, if the conversion
factors were not available, the current values for “Number
of sales channels” and “Number of Promotions” would be
converted to a normalized scale, producing performance lev-
els for each indicator. These values would then be combined
using the appropriate business formula, in this case, summa-
tion. When considering the effect of the situation “Increased
competition”, the “Number of competitors” and “Number of
Sales Channels” indicators would be converted into their cor-
responding performance levels, with the former subtracted
from the latter, as described in the business metric. We show
the combined results for “To increase sales volume” using
business formulae with performance levels in Fig. 13. In
this example, performance levels are calculated using cur-
rent indicator values, as used in Fig. 12, as well as associated
target and threshold values. For example, the current value
of 10 sales channels is converted to a performance level (pl)
of 0.8 using the target and threshold values of 12 and 2,
respectively.
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Fig. 13 Example of reasoning with indicator normalization and
business metrics

3.4.6 Indicator reasoning without business formulae

In cases where business formulae are not available to cal-
culate the values for composite indicators, the structure of
the BIM model mirroring the hierarchy of indicators can be
used to derive formulae to calculate composite indicators
following, for example, the propagation rules of Giorgini et
al. [30]. In order to allow for this style of reasoning, which
separates positive and negative evidence, we associate two
variables to each indicator: positive performance (per+)
and negative performance (per−), similar to the S (satis-

fied) and D (denied) values introduced previously. These
variables represent the current evidence concerning perfor-
mance or non-performance of an indicator i.The current val-
ues of atomic indicators as read from the data sources are
normalized (computing performance levels) as described in
Sect. 3.4.5, producing values in the range [−1, +1]. These
values are converted to the two variables per+ and per−
according to the mapping in Table 5. The inputs to this table
are a target, current value, threshold value, and worst value
for each indicator, while the outputs are per+ and per−
values for each indicator. For quantitative performance, the
variable |pl| represents the absolute value of the performance
level produced from the rules specified in equation (1) from
Sect. 3.4.5. For each indicator, the per+ variable is mapped
to a traffic light with a plus symbol on the top, while a minus
symbol is used for the per− variable. Table 5 describes the
mapping for positive indicators only. Similar mappings can
be made for negative or bidirectional indicators. Values could
also be mapped to the corresponding qualitative scale, as
described in Giorgini et al. [30].

Per + /− values are propagated up the hierarchy of indi-
cators using propagation rules from Giorgini et al., translated
into indicator terminology in Table 6.

Our adopted goal reasoning technique propagates positive
and negative evidence separately, allowing the notion of con-
flicting evidence for goals. Applying this reasoning approach
to indicators means that an indicator can be at the same time

Table 5 Mapping rules (t = target value, cv = current value, th = threshold value, w = worst value, pl = performance level)

Input
mapping rule

Resulting performance
variables (per+, per−)

Resulting evidence Resulting indicator color
(per+, per−)

Quantitative Qualitative

cv ≥ t (1.0, 0.0) (full, none) Fully performant

th < cv < t (|pl|, 0.0) (partial, none) Partially performant

cv = th (0.0, 0.0) (partial, none) Partially performant

w < cv < th (0.0, |pl|) (none, partial) Partially non-performant

cv ≤ w (0.0, 1.0) (none, full) Fully non-performant
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Table 6 Indicator propagation rules using model structure

(i2, i3)
and�→ i1 i2

w+S�→ i1 i2
w−S�→ i1 i2

++S�→ i1 i2
− −S�→ i1

per+(i1) per+(i3) ⊗ per+(i2) per+(i2) ⊗ w N per+(i2) N

per−(i1) per−(i3) ⊕ per−(i2) N per+(i2) ⊗ w N per+(i2)

The OR, (+D), (−D), (+ + D), (− − D) cases are dual w.r.t. AND, (+S), (−S), (+ + S), (− − S) respectively. See [30] for details

Fig. 14 Example of quantitative reasoning with indicators using model
structure

“fully performant” and “fully non-performant”. Supporting
such conflicts as part of our approach to reasoning with indi-
cators allows the analyst to see the presence of conflicting
evidence. This can be especially useful as part of initial BIM
model development, with conflicting early analysis results
potentially resolved by adding metrics derived from the enter-
prise. In this way, such reasoning can direct the elicitation of
business metrics for contentious areas of the model.

Running example. We return to our previous BestTech
analysis question: Given business metrics and target values,
what increase in sales volume can be expected from the cur-
rent number of sales channels and new promotions? Current
values and performance levels are taken from the scenarios
in Figs. 12 and 13. For example, the current value of ten sales
channels is mapped to a performance level of 0.8, meaning
that per+ starts at 0.8 as per our mapping rules in Table 5.
This indicator is “partially performant” (green-orange).

By applying the same procedure for all the atomic indica-
tors, we obtain the per+/− values shown in Fig. 14. The next
step is to rely on the propagation rules described in Table 6
to propagate and calculate the per +/− values of the “Sales
volume” indicator.

First, we consider the propagation of the values for the
“Number of competitors” (i4) indicator to the “Number of
sales channels” (i2) indicator through the negative influ-
ence link. In the quantitative procedure, such links require
a numeric weight. In this case, the link can be treated as a
quantitative logical link and assigned a value of 0.5.

Notice that, the influence from the “Increased competi-
tion” situation has a minus (−) symbol. As described by
Giorgini et al. [30], this is a symmetric relation and it is
a shorthand for the combination of the two corresponding

asymmetric relationships i4
−S�→ i2 and i4

+D�→ i2 (the propaga-
tion rule for the latter is dual w.r.t. the former); this means that
both satisfiability and deniability are propagated. Therefore,
after propagation, we obtain:

per+ (i2) = min
(

per− (i4) ⊗ w, per+ (i2)
)

per− (i2) = max
(

per+ (i4) ⊗ w, per− (i2)
)

Thus the i4 values of (per+ = 0.2, per− = 0.0) are propa-
gated to the per +/− values of i2 by using the operator with
the influence weight (0.5). This results in a value of (0.25,
0.0). Combining this with the initial value for i2 of per +/−
of (0.8, 0.0) (using the min operator), we have a value of
(0.25, 0.0) for i2.

We then propagate the two indicators associated with
the corresponding sub-goals by relying on the AND rule in
the first column of Table 6. As the OR rules are dual with
respect to the AND rules, the per+ and per− variables are
assigned the maximum and minimum values amongst the
sub-indicators. The resulting propagation rules are:

per+ (i1) = max
(

per+ (i2), per+ (i3)
)

per− (i1) = min
(

per− (i2), per− (i3)
)

Given the per +/− value of (0.0, 0.1) for i3, this produces
a final value of (0.25, 0.1) for i1. Results are shown in Fig. 14.

In this example, a conflict is discovered for the composite
indicator “Sales volume” when values are propagated fol-
lowing the rules in Table 6. When such conflicts appear in a
model, although undesirable, they do help to highlight par-
ticular aspects of a business that need user attention because
of possible inconsistencies.

3.4.7 Hybrid reasoning: reasoning with incomplete
indicators

Users may want to reason over a model in its intermedi-
ate stages, before complete indicators have been added. For
this purpose, we introduce a forward reasoning procedure, as
in Sect. 3.2.1, supporting analysis of current indicator data
potentially combined with “what if?” alternative decisions.
Future work can investigate how backward or probabilistic
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Fig. 15 An example of reasoning with incomplete indicators

reasoning could be applied (i.e., what indicator values would
support target satisfaction levels? or what decisions should
be made given current indicator values?)

To support reasoning with incomplete indicators, we rea-
son with the available indicator hierarchy, using business for-
mulae, conversion factors, or performance levels depending
on the availability of complete business metrics and con-
version factors. When business formulae are not available,
goal model propagation is applied between indicators, as
described earlier (3.4.6). Generally, we use the most pre-
cise source of information available, following the technique
ordering in Table 4.

Once indicator reasoning has produced current values
for all atomic and composite indicators, the values of the
indicators are transferred onto the evaluated element (via
the evaluates link) in the BIM model. At this point, goal
model reasoning as described in Sect. 3.2.1 begins, using
values transferred from indicators as initial reasoning values.
If analysis results from indicator reasoning techniques differ
from analysis results using goal reasoning techniques, prop-
agation through indicators is favored.

In order to aim for reasoning that covers the entire BIM
model, it may be necessary for the enterprise analyst to pro-
vide “what if?” leaf-level values for model elements not
directly or indirectly connected to indicators. If the analyst
chooses to use qualitative values for such elements, incoming
values will be both qualitative (manually set) and quantita-
tive (from indicators). When propagation results in values

which are both qualitative and quantitative, quantitative val-
ues can be converted to the qualitative scale (see Table 5),
and reasoning can continue using qualitative values.

Running example. We provide a detailed example of this
reasoning with partial indicators, with results shown in
Fig. 15. Here, we have taken the reasoning with indicator
results from Fig. 12 using business metrics and unit con-
version. We transfer the results of this analysis to the cor-
responding evaluated BIM model elements. Mappings from
current indicator values to per+ and per− values can be
applied using the rules described in Table 5. When transfer-
ring performance values from indicators to satisfaction levels
of evaluated BIM elements, per +/− values are transferred
to Sat/Den values, respectively. Values transferred onto the
BIM model elements are then propagated through the model
using goal reasoning techniques as described in Sect. 3.2.1.
Such propagation can be either quantitative or qualitative. In
our example model, when quantitative propagation is used,
we assume that all influence weights are +/− 0.5 for + and
− links, and +/− 1.0 for ++ and −− links, respectively.

In order for reasoning results to be complete, we place
initial analysis values on leaf elements not connected to
indicators, in this case we follow the bottom-up reasoning
example in Fig. 5 and place initial values of FD, PS, and
FD on “To establish strategic partnership”, “To develop new
technology in-house”, and “To acquire technology through
acquisition”, respectively (shaded in grey). We have also
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added initial values to the “Gross margin” indicator and the
“High demand” domain assumption. Through these values
we answer our final example BestTech analysis question:
Given the state of the business according to current data, will
we be able to maintain revenue growth without new strategic
partnerships or technology acquisitions?

In our example, qualitative and quantitative values are
combined when evaluating “To maintain revenue growth”
and “To reduce external defence”. In some cases, results
from indicator reasoning and goal modeling techniques are
not consistent.

For example, the OR relationship between “To open sales
channels” and “To offer promotions” have received analy-
sis values through indicator propagation using a business
metric indicating summation of these values (producing a
value of pl = 0.5), while the OR structure in the model
leads to max/min propagation (producing a value of (0.25,
0.1). In this case the values from the indicator reasoning are
retained, as these values are derived directly from business
formulae.

Results in our example show conflicting values for the
high-level goals of “To reduce risks” and “To maintain rev-
enue growth”. This is in contrast to our Fig. 5 bottom-up
reasoning example, where only “To reduce risks” had con-
flicting values. In this case, use of indicator values reveals
further conflicts and more detailed analysis results.

4 Tool support

Goal model reasoning and probabilistic decision analysis.
In Sect. 3 we described how several existing goal and proba-
bilistic reasoning techniques can be applied to BIM models.
These techniques are supported by a variety of existing tools.
Such tools can be used to approximately represent and then
reason over BIM model. For example, the GR-Tool allows
forward and backward qualitative and quantitative goal rea-
soning as described in [19,20,30] and as used in the examples
in Sect. 3.2. jUCMNav allows forward qualitative and quan-
titative goal reasoning producing single analysis values that
combines positive and negative evidence [38]. Indicators and
indicator aggregation are also supported in jUCMNav. Prob-
abilistic reasoning is supported by the GeNIe decision analy-
sis tool, used to derive analysis results in Sect. 3.3. Figure 16
shows a view of several of these tools analyzing a model sim-
ilar to the running example in Fig. 3. These screenshots are
meant to give an idea of the types of interfaces and analyses
that are possible with such tools. Details of the model can be
seen more clearly in Figs. 1 and 3.

An early version of BIM has been implemented in the
ADOxx metamodeling-based development and configura-
tion environment [39]. Once a BIM model has been con-
structed in ADOxx, it can be projected onto various analysis

models. Currently we support exporting a BIM model as a
goal model (containing only intentions and their relations)
and as a Bayesian network (containing only situations or
indicators and their relations), so that formal goal reason-
ing and probabilistic inference can be carried out using the
GR-Tool [40], and GeNIe [41], respectively.

Reasoning with indicators. The ADOxx tool supports rea-
soning with indicators by supporting queries over BIM mod-
els via the AQL querying language provided with ADOxx
[39].

Parallel to ADOxx development, we have implemented
a visual editor prototype to draw BIM models and support
indicator reasoning techniques described in Sect. 3.4. Our
implementation uses Graphiti [42], an Eclipse-based graph-
ics framework that enables easy development of state-of-the-
art diagram editors for domain-specific modeling languages.
The current version of the prototype implements the quantita-
tive approach described in Sect. 3.4.4 by relying on Jep [43], a
Java library for parsing and evaluating mathematical expres-
sions. Jep supports strings, vectors, complex numbers and
boolean expressions. We are working to expand the tool to
support other types of reasoning, including a combination
of indicator and goal reasoning techniques as described in
Sect. 3.4.7.

Figure 17 provides a snapshot of the tool. Marker “A”
highlights the BIM model and the toolbar containing business
element constructs. Marker “B” highlights the property panel
containing indicator parameters and current value. Marker
“C” highlights the property panel containing the definition
of the metric expression (notice available variables such as
strengths, conversion factors, etc.).

5 Ongoing case studies

BIM concepts have been applied in several ongoing case
studies. One study in the healthcare sector focuses on intro-
ducing and improving business intelligence systems in a
hospital, in order to use the wealth of data that the orga-
nization produces to evaluate the quality and efficiency of
its processes, the utilization of its resources, and the out-
comes of its operations. The case focuses on a critical process
within the hospital Emergency Department. From a research
perspective, the study aims to evaluate the utility of BIM
to design practitioners. Lessons learned include the ability
of BIM concepts to enhance communication and collabora-
tion between designers and domain experts, and to reduce
common project risk factors that a BI solution may face dur-
ing its lifecycle. BIM models functioned effectively both as
communication tool and design blueprint. Case study out-
puts include a methodology for designing dimensional BIM
models, relating to existing or new data sources. The study
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Fig. 16 Screenshots of several
available reasoning tools (top
GR-tool, middle jUCMNav,
bottom GeNIe)
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Fig. 17 Graphiti visual editor and reasoning tool

developed an approach to modular creation of BIM models in
order to deal with the scale of a real-world problem. Specif-
ically, BIM concepts were organized into separate views:
Goal/Strategy Map, Indicator Map, Process Map, Process
Workflow, Resource Map, Actor Map, and individual Actor
Goal Indicator Object Graphs (AGIO). Views could be com-
bined as needed. The AGIO graphs focused on individual
combinations of a single goal, indicator and actor, and were
created using corresponding AGIO sheets (tables). An in-
depth description of intermediate case study results and meth-
ods can be found in [44].

An additional study focused on using an earlier version
of BIM in a large teaching hospital in order to manage
an organizational transformation initiative to reduce antibi-
otic resistant infections (RARI) by changing the use of
antibiotics. This approach used BIM along with Conceptual
Integration Models in order to more explicitly describe the
mapping between BIM business concepts and the structure
of existing data, providing examples of how current indicator
values can be derived through queries over available data. A
more detailed description of the method and study can be
found in [9].

A further case study, currently in its early stages, is
using BIM models as part of a framework to design, deploy,
and build an infrastructure for organizational innovation in
the Ericsson Corporation. In this context, BIM is intended
to make the goals behind innovation efforts explicit, cap-
ture barriers to innovation through situations, and moni-
tor the readiness and success of innovation efforts using
indicators.

6 Related work

BIM. Previous work has introduced early versions of the
BIM language, describing concepts and usage scenarios
[8–12]. We have consolidated and expanded this work, pro-
viding a more detailed and consistent description of BIM
concepts and relationships. We describe more explicitly an
example model construction methodology. Existing work
has described how reasoning can be performed with BIM
models by mapping BIM to existing modeling languages for
which reasoning techniques have been provided [10]. Further
work has described reasoning using indicator values from
business data [11,12]. In this work, we have gone beyond
previous work by introducing a hybrid reasoning procedure
that combines indicator and goal modeling approaches in the
presence of incomplete indicators (Sect. 3.4.7). We improve
and expand on analysis descriptions, using a consistent run-
ning example, and providing an overall view of analysis
approaches, including information requirements and how
each method may be used as part of a BIM modeling and
analysis methodology (Sect. 3.1).

BIM is in the same spirit as other enterprise modeling
languages (e.g., Archimate [45]), which bridges the business-
data gap but with a different intent, e.g., for enterprise archi-
tecture. A longer term objective is to reconcile or combine
these enterprise modeling approaches.

BI surveys. Work in [3] surveys approaches for infor-
mation requirements analysis, approaches specifically for
the development of BI-type analytical information systems.
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Conclusions include the potential to enhance existing app-
roaches by models and documentation that can be easily
understood by IT, without losing precision. BIM fits these
requirements by using a broad set of concepts taken from
business analysis approaches.

Surveys of BI users have shown that although users are
generally satisfied with BI capabilities, they are less satis-
fied with the flexibility of BI systems or their ability to pro-
vide risk management [1]. BIM addresses the need for more
flexibility by allowing users to ask analysis questions using
business terms instead of more technical queries over specific
data structures. Enhanced risk management can be facilitated
both by allowing users to ask “what if?” analysis questions
and by explicitly capturing risk using situations.

Commercial BI. Existing software tools, such as IBM Cog-
nos [2], have begun to raise the level of abstraction of data
schemas used in BI, adding a layer that combines exist-
ing data sources. Although these advances are useful and
necessary, they still only support concepts arising from the
data, failing to capture top-down strategic planning aspects
included such as objectives and situations, as included in
BIM. In essence, BIM complements well these commercial
products.

Business modeling. The use of business-level concepts,
such as business objects, rules and processes, has been
researched extensively for more than a decade [46–48], and
is already practiced to some extent in both data engineering
and software engineering. These efforts have more recently
resulted in standards, such as the business process modeling
notation (BPMN) [49]. These proposals focus on modeling
business objects and processes, with little attention paid to
business objectives. One exception is the business motiva-
tion model (BMM) [6], which proposes an extensive vocab-
ulary for modeling business objectives (among other things).
BMM includes several intentional concepts, such as vision,
goal and objective; in our case, all these are modeled as
goals. Similarly, our BIM models can capture concepts com-
monly found in strategy maps [4] and Balanced Scorecards
[50] (e.g., strategic goals, performance measures, initiatives).
However, BIM goes beyond these concepts by including the
concept of situation, a fundamental concept for supporting
SWOT analysis. BIM moves beyond the capabilities of strat-
egy maps, balanced scorecards, and BMM by supporting rea-
soning (goal, probabilistic, and indicator) over models.

Situation modeling. Modeling of situations, especially unfa-
vorable ones (e.g., weaknesses or threats), has received much
attention in security engineering under the topic of vulnera-
bility. For example, Elahi et al. [51] proposed a vulnerability-
centric modeling ontology. More specifically, it identified
the basic concepts for modeling and analyzing vulnerabili-
ties, and proposed criteria to compare and evaluate security

frameworks based on vulnerabilities. Inspired by SWOT
analysis, our proposal supports a more comprehensive clas-
sification of situations, covering both favorable and unfavor-
able ones, also internal or external to an organization.

Goal models. Modeling of goals has a long tradition within
requirements engineering (e.g., i∗ [17], URN/GRL [18] and
KAOS [16,33]). The goal concept has also been used in enter-
prise modeling, for example [13,14]. From these approaches,
we have adopted intentional and social concepts. However,
these models lack primitive constructs for situation, influence
and indicator which are important to Business Intelligence
applications.

Indicators in RE. Several proposals have used indicators
as part of requirements engineering (RE). For example, van
Lamsweerde [33] uses indicators to evaluate the degree of
goal fulfillment. Recent proposals have extended URN to
include indicators [36,52]. We share ideas with these works;
however: (1) our approach pays special attention to methods
for the construction of indicator hierarchies; (2) we provide
more guidelines to distinguish “what” is measured and “why”
it is measured; and (3) our indicators can be used to evalu-
ate situations which, from our perspective, are fundamental
for strategic reasoning. In [53], the authors propose a formal
framework for modelling goals (and for evaluating their sat-
isfaction) based on performance indicators. Our work shares
similar intentions but focuses more on the concept of com-
posite indicator, ways to define metric expressions to calcu-
late their values, and reasoning with incomplete indicators.

Indicators have also been used in work focusing on self-
adaptive software systems (e.g., [54]). Here they serve as
monitored variables that determine whether a system is doing
well relative to its mandate, or whether it should adapt its
behavior.

A further approach has extended goal (i∗) models for use
in designing and monitoring data warehouse systems, defin-
ing awareness requirements over KPIs [55]. This approach
allows for queries to be mapped to decomposed awareness
requirements using OCL expressions translated to a query
language (MDX). Our work goes beyond this approach by
including concepts such as situation and indicator, and spec-
ifying how data query results captured by indicators can be
linked to analysis of the entire goal model.

7 Conclusions and future work

As a first step towards bridging the gap between the worlds of
business and data in the adoption of BI technologies, we have
provided business modeling support so that business data
can be interpreted and understood in business terms. In this
paper, we have expanded and extended previous descriptions
of BIM language and reasoning. Our expanded description of
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BIM has focused on key concepts for building BIM models
(goal, situation, influence, indicator), intended to capture the
internal and external factors that affect the strategic goals of
an organization, as well as the performance measures on their
fulfillment. We have expanded previous narrative to provide a
sample model creation methodology, combining “top-down”
and “bottom-up” approaches.

We have presented a model-based approach to design and
reason about an organization’s business environment and
strategies, with a focus on indicators and indicator composi-
tion in the context of the BIM language.

BIM concepts have been used to facilitate several forms of
reasoning over business data and objectives, supporting dif-
ferent analysis questions. We have shown how existing goal
and probabilistic analysis techniques facilitating the analysis
and discovery of alternative strategies can be applied to BIM
models. We provided techniques to analyze the impact of
strategies on organization goals, by relying on different types
of knowledge measured through indicators. Using expres-
sions based on the structure of the BIM model and perfor-
mance levels, indicator reasoning approaches can be applied
even when business metrics or unit conversions are incom-
plete. Also new to this paper, we have combined indicator rea-
soning techniques with existing goal reasoning techniques,
allowing reasoning over an entire model even if the indi-
cators do not yet have associated business metrics or are
incomplete with respect to the BIM model. Facilitating rea-
soning with complete information makes the approach more
realistically applicable, and allows reasoning over incom-
plete models as part of BIM model development. We argue
that the indicators and composition mechanisms proposed
here are more flexible and powerful than what is commonly
found in related work, allowing reasoning with varying lev-
els of specific information. All reasoning approaches have
been illustrated using a running example derived from real
analysis reports.

We have consolidated and expanded descriptions of pro-
totype implementations and use of existing reasoning tools.
Work in ongoing case studies applying BIM has been summa-
rized, including mechanisms to scale BIM models to realistic
levels of complexity.

We plan to expand our conceptual model to incorporate
further aspects of the Balanced Scorecard and Strategy Map
approaches, by allowing goals to be classified amongst four
organizational perspectives (financial, customers, internal
business processes, and learning and growth) [4,25]. Such
perspectives can help to ensure that a balanced set of objec-
tives are considered. Similarly, we intend to use the language
meta-properties to classify BIM objects using BMM con-
cepts such as vision, objective, mission, strategy, and tactic
[6].

Along the lines of [55], future work will investigate linking
indicators to business data through queries, allowing users

to query a BIM model, much like conventional database
schemas, but in terms of business concepts. Such queries are
to be translated through model mappings into queries defined
over databases and data warehouses, and the answers are to
be translated back into business-level concepts [9]. This work
will involve deeper investigation of reasoning with instance
level BIM models. We are extending our prototype to con-
nect indicators to Business Intelligence suites, such as IBM
Cognos [2] and the open source Pentaho [56].
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