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Abstract. [Context and motivation] Security mechanisms, such as fire-
walls and encryption, operationalize security requirements, such as confi-
dentiality and integrity. [Question/problem] Although previous work has
pointed out that the application of a security mechanism affects system
specifications, there is no systematic approach to describe and analyze
this impact. [Principal ideas/results] In this paper, we investigate more
than 40 security mechanisms that are well documented in security pattern
repositories in order to better understand what they are and how they
function. [Contribution] Based on this study, we propose a conceptual
model for security mechanisms, and evaluate this model against 20 secu-
rity mechanisms. Using the conceptual model, we provide a systematic
process for analyzing and enforcing security mechanisms on system re-
quirements. We also develop a prototype tool to facilitate the application
and evaluation of our approach.

1 Introduction

Dealing with security requirements in the early stages of the system develop-
ment has become an important topic in Requirements Engineering (RE) and Se-
curity research, as software companies have grown tired of spending millions
to fix system flaws downstream. Security requirements analysis techniques,
such as Misuse Cases [25], Obstacle analysis [26], Secure Tropos [18], involve
eliciting security requirements and identifying security mechanisms to fulfill
those requirements. Security mechanisms, such as firewalls and encryption,
operationalize security requirements, such as confidentiality or integrity. As
such, they do not function independently but interact and constrain parts of
the system in specific ways. As a result, leveraging a security mechanism not
only introduces new requirements to the system, but also inevitably modifies
existing system requirements. Viewed as a cross-cutting concern [23], security
mechanisms have global impact over the entire system.

Some approaches have claimed that leveraging security mechanisms in-
fluences system requirements specifications, which should be iteratively con-
structed by considering the application of security mechanisms [9, 8]. However,
these proposals only focus on new functional requirements that are introduced
by a security mechanism and omit their impact on existing functional and non-
funtional requirements. In other words, their approaches operationalize security
requirements into only individual functional requirements. In addition, there



are neither systematic methods nor supporting tools available for analyzing and
enforcing the impact of security mechanisms on system requirements.

We argue that system requirements specifications are not be complete un-
less they precisely capture such impacts. For example, when applying an access
control mechanism to protect a data asset stored in a server, this mechanism
imposes global constraints on all functional requirements that involve access-
ing the server, which should be reflected in the requirements specification in
order to correctly develop a secure system. Moreover, the quality of the sys-
tem functions are affected by the application of security mechanisms, which
should be captured and taken into account in order to select the best functional
alternatives. For instance, applying the access control mechanism to a specific
system function will impair the usability and performance of all related func-
tions provided by the system. Thus, we believe that a security mechanism is
not a localized solution that can be independently decided upon over other
elements of a requirements specification.

In this paper, we propose to capture and enforce the impact that security
mechanisms impose over system requirements in order to completely and cor-
rectly account for their integration. Specifically, we investigate, in depth, a collec-
tion of security mechanisms that are well documented in security pattern reposi-
tories [22, 5], and propose an approach to systematically and semi-automatically
generate security-enhanced requirements specifications by analyzing the impact
of applying security mechanisms. This work makes the following contributions:

– Presents a conceptual model which characterizes security mechanism from
a requirements viewpoint.

– Proposes a systematic way to analyze and enforce the impact of a security
mechanism imposed on system requirements. A set of corresponding logic
rules are proposed to semi-automate the analysis process.

– Evaluates the expressiveness and effectiveness of our proposal by modeling
20 security mechanisms (selected from [22, 5]) according to the proposed
conceptual model and applying the obtained models to a real healthcare
network scenario.

– A prototype tool has been developed to support the analysis process.

In the remainder of this paper, we introduce the background of this work
(Section 2). We then present an illustrating example used throughout the paper
in Section 3. In Section 4, we describe an enriched requirements specification,
used as an input to our approach. We then present a conceptual model for secu-
rity mechanisms in Section 5, along with a systematic process for analyzing the
impact of security mechanisms (Section 6). After that we describe the evaluation
of our approach in Section 7, and discuss related work in Section 8. In Section 9,
we conclude the paper and discuss future work.

2 Background

In this section, we introduce the research baseline for our research.



Requirements Specification Concepts. Our previous work proposed a three-
layer requirements analysis framework to analyze requirements, particularly
security requirements, in different abstraction layers of Socio-Technical Systems
(STS) [14]. This framework offers a holistic approach to analyze security issues
in all layers, which takes into account the influences across layers. The require-
ments modeling language used in that work is based on the core ontology of
RE [11], and is further expanded with social concepts that are adopted from
i* [27]. In addition, we use security goals, which are specializations of softgoals,
to capture security requirements in the three-layer framework. Each security
goal is specified with importance, security property, and asset, e.g., "High data con-
fidentiality [Clinical information]". A security goal is operationalized into a single
security mechanism, which is treated as a specialization of a task. Fig. 1 shows
a piece of a requirements model that is modeled in our three-layer framework.

In this paper, we specify requirements as in our previous work. In particular,
we reuse the concepts: goal (G), softgoal (SG), task (T) (i.e., function), domain
assumption (DA), and the refinement (REF) and contribution (CON) relations, while
adding a new concept task constraint (TC) in order to capture the impact of
security mechanisms on existing tasks.

Security Knowledge Sources. With the aim of supporting non-security experts
to carry out security requirements analysis and advancing the practical adoption
of the analysis, we base our approach on existing security knowledge sources,
namely, security patterns. Security patterns provide proven security solutions,
through security mechanisms, for known security problems encountered in spe-
cific contexts. A number of security pattern repositories have been summarized
in literature [5][22][7], which result in more than 100 security patterns in total. A
security pattern is specified in a number of sections (depending on the selected
pattern template), each of which addresses an aspect of the pattern. An exam-
ple of the Virtual Private Network (VPN) security pattern is shown in Table 1,
which follows the POSA (Pattern-Oriented Software Architecture) template [2]
and presents a part of four sections, including Context, Problem, Solution, and
Consequence.

In this paper, we extract security knowledge from well documented security
patterns, specifically the work done by Fernandez et al. [5] and Scandariato et
al. [22]. In particular, this paper exclusively focuses on the security mechanism
(i.e. the solution) that is provided by each security pattern, while the reason for
applying the security mechanism (i.e., the problem) was captured and analyzed
in our previous work [15]. As we aim to analyze the impact of security mech-
anisms on system requirements, we mainly extract the knowledge of security
mechanisms from the Solution section that specifies the requirements that need
to be satisfied by a security mechanism, rather than the Implementation section
that describes detailed design of a security mechanism.

Modeling and Analyzing Security Patterns. Our previous work proposed
to seamlessly integrate security patterns into security requirements analysis
by modeling security patterns as contextual goal models, which facilitates
the context-based selection among alternative security mechanisms [15]. After



Table 1: Part of the description of the Virtual Private Network pattern [5]
Context:
Users scattered in many fixed locations, who need to communicate securely with each
other.
Problem:
How do we establish a secure channel for the end users of a network so that they can
exchange messages through fixed points using an insecure network?
Solution:
Protect communications by establishing a cryptographic tunnel between endpoints on
one of the layers of the communication protocol.
Consequence:
There is some overhead in the encryption process.

choosing the best security pattern, we apply its corresponding security mech-
anism that is modeled by using tasks, domain assumptions, and softgoals. In this
method, the application of a security mechanism involves directly attaching
the security mechanism model into the requirements model via refinement and
contribution links.

However, this approach does not consider the impact of the mechanism on
existing functional requirements, including how the impact further affects re-
lated non-functional requirements. Capturing and analyzing such impact is a
non-trivial task. Take the VPN security mechanism as an example, which is de-
scribed in the solution section in Table 1. This mechanism requires endpoints to
communicate via a cryptographic tunnel, i.e., encrypting the communications.
To correctly apply the mechanism, all the functional requirements that com-
municate confidential information should be constrained by this mechanism,
and these requirements are not easy to identify. In addition, as described in the
Consequence, the VPN mechanism impairs system performance. Thus, all the
functional requirements that are constrained by VPN will have a negative in-
fluence on system performance, and this influence has to be taken into account
when selecting alternative requirements.

In this paper, we propose a method which tackles the above challenges. In
particular, we build upon our previous work and create a conceptual model
for security mechanisms, which specializes tasks into security tasks, specifies
security constraints post by security tasks, and captures the impact of security
tasks on non-functional requirements. Based on this model, we are able to
systematically analyze the impact of applying security mechanisms on existing
requirements.

3 Scenario: The Healthcare Collaborative Network (HCN)

The HCN is a system that enables the exchange of healthcare messages and
documents between and within organizations. The essential parts of the HCN
include an admin server and a message flow server, which communicate with
gateways deployed at both the publisher side and the subscriber side. A full



description of the HCN can be found online1. Fig. 1 shows part of the require-
ments goal model of the HCN, which captures the publisher gateway applica-
tion, modeled using our existing framework [14]. Note that we assign unique
identifiers to each node in the figure in order to facilitate the references in the
remaining part of this paper.
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Fig. 1: A snippet of requirements goal model of HCN

4 An Enriched Requirements Specification

In this paper, we use an enriched requirements specification. Such specifications
consist of not only goals (G), softgoals (SG), tasks (T), domain assumptions
(DA), refinements (RE) and contributions (CON), but also task constraints (TC),
which reflect the impact of security mechanisms on tasks. Thus, an enriched
requirements specification is defined as a 7-tuple, i.e.,

R “ tG,SG,T,DA,REF,CON,TCu
A task constraint is specified in terms of task invariants and pre/post-

conditions. The invariants describe properties that have to be true during the
entire execution of the task. The pre/post-conditions describe properties that
have to hold before/after the execution of the task. The value of a task constraint
can be either a constant (e.g. user_data) or a predicate (e.g. encrypted(user_data)).

Fig. 1 presents an example of a requirements specification, including all these
concepts except for task constraints. Note that the notation of the security mech-
anism shown in Fig. 1 (task with (S) annotation) is only used as a placeholder,
as described in our previous work [14]. This placeholder indicates a security

1 http://www.redbooks.ibm.com/redbooks/SG246779



mechanism is applied to achieve the security goal. In this work, this notation is
replaced by detailed concepts of a security mechanism, as described in Section 5.

Expanded Attributes of Tasks. In order to better analyze the semantics of tasks,
we associate each task with three attributes: its subject, object, and operation.
For example, as shown in Fig. 2, we detail the selected task with a subject
publisher_gateway_application, an object clinical_publications, and an operation
send.

Operation: send
Subject: publication_gateway_application
Object: clinical_publication
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Fig. 2: An example of the enriched requirements elements

Such enriched requirements specifications are treated as the input of the anal-
ysis, i.e., each task has to be specified with a subject, an object, and an operation
in order to be processed with our approach. During the requirements elicitation
phase, there are two ways in which the above detailed information can be col-
lected: firstly, interactively asking users when needed; secondly, automatically
extracting the information from textual descriptions of tasks that have been
elicited from stakeholders (with manual verification). For the second means, we
leverage Nature Language Processing (NLP) as proposed in [13] to identify the
roles of sentences, such as subjects, operations, and objects. In particular, we
identify the Parts of Speech (POS) for each single word of a requirement state-
ment. Then, we define a set of semantic patterns by using regular expression in
order to capture the semantics of each sentence in terms of its subject, operation,
and object. This technique has been implemented as part of our prototype tool
(Section 7).

5 Modeling Security Mechanisms

In this section, we propose a conceptual model to characterize security mecha-
nisms from a requirements perspective. In particular, a security mechanism is
specified in terms of security tasks, assumptions, security constraints, and quality
influences. As this paper exclusively analyzes the impact of security mechanisms
imposed on the requirements specification that has been presented in Section 4,
we map the concepts of the security mechanism to the requirements specifica-
tion concepts as much as possible. In the reminder of this section, we describe
each of the concepts that we use to model a security mechanism. An example of
the VPN security mechanism is used for illustration, which is shown in Fig. 3.

Security Tasks. A security task is a detailed action performed by a system to
achieve certain security goals. We define the security task as a specialization of
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task, and use TS to represent the set of security tasks of a security mechanism.
Each security task has an additional attribute "asset", beyond the 3 attributes of
regular tasks that are described in the previous section. This attribute specifies
the asset that is protected by a security task, from which we can infer the
impact of the security task. As the target asset of a security task depends on
the application scenario of the security task, the obtention of this attribute is
specified during the analysis process, described in Section 6.

As with all tasks, a composite security task can be decomposed into detailed
security tasks, and we define the set of refinement relations between security
tasks as REFS. Note that we use the “root” security task to indicate the overall
security mechanism, which can be repeatedly refined till reaching “leaf” security
tasks, as shown in Fig. 3.

Assumptions. An assumption specifies a expected state of affairs, under which
the security mechanism can be applied correctly. Normally, these assumptions
are captured during the refinements of security tasks, such as the assumption
“All endpoints share the same public key system”, presented in Fig. 3. We map this
concept to domain assumption, and use DAS to represent the set of assumptions
made in a security mechanism.

Security Constraints. A security mechanism does not exist independently, but
interacts and constrains existing system tasks in order to ensure that security
requirements are satisfied. Thus, we explicitly capture such interactions between
security tasks and tasks in the requirements model by using security constraints.
We use SC to present the set of security constraints imposed by a security
mechanism.

In this paper, we initially summarize 6 security constraints after investigating
more than 40 reusable security mechanisms that are documented in a security
pattern textbook [5] and a security pattern repository [22]. The 6 security con-
straints include Encryption Constraint, Authentication Constraint, Permission Con-
straint, Centralization Constraint, Protection Constraint, and Auditing Constraint.
Each of these security constraints implies that a security task constrains specific
tasks which have certain properties. Thus, regarding the meaning of each secu-



Table 2: Security constraint rules
Global impact of security constraints

Rule_1: constrainpST,Tq Ð has_operationpT,Fq ^ trans f er_operationpFq

^has_ObjectpT,Oq ^ protectpST,Oq ^ has_constraintpST, encryption_constraintq
Rule_2: constrainpST,Tq Ð has_operationpT,Fq ^ pprotectpST,Fq

_paccess_operationpFq ^ has_objectpT,Oq ^ protectpST,Oqqq

^has_constraintpST, authentication_constraintq
Rule_3: constrainpST,Tq Ð has_operationpT,Fq ^ pprotectpST,Fq

_paccess_operationpFq ^ has_objectpT,Oq ^ protectpST,Oqqq

^has_constraintpST, authorization_constraintq
Rule_4: constrainpST,Tq Ð has_operationpT,Fq ^ protectpST,Fq

^has_constraintpST, centralization_constraintq
Rule_5: constrainpST,Tq Ð has_operationpT,Fq ^ access_operationpFq

^has_ObjectpT,Oq ^ protectpST,Oq ^ has_constraintpST, protection_constraintq
Rule_6: constrainpST,Tq Ð phas_ f unctionpT,Fq ^ protectpST,Fqq

_phas_ObjectpT,Oq ^ protectpST,Oqq ^ has_constraintpST, auditing_constraintq

rity constraint, we define security constraint rules for each particular security
constraint to identify tasks that are constrained by a security task. The full list
of security constraint rules are shown in Table 2. Take the Rule 1 as an example:
if a security task ST has an encryption_constraint, which targets the asset O, and
there is a task T that has an operation F, which transfers the asset O, then the
task T is constrained by the security task ST. Once having a list of security con-
straints, we need to go through each security task modeled before to identify
whether it imposes certain security constraint. For example, as shown in Fig. 3,
we identify that the security tasks st2 and st9 impose the Encryption Constraint
and Authentication Constraint, respectively.

The proposed security constraints are not intended to be complete, but pro-
vide good coverage when considering the content of the 40 investigated security
patterns. Additional constraints, together with their corresponding constraint
rules (e.g. Table 2), can be incrementally integrated into our work.

Quality influences. Each security task not only changes functions of a system,
but may also influence the qualities of the system, either positively or negatively.
We use a set of contribution links to capture such quality influences, which are
represented as CONS. A contribution link is a triple, which specifies the influence
imposed by a security task over system related quality (captured as a softgoal).
We define the set of softgoals affected by a security mechanism as SGS. Thus,
the quality influences are defined as:

CONS Ď TS ˆ tmake, help, hurt, breaku ˆ SGS
For example, in Fig. 3, the security task “Establish a cryptographic tunnel in the IP
layer” makes the softgoal "High transparency", while hurts another softgoal "High
performance".



6 Analyzing the Impact of Security Mechanisms
In this section, we propose a systematic process to analyze and enforce the im-
pact security mechanisms impose on the existing system requirements specifi-
cation. We take the enriched requirements specificationR and the to-be-applied
security mechanism specificationM as the input of our analysis, i.e.,
Input: R “ tG,SG,T,DA,REF,CON,TCu,M “ tTS,REFS,DAS,SC,SGS,CONSu

After systematically analyzing the impact of the security mechanism (Fig. 4),
our approach will generate an updated requirements specification, R1, which
reflects all the impacts of the security mechanisms imposed on the requirements
specification, i.e.,

Output: R1 “ tG1,SG1,T1,DA1,REF1,CON1,TC1u

We illustrate the analysis process by analyzing the impact of the VPN mech-
anism (Fig. 3) imposed on the piece of requirements specification of the HCN
scenario (Fig. 1). It is worth noting that if there are multiple security mecha-
nisms need to be applied, all of them will be analyzed iteratively using the same
approach.
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Fig. 4: The process for analyzing impact of security mechanisms

Integrate Security Tasks. All security tasks, as a specialization of tasks, are
directly incorporated into the initial requirements specification, as well as the
refinements relations among them (if they exist). As such, the integration is
defined as follows:

T “ T Y TS , REF “ REFY REFS
As a security mechanism is applied to operationalize a security goal, the root

security task of the security mechanism will replace the placeholder described in
Fig. 1, and is directly linked to the security goal. In the illustrating example, the
result of integrating security tasks of the VPN mechanism to the requirements
specification is shown in the right part of Fig. 5 (st1-st10).

Contextualize Security Tasks. Once security tasks are integrated into the re-
quirements and linked to a particular security goal, the target assets of security
tasks should be determined in order to support the identification of constrained
tasks in a later step. Each security goal in the requirements specification has
already been specified an asset, such as the security goal sec1 is specified with
an asset "clinical_information" (Fig. 5). Thus, the security tasks that are applied
to satisfy a security goal will inherit the asset from that security goal. In the
illustrating example (Fig. 5), all the applied security tasks have the asset "clini-
cal_information", automatically derived from the security goal sec1.
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Recheck Assumptions. When applying a security mechanism to a system
within a particular domain, assumptions made in the mechanism should be
further checked about whether or not it is still an assumption in the domain.
Thus, a heuristic question can be asked, "Is the assumed phenomenon inside
the boundary of system design now?" If so, we need to replace this assumption
with a security task which “realizes” the assumption, and then add this security
task to the set of tasks, i.e.,

T “ T Y ta|@a P DAS, inside_design_boundarypaqu
In this case, the newly added security tasks should be appropriately performed
to ensure that the security mechanism is executed correctly. If the answer to the
question is "No", the properties in the assumption keep being assumed to be
held, and we add the assumption to the set of domain assumptions, i.e.,

DA “ DAY ta|@a P DAS, outside_design_boundarypaqu
In our example, the assumption of the VPN mechanism “All endpoints share

the same public key system” is determined to be inside the system design boundary.
So we create a security task regarding this assumption (i.e., the st11 in Fig. 5),
and add this security task to the set of tasks.

Identify Constrained Tasks. After security tasks have been contextualized with
the asset information, we now apply the security constraint rules (Table 2) to
automatically identify the interactions between security tasks in the security
mechanism and tasks in the requirements specification, i.e., identifying which
tasks are constrained a security task.

During the above impact identification, we are concerned about not only
the information derived from the two specifications (i.e., R and M), but also
additional domain knowledge models, such as data schemes (Fig. 6 (a)) and
semantic hierarchies of words (Fig. 6 (b)). These models provide auxiliary rules
to facilitate the analysis, e.g., the following rules:

Rule_7: protectpST,A2q Ð protectpST,A1q ^ part_o f pA1,A2q
Rule_8: trans f er_opertionapOq Ð send_operationpOq

Rule 7 indicates that if an asset needs to be protected, all the parts of this asset



also should be protected. Rule 8 indicates that if an operation is of the type of
“send”, then it is also of the type of “transfer”.

In our example, we use Rule 1 to infer, and identify three tasks {t3, t8, t14}
(Fig. 1), which are constrained by the security task st2. Due to space limitation,
Fig. 5 only represents part of the original requirements model that is related to
t14.
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Enforce Security Constraints. After identifying all tasks that are constrained,
we further enforce security constraints on those tasks. In particular, we propose
specific enforcement measures for each of the 6 security constraints according
to their meanings, which are detailed in Table 3. In this table, we first present
the impact introduced by each security constraint. After that we describe the
concrete enforcement measures, which are either adding task constraints or
replacing tasks. For example, the Encryption Constraint adds a new pre-condition
to the constrained task, the Protection Constraint adds a new invariant to the
constrained task, and the Auditing Constraint adds a new post-condition to
the constrained task. Apart from imposing task constraints, the Centralization
Constraint replaces the constrained task with the corresponding security task. In
this case, all the refinement relations that were linked to the constrained task are
now redirected to the security task, and then the constrained task is removed.

According to the proposed enforcement measures, in our example, we en-
force the encryption constraint on the constrained task t14 (Fig. 5, i.e., adding a
new pre-condition per f ormedpst2q to this task.

Apply Quality Influences. Many requirements analysis techniques rely on qual-
ities, which are normally captured as non-functional requirements (NFRs), to
select alternative requirements [10]. Due to the interactions between security
tasks and tasks, the quality influences introduced by security tasks may affect
system requirements decisions, which need to be re-evaluated.

As the first step of applying quality influences, we correlate the softgoals
in SGS with the softgoals in SG, i.e. checking whether they are the same soft-
goals. As the same concept may be presented by different terms in different
ways, this correlation analysis may require additional techniques, such as the
Repertory Grid Technique (RGT) [19]. In the illustrating example, SGS of the
VPN mechanism involves several softgoals among which "Low cost" and "High
performance" have been correlated with softgoals in SG (in this particular case,
the correlated softgoals have the same contents). For the softgoals in SGS that
are not correlated, the analyst needs to re-evaluate stakeholders’ non-functional



Table 3: Enforcement measures for the 6 security constraints
Security
Constraints impact Enforcement

Encryption
Constraint

the encryption security task should be done
before the constrained task.

add(performed(st),
t.precondition)

Authentication
Constraint

the authentication security task should be
done before the constrained task.

add(performed(st),
t.precondition)

Permission
Constraint

the authorization security task should be
done before the constrained task.

add(performed(st),
t.precondition)

Centralization
Constraint

the constrained task is replaced by the cen-
tralized security task. replace(t, st)

Protection Con-
straint

the protection security task should be en-
forced to cover the whole execution period
of the constrained task.

add(cover_by(st),
t.invariant)

Auditing
Constraint

the auditing security function should be
done after the execution of the constrained
task.

add(need_to_perform(st),
t.postcondition)

Remark: the st indicates the corresponding security task of a security constraint, while
the t stands for the constrained task.

requirements to decide whether to include these softgoals. In our example, the
uncorrelated softgoal "High traceability" is evaluated, and a decision is made to
add it to the SG, shown in Fig. 5. This integration is defined below,

SG “ SGY tsg|@sg P SGS,uncorrelatedpsgq ^ decide_includepsgqu
However, the other uncorrelated softgoals, such as "High usability", are evalu-
ated and are determined to not fit in with the current scenario. Once the above
correlated softgoals and newly added softgoals are determined, all their corre-
sponding contribution links in CONS will be integrated into the requirements
specification, i.e.,
CON “ CON Y tcontributepst, in f , sgq|@contributepst, in f , sgq P CONS, Dsg P SGu

After correlating softgoals, we analyze the quality influences of a security
task to its constrained tasks. Specifically, if a security task constrains a task, then
all the quality influences introduced by this security task should be taken into
account when evaluating the constrained task, especially if the constrained task
is part of a requirements alternative. In the example (Fig. 5), since t14 is con-
strained by st2, the correct execution of t14 requires the appropriate interactions
with st2. Thus, when evaluating the requirements alternatives that involve t14,
such as the alternative tasks {t11,t12} vs. {t14,t15}, the influences st2 imposed on
the qualities (i.e., sg1, sg2, sg4) have to be taken into consideration.

7 Evaluation
Evaluate Expressiveness. We apply the proposed conceptual model to 20 se-
curity mechanisms, which are specified as reusable security solutions in the
security pattern textbook [5]. The statistics of applying the conceptual model to
the 20 security mechanisms are presented in Table 4. The result of this evalua-
tion shows that the 6 security constraints defined in this paper are enough to



Table 4: Statistics of applying the conceptual model to 20 security mechanisms

Security Task Assumption Security
Constraint

Quality
Influence

Total 89 15 27 148
Average 4.45 0.75 1.35 7.4

capture the semantics of these security mechanisms, and some security mecha-
nisms impose more than one security constraint. On average each mechanism
has more than 4 security tasks, which implies that security mechanisms are
normally described at high abstraction level and can be further refined into
detailed tasks. Moreover, the large number of quality influences further justify
that security mechanisms can heavily affect the quality of systems, the impact of
which should be carefully inspected. On the whole, by applying the conceptual
model, a single security mechanism has around 14 nodes on average. Thus, the
conceptual model is scalable to model a larger number of security mechanisms
and include them into the repository.

Evaluate Effectiveness. We apply the proposed analysis approach to the full
requirements model that we have built for the HCN scenario, which contains
23 goals, 8 softgoals, 67 tasks, and 75 refinement links. In particular, we ana-
lyze the impact of the VPN mechanism (Fig. 3), which has 9 security tasks, 1
assumption, 2 security constraints, and 8 quality influences. The application of
this mechanism identifies 12 constrained tasks, each of which has applied 2 task
constraints and 3 quality influences. This evaluation shows that our approach is
able to identify and enforce the impact of security mechanisms, and it is scalable
to a medium-size requirements model.

Tool Support. We have developed a prototype tool to support the evaluation
and application of our approach. This prototype is built on top of our previ-
ous security requirements analysis tool MUSER [16]. Apart from the features
provided by MUSER, e.g., graphically modeling requirements goal models, this
prototype tool helps analysts to model security mechanisms and analyze their
impact on requirements models. Specifically, the tool can infer the tasks that are
constrained by specific security tasks according to the proposed rules. If certain
information is missing during the reasoning process, the tool will interactively
ask users to provide relevant information. Finally, as mentioned in Section 4,
we leverage another tool to facilitate generating enriched requirements speci-
fication, which automatically extracts the subject, object, and operation from the
description of a task by using NLP techniques [13].

8 Related Work
The interaction between requirements and architecture was first emphasized by
Nuseibeh in [20], where he proposes a twin peaks model to show these inter-
actions at an abstract level. Heyman et al. [9] and Okubo et al. [21] specialize
the twin peaks model in the security area, respectively. They all outline a con-
structive process for co-developing secure software architectures and security



requirements, but do not consider the impact secure architectures impose on
other non-security requirements. In addition, none of these approaches has for-
malized the interactions between the twin peaks, and there is no tool developed
to support the analysis process.

In Goal-Oriented Requirements Engineering (GORE), stakeholder’s require-
ments, i.e., goals and softgoals should be operationalized into specific functions.
As summarized by Dalpiaz et al. [3], there are several types of operationaliza-
tion among existing GORE approaches, namely: functional requirements oper-
ationalization, qualitative operationalization, adaptation requirements opera-
tionalization, and behavior operationalization. Most of the existing work about
security requirements operationalization falls into the first category, i.e., opera-
tionalizing security requirements into particular functions [17, 8, 14]. However,
in this paper, we argue that any single category summarized above is not enough
to characterize the operationalization of security requirements. Instead, our pro-
posal aims to provide a new category of requirements operationalization, which
focuses on capturing various changes on existing requirements specification.

Apart from the type of requirements operationalization, the means of doing
the operationalization is also an essential step of the analysis. Letier and Lam-
sweerde have proposed to leverage operationalization patterns to guide the
operationalization analysis [12], while Alrajeh et al. leverage machine learning
techniques to operationalize goals [1]. As these approaches help to guarantee the
correctness of the obtained operational specification, they can complement our
work during the step of enforcing security constraints, specifically, validating
the enforcement rules.

Security, as a cross-cutting concern, has been investigated in an aspect-
oriented manner. Gunawan et al. model both systems functional designs and
security mechanisms by using the collaboration-oriented behavior model, and
propose to treat each security mechanism as a security aspect that can be in-
serted into different places of the system design [6]. Sousa et al. adapt the NFR
framework to support aspect-oriented analysis [4]. Specifically, they illustrate
their approach with a security requirements example, as they treat security
requirements as a NFR. However, the above approaches do not consider the
quality influences imposed by security mechanisms.

The impact of security mechanisms have been enforced by using model
transformation techniques. Shiroma et al. focus on applying security mecha-
nisms onto UML class diagrams [24]. They automatically enforce the security
mechanism by defining transformation rules in ATLAS transformation lan-
guage. However, this work focuses on the design phase and does not consider
the impact on the system requirements. Yu et al. use i* constructs to model the
context, problem, and solution of a security pattern, and automate the problem
matching and application of the security solution by using ATL [28]. However,
their approach highly depends on the semantics of the constructs of i*, such as
dependencies and roles, and cannot be generalized for all security mechanisms,
such as encryption.



9 Conclusions and Future Work

In this paper, we propose a conceptual model, which characterizes security
mechanisms as security tasks, assumptions, security constraints, and quality
influences. Using this conceptual model, we provide a systematic way to ana-
lyze and enforce the impact that security mechanisms impose over the system
requirements. By defining related reasoning rules and implementing a proto-
type tool, the proposed analysis can be semi-automated. Finally, we evaluate
the expressiveness of our conceptual model against 20 security mechanisms
documented in existing security pattern repositories, and further evaluate the
effectiveness of the analysis approach using a HCN scenario.

In the future, we want to generalize our approach to other goal-oriented
security analysis approaches, such as Secure Tropos, KAOS. To this end, the
proposed conceptual model of security mechanisms should be appropriately
mapped to other types of goal-oriented requirements specifications, and the
analysis process should also be adjusted accordingly. Another branch of the fu-
ture work involves generalizing our approach to analyze and enforce the impact
of all kinds of mechanisms (e.g., safety mechanisms, performance mechanisms,
etc.) on the requirements specifications.

Apart from the above generalization of this work, we aim to collect more
empirical evidence of the effectiveness of our solution, based on which we can
further improve the approach. Firstly, beyond the 20 security mechanisms that
have been specified in our conceptual model, we plan to analyze more security
mechanisms to further check the coverage of the 6 security constraints proposed
in this paper. Secondly, larger scale case studies will be done to better evaluate
the effectiveness of our approach. Thirdly, we want to involve practitioners
into the evaluation of the approach via controlled experiments to evaluate the
potential of the practical adoption of our approach.
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