
CSC373— Algorithm Design, Analysis, and Complexity — Spring 2018

Solutions for Assignment 2: Dynamic Programming

1. [6pts] Sub-Palindromes. A subsequence is palindromic if it is the same whether read from left to right
or right to left. For instance, the sequence

(A,C,G, T,G, T,A, T,G,C)

has many palindromic subsequences. Examples of palindromic subsequences of this sequence include
(C,G, T,A, T,G,C), (A, T,G, T,A), (A) and (T, T), which have lengths 7, 5, 1, and 2, respectively.

Develop an algorithm that takes an input sequence x = (x1, x2, . . . , xn), for some n ≥ 1, and returns the
length of the longest palindromic subsequence. Your algorithm should run in O(n2) time and require O(n2)
space. You can refer to algorithms and notation used in the lecture notes without repeating them in your
answer. (Hint: Here that is particularly helpful.)

Soln Q1, Part 1: Use string matching algorithm from lecture notes. Consider the algorithm
described on p.28 of dynamicProgIntro.pdf). Here we wish to use x as the original string, and y =
reverse(x), which is just the left-right reversal of x. So both x and y have length n. Recall, this algorithm
takes O(n2) time and space.

Soln, Q1, Part 2: Choose appropriate αp,q and δ. We use αp,p = 0 for all characters p, αp,q = 3 for
p 6= q, and δ = 1. What’s important here is that αp,p < 2δ < αp,q.

Soln, Q1, Part 3: Characterization of optimal paths. With these values of αp,q and δ, it follows
that any diagonal edge in the matching graph that corresponds to mismatched items (i.e., costing αp,q = 3
since p 6= q) can always be replaced by two unmatched edges (e.g., p is unmatched in x and then q is
unmatched in y), which together cost less (i.e, 2δ < αp,q = 3). Therefore, no optimal path (i.e., with the
minimum matching cost) will use a diagonal edge with p 6= q).

Soln Q1, Part 4: Derive M as a function of OPT (n, n). Let P be any optimal path in this string
matching problem which has the minimum cost OPT (n, n). From the previous paragraph, we know that
any path with this optimal match value must use only the edges costing δ or αp,p = 0.

Let M be the number of times a diagonal edge costing αp,p = 0 is used on this path P . Then M characters
in each string are paired with identical characters in the other string, while n−M characters are mismatched
in each string. As a result, we have

OPT (n, n) = 2(n−M)δ +Mαp,p = 2(n−M), since δ = 1 and αp,p = 0. (1)

Moreover, since P was assumed to have minimum possible cost, it follows that M is the maximum number
of characters that can be matched. That is,

M = n−OPT (n, n)/(2δ) = n−OPT (n, n)/2. (2)

is the maximum length of any palindromic subsequence.

Therefore the maximum length M can be computed by first computing OPT (n, n) using the algorithm
described in the lecture notes (taking O(n2) time). Then M is given by (2), taking O(1) more time. So
the overall algorithm runs in O(n2) time.

Soln Q1, Part 5: Extract a longest palindromic subsequence. Optional and omitted. This can be
done by working backwards through the table OPT (i, j), and requires O(n) time.

1

2. [10pts] Parsing Words. We wish to parse a sequence of letters, say y = (y1, y2, . . . , yn), into a sequence
of words. Here all the white space and punctuation have been removed from y, and we assume it consists
of only the lower-case letters ’a’ through ’z’. For example, y = ′meetateight′, and this could be parsed as
the sequence of three words s = (s1, s2, s3) = (′meet′,′ at′,′ eight′).

In order to help with this task, suppose we function dict(x) which returns an integer representing the
overall quality of the string x as an English word. Here you can assume the quality of correct English
words are high, and incorrect (or uncommon) strings such as ’etat’ have low (or even negative) quality. We
define the quality of the empty string to be arbitrarily low, for example, dict(′′) = −∞.

Moreover, we know a constant L > 0 such that for any string x of length bigger than L, dict(x) = −∞.
That is, we know any word with quality larger than −∞ must have length less than or equal to L.

We define a parse of an input string y as a sequence S = (s1, s2, . . . , sK) of non-empty substrings of y, with
each sk = y(i(k) . . . j(k)) with i(k) ≤ j(k). (Here the notation y(i . . . j) refers to the substring of y starting
at the ith character, yi, and ending at the jth character, yj .) Moreover, for S to be a parse we require
that the concatenation of the substrings in S equals the original string, i.e., y = concat(s1, s2, . . . , sK) ≡
concat(S). It follows that

1 = i(1) ≤ j(1) < j(1) + 1 = i(2) ≤ j(2) . . . < j(K − 1) + 1 = i(K) ≤ j(K) = n.

For the example y = ′meetateight′, a possible parse is S = (s1, s2, s3) = (′meet′, ′at′, ′eight′) (that is, s1
= ′meet′, and so on).

The total quality of a parse S = (s1, s2, . . . , sK) is defined to be

Q(s) =
K
∑

k=1

dict(sj) (3)

The problem is then, given a string of letters y, find a parse S of y with the maximum total quality.

(a) Clearly describe a dynamic programming approach for solving this problem. You can assume that the
given string y has length at least one. You do not need to provide a correctness proof, but explain
why you believe your algorithm is correct.

Soln 2a, Part 1: Explanation of cases and recurrence relation. Suppose we are given the
string (y(1), . . . , y(n)) with n > 0, and the function dict(s). For j ∈ {1, 2, . . . , n} define OPT (j) to
the optimum quality of possible parses for the prefix string y(1 . . . j) = (y(1), . . . , y(j)). Let Sj denote
such a parse of quality OPT (j). We wish to derive a recurrence relation for OPT (j) in terms of the
optimum values of parses of shorter prefix strings. It is convenient to define OPT (0) = 0.

For each j with 1 ≤ j ≤ n there are two cases to consider. Either the optimal parse Sj consists of
more than one word, or exactly one word. We consider these two cases below.

Single Word Case: Here Sj = (s1), with s1 = y(1 . . . j). So OPT (j) = dict(y(1 . . . j)). Note that,
since dict(y(1 . . . j)) = −∞ for j > L this case is only relevant for j ≤ L.

Multiple Word Case: Here Sj must have the form Sj = (s1, . . . , sm), where m > 1 and the last
word sm satisfies sm = y(i . . . j) for some i with max(1, j − L) < i ≤ j. In order for Sj to be an
optimal parse which has the last word sm it must be the case that (s1, . . . sm−1) is an optimal parse
of y(1 . . . (i− 1)). The optimum value of such a parse is defined to be OPT (i− 1). Hence, in this case
we could achieve the score OPT (i− 1) + dict(y(i . . . j)). Moreover, in order to maximize the quality,
we wish to choose i ∈ {j−L+1, j} in such a way to maximize these scores over these possible choices
for i.

Combining these two cases, we have

OPT (j) = max
max(1,j−L+1)≤i≤j

[OPT (i− 1) + dict(y(i . . . j))] . (4)

2

Note that we use the definition OPT (0) = 0 when i = 1 in the above expression.

Soln 2a, Part 2: Correctness. The recurrence relation (4) is correct since it accounts for all
possibilities that don’t result in a score of −∞. This follows from Q2a Part 1 above (details omitted).

Soln 2a, Part 3: Pseudo Code (Optional)

[q, p] = optSegQual(y, n)
// Input: y = y(1...n)) the string to be parsed.
// n – the length of the string (Precondition: n > 0)
// Output: q an array of size n, with q(j) the maximum quality of any segmentation of y(1..j)
// Output: p an array of size n, such that the optimal parse of the prefix string y(1...j) is
// Sj = (s1, ..., sm) with the last word sm = y((p(j)), . . . j).
// That is, when p(j) = 1 the prefix string y(1...j) is parsed as a single word.
L = 45 // Set L to be the longest word in a major English dictionary.
Allocate q, an array of length n. // q(j) will store OPT(j).
Allocate p, an array of length n. // p(j) as above.

for j = 1..n // Loop over increasing lengths of the prefix string
// Find the best quality of multi-word segmentations of y(1..j)
for i = max(1, j-L+1)..j // Check the case that the last word is y(i..j)

if i == 1 // Single word segmentation
q(j) = dict(y(1..j)
p(j) = 1

else // Multiple word segmentation of y(1..j)
// Find quality of best segmentation of y(1..j) with last word being y(i..j)
tmpQ = q(i-1) + dict(y(i..j))
if q(j) < tmpQ // Update current max quality.

q(j) = tmpQ
p(j) = i // Remember the start index of the best last word.

end
end

end // End loop over beginning index, i, of last word in y(1..j).
end
return q, p

Soln 2a, Part 4: Extracting the parse. If you only returned the table of optimum values of the
parse, i.e., OPT (j) (which is the q(j) returned by the pseudo code above), then you need to use the
table OPT (·) to find the beginning of each word, working backwards from the last word back to the
first. That is, if you currently know the last word ends at j (initially j = n), then look backwards
through i, where max(1, j −L+1) ≤ i ≤ j, for where OPT (j) = OPT (i− 1)+ dict(s(i..j)). The first
such i determines the start position for this last word, i.e., the last word is y(i..j). (There must be
such an i, by construction.) Iterate this until i = 1. We omit the details.

Instead, in the above pseudo code we have returned enough information to find an optimal sequence
of words more directly, as follows:

\\ Given n and p(k) for 1 ≤ k ≤ n, as defined above
S = []
k = n
while k 6= 0

S = prepend(y(p(k)...k), S)
k = p(k)-1

end

3

(b) What is the order of the runtime of your algorithm in terms of the length n of the input string y?
Here assume the that each call to the dictionary, dict(x), runs in O(1) time. Briefly explain your
result (you do not need to do a detailed runtime analysis).

Soln 2b, Part 1: The inner-most loop in optSegQual. The inner-most loop of optSeqQuality
is executed at most L times and, by assumption dict(s) is O(1). The only other step in the inner-
most loop is to extract the substring y(i..j), and since we are only looking at substrings of length at
most L, this is at most O(L). Since L is a fixed constant, the runtime of this inner-most loop is O(1).

Soln 2b, Part 2: Runtime of optSegQual. The inner-most loop is run n times, so this gives an
overall runtime of O(n).

Soln 2b, Part 3: Runtime for construction of optimal segmentation. The post-processing
step involves copying disjoint substrings y, of total length n, so all this copying alone will cost O(n).
The loop for the segmentation construction runs M times, where M is the number of words in the
optimal parse. Since each word has length at least one, we have M ≤ n, and therefore the rest of
the algorithm (not counting the string copying) also runs in O(n) time. Therefore the segmentation
construction step also runs in O(n) time.

We could get the same order runtime, O(n), if we did not return the array p containing the first
character of words. Although this approach would reguire O(LM) calls to the dictionary, and O(LM)
string copying costs, where M ≤ n is the number of words in the optimal parse.

(c) Optional (not marked). Implement your algorithm in Python using a library to define the function
dict(s). For example, you could use package wordfreq 1.6.1 and define

dict(s) =

−1 if s is empty,
math.floor((1.0e+ 6) ∗ zipf frequency(s,′ en′)) if 0 < |s| ≤ L,
−∞ if |s| > L,

For test strings you could take any English text, preprocess it to lower-case, removing all non-letters
except blanks, and leave only one blank between words. Call this the “ground truth” string g. Form
the test string x by removing blanks from g. Run your program on x and compare this with g. A greedy
algorithm can then be used to output only the mismatched substrings of x with the corresponding
parts of g which are considered the “correct” parse.

A similar problem is common in human speech understanding (that is, from audio) since people often
blend words together during natural speech.

Soln 2c. See Piazza note 130 for some intuition for the appropriate choice of dict(s) along with
several refinements of the above choice.

4

https://pypi.python.org/pypi/wordfreq/1.6.1
https://piazza.com/class/jc0nb1x4lai3cy?cid=130

3. [10pts] Optimal Parse Trees. Let y be a string of n characters, say y = (y1, y2, . . . , yn) We reuse
the notation y(i . . . j) above, which denotes the substring (yi, yi+1, . . . , yj) which has length j − i + 1.
Suppose we are also given a sorted list d = [d0, d1, d2, . . . , dK] of string break points, with 1 = d0 <
d1 < d2 < . . . < dK = n + 1. For example, these breakpoints could specify the endpoints of the words
sk = y(dk−1 . . . (dk − 1)), for k = 1, 2 . . . ,K, that were found in the previous problem.

Here we are interested in the problem of computing an optimal parse tree for these words sk. In general,
this tree may assign words to phrases, phrases to sentence parts, and so on. For the purposes of this
assignment we will simplify the form of the parse tree, but keep the essential elements required to illustrate
a dynamic programming approach for computing an optimal parse tree.

We consider binary parse trees with each node v storing a data item, v.data = (i, j), along with references
to the left and right children, namely v.left and v.right. These references to children may be null, i.e.,
v.left = null, representing that there is no such child. The data in each node v of the parse tree, say
v.data = (i, j), is a pair of integers i and j, with 0 ≤ i < j ≤ K. These integers refer to the two string
breakpoints di and dj which together define the substring y(di . . . (dj − 1)).

Given the input string y and the sorted list of set of breakpoints d = [d0, d1, d2, . . . , dK], as described above,
the binary tree T is said to be a feasible parse tree of y if and only if T is a binary tree (with nodes of
the form v described above) which satisfies the following conditions:

• Root node extends over y. The root node r of T must have r.data = (0,K). That is, the substring
associated with r is y(d0 . . . (dK − 1)) = y(1 . . . n) = y.

• Leaf nodes are words. Every leaf node v of T (i.e., with v.left = v.right = null) must have data
of the form v.data = (k − 1, k) with k = 1, 2, . . . ,K. That is, leaf nodes are associated with single
words sk = y(dk−1 . . . (dk − 1)), as described above.

• The children of non-leaf nodes correspond to left and right substrings. For every non-leaf
node v in the tree T , then both v.left and v.right are non-null. Moreover, for some integers i, k, j, with
0 ≤ i < k < j ≤ K, v.data = (i, j), v.left.data = (i, k), and v.right.data = (k, j). That is, the node v
is associated with the substring y(di . . . (dj − 1)), and the left and right children are associated with
the left and right parts of this string split at the intermediate breakpoint dk. In particular, the left and
right children are associated with the left and right substrings y(di . . . (dk − 1)) and y(dk . . . (dj − 1)),
respectively.

For a concrete example, suppose we are given a string y of length 50, and the sorted list of breakpoints
d = [d0, d1, d2, d3] = [1, 10, 30, 51]. Then two feasible parse trees are shown for this problem in the figure
below. The two integers in each tree node represent the data (i, j) for that node. These trees satisfy the
conditions listed above, and are therefore feasible. Moreover, you can verify that these are the only two
feasible parse trees for this problem (but don’t hand that argument in).

1,2

1,3

2,3

0,3

0,1

0,1

2,3

1,2

0,3

0,2

We associate a cost with every feasible parse tree T , say cost(T). The problem we wish to solve is then,
given the input string y and the list of breakpoints d, find a minimal cost, feasible, parse tree.

Here we choose a simple form for this cost function. For any feasible parse tree T , define cost(T) to be
the sum of costs for all the nodes v in T , and define the cost of any node v to simply be dj − di, where
v.data = (i, j). With this definition, the cost of any feasible parse tree T is simply the sum of the lengths
of all the substrings represented by nodes in T . For example, for the parse trees above, the cost of the root
node is d3 − d0 = 51 − 1 = 50, which equals the length of the input string y. The cost of the whole tree

5

Tl on the left of this figure is (working from the root downwards) cost(Tl) = 50 + 9 + 41 + 20 + 21 = 141.
Similarly, the cost of the tree on the right above is cost(Tr) = 50 + 29 + 21 + 9 + 20 = 129. Therefore, in
this example, the right tree is the minimal cost tree.

9 58 129

20 82

21

j=0 1 2 3

i=0

1

2

3

Define C(i, j) to be the minimum cost for any subtree rooted at a vertex v which has the data v.data = (i, j).
(The cost of any subtree is just the sum of the costs of every node in the subtree, as defined above.) Here
i and j must satisfy 0 ≤ i < j ≤ K. We can store these costs C(i, j) in an (K + 1) × (K + 1) matrix,
where we only need to consider the entries in this matrix for the column index j larger than the row index
i. That is, we only need to consider the upper-right triangular portion of this cost matrix (see the above
figure, which shows the cost table C for the previous example).

(a) Given a string y and a sorted list of break points d = [d0, . . . , dK], describe in detail a dynamic
programming approach for computing this minimum-cost table C. Clearly explain why your approach
is correct. (You do not need to provide a detailed proof of correctness.)

Soln 3a, Part 1: Recurrence Relation. Consider a subtree with the root (i, j) corresponding to
the substring y(di . . . (dj − 1)). Here 0 ≤ i < j ≤ K. The optimal cost of any subtree rooted at (i, j)
is defined to be C(i, j).

There are two cases.

Leaf Case. In the first case we have j = i+ 1 and this root node (i, j) is a leaf. The optimum value
of a leaf is defined to be C(i, i+ 1) = di+1 − di.

Non-Leaf Case. The other case is j > i + 1. By the definition of the form of the parse tree, this
root node (i, j) has two children, (i, k) and (k, j) for some k with i < k < j.

In this second case, the cost for the parse tree is the cost of the root node (i, j), which is dj − di
plus the costs for left and right subtrees rooted at, say, (i, k) and (k, j) for some k with i < k < j.
In order for our parse tree to be optimal, we should choose the optimal values for the left and right
subtrees. Thus, by the definition of C, the minimum costs of theses left and right subtrees are C(i, k)
and C(k, j). Given these facts, the optimum cost of a subtree rooted at (i, j) with j > i + 1 is
C(i, j) = (dj − di) + mini<k<j(C(i, k) + C(k, j)).

As a consequence, we can compute C(i, j) with 1 ≤ i < j ≤ K as

C(i, j) =

{

dj − di, for j = i+ 1,
dj − di +mini<k<j(C(i, k) + C(k, j)), for j > i+ 1.

(5)

In terms of the cost matrix C(i, j) this computation can be done by first computing all the elements
on the second-diagonal of this matrix, i.e., with j = i + 1. Then computing all the elements on the
third-diagonal, j = i+ 2, and so on.

Soln 3a, Part 2: Correctness. The recurrence relation (5) is correct since it accounts for all
possibilities for any vertex in the parse tree, which is either a leaf or a vertex with two children.
Moreover, when the vertex has two children, (5) considers all possibilities for its two children. These
results follow from the argument in Q3a Part 1 above (details omitted).

(b) What is the order of the runtime of your algorithm for computing this cost table C? Explain. (You
need not provide a detailed proof of this runtime.)

6

Soln 3b, Part 1. Each table entry. To compute one entry in the table, say C(i, j), we may need to
check O(K) possible costs (i.e., the number of individual k’s we are minimizing over in eqn (5)). Each
of these k cost computations is requires O(1) for the look-up of C(i, k) and C(k, j) from previously
computed results. Therefore each table entry C(i, j) can be computed in O(K).

Soln 3b, Part 2. Runtime to compute table. Since there are O(K2) table entries, the overall
runtime is O(K3).

(c) Explain in detail how a minimal cost, feasible, parse tree T can be computed for this problem given the
cost table, C, computed in part (a). (You do not need to provide a detailed proof of the algorithm’s
correctness.)

Soln 3c, Constructing the best parse tree. The root of the tree corresponds to (0,K) with a
cost of C(0,K). We recursively compute the left and right subtrees of any node (i, j) as follows. If
j = i + 1, then the node is a leaf. Otherwise j > i + 1 and, following equation (5), we need to find
any k such that k = argmini<k<j(C(i, k)+C(k, j)). Given such a k, the left and right children of this
node are (i, k) and (k, j).

Alternatively you might have kept a table, say p(i, j), in part (a) for which the optimal next breakpoint
for this table entry is k = p(i, j), where k is as described in the previous paragraph.

7

4. [10pts] Equal Thirds. Given a list of n > 0 strictly positive integers, X = (x1, x2, . . . , xn), we want
to determine if it is possible to partition I(n) = {1, 2, . . . , n} into three mutually disjoint subsets, say
Si ⊂ I(n) for i = 1, 2, 3, such that: a) Si ∩ Sj = ∅ for i 6= j; b) I(n) = ∪3

i=1Si; and

∑

k∈S1

xk =
∑

k∈S2

xk =
∑

k∈S3

xk =

∑

k∈I(n)

xk

 /3. (6)

Moreover, if such a partitioning is possible, we wish to find suitable subsets Si for i = 1, 2, 3.

For example, given X = (1, 2, 3, 4, 4, 5, 8) we find that the answer is yes it is possible. Specifically, a suitable
partition of I(|X|) is S1 = {1, 7}, S2 = {5, 6}, and S3 = {2, 3, 4}. Moreover, in this case, the corresponding
sublists Xi = (xk | k ∈ Si) are X1 = (1, 8), X2 = (4, 5) and X3 = (2, 3, 4). Note that these sublists Xi all
sum to 9, which is one third of the sum over all X. Therefore equation (6) is satisfied.

Alternatively, if we were given X = (2, 2, 3, 5), then
∑

i xi = 12, but there is no way to partition this into
three sublists which all sum to 12/3 = 4. In this case the answer is no, it is not possible to find such a
solution.

(a) Clearly describe a dynamic programming algorithm for returning “yes” or “no”’, corresponding to

whether or not such a partitioning is possible. Your algorithm must run in time O(n [
∑n

i=1 xi]
2
).

Explain why you believe the algorithm and your runtime estimate are correct, but you do not need
to provide detailed proofs.

Soln 4a, Part 0. Ruling some things out. Note we cannot simply run Knapsack (with values

equal weights) to find one subset that sums exactly to A =
[

∑

1≤j≤n xj

]

/3, greedily remove those

elements, and try again. For example, consider the case (provided to me by a CSC373 student)

X = (2, 2, 2, 3, 3, 4, 5, 6, 6).

This sums to 33, so A = 11. Note that, you could first choose the subsequence (3, 3, 5), and you are
then stuck (since you’ve used up all the odd elements of X). Or you could choose (2, 2, 2, 5) as the first
set, and you are again stuck (since there is no way to choose a subset of the remaining terms, namely
(3, 3, 4, 6, 6), to sum to 11). BTW, there is a solution, namely S1 = (2, 4, 5), and S2 = S3 = (2, 3, 6).

You might expect such an approach to have serious problems in general since the number of subsets

that sum to A =
[

∑

1≤j≤n xj

]

/3 can be exponentially large (in terms of n). Successfully keeping

track of all of these cases will end up with something similar to the solution presented next.

Soln 4a, Part 1. Sub-problems. Suppose we define the assignment function σ(k) ∈ {1, 2, 3},
for 1 ≤ k ≤ n, which denotes that element xk is to be assigned to sublist σ(k). Then, given any
assignment σ, we consider the sums of just the first i elements of x, namely

Tk(i, σ) =
∑

{j | 1≤j≤i,σ(j)=k}

xj , (7)

for k = 1, 2, 3. We then seek an assignment σ such that

A ≡

∑

1≤j≤n

xj

 /3 = Tk(n, σ), for k = 1, 2, 3. (8)

Soln 4a, Part 2. Two sums are enough. Note that since every element of X is assigned to one of
the three sets, we have

∑3
k=1 Tk(i, σ) =

∑i

j=1 xj , where the latter is just the sum of the first i values
of X. Therefore,

T3(i, σ) =

i
∑

j=1

xj − T1(i, σ)− T2(i, σ), (9)

8

and so if we know T1 and T2 we can use (9) to work out T3.

Soln 4a, Part 3. The possible states for prefix sets of length i. We are going to need to
represent many possible values for the pair (T1(i, σ), T2(i, σ)) (i.e., for any feasible assignment σ). This
set of pairs grows like O(3i) as i increases, since there are three choices for each σ(i). Specifically, for
a given assignment σ we have

(

T1(i, σ)
T2(i, σ)

)

=

(

T1(i− 1, σ)
T2(i− 1, σ)

)

+

(

xiδ(σ(i) == 1)
xiδ(σ(i) == 2)

)

. (10)

where δ(true) = 1 and δ(false) = 0. Here we can take i to be any integer between 1 and n, and we
define Tk(0, σ) = 0.

Soln 4a, Part 4. The relevant states for prefix sets of length i. For any given σ, note that
Tk(i, σ) is a non-decreasing function of i (since all the xi are positive, see (10)). In particular, we do
not need to consider any σ if we find an i such that Tk(i, σ) > A (where A is as in (8)).

We therefore need to remember any (integer-valued) state (T1(i, σ), T2(i, σ)) ∈ [0, A]× [0, A].

(Note: An alternative is to represent the remaining sum instead, so (A,A)− (T1(i, σ), T2(i, σ)), which
is also in [0, A]× [0, A], but here the goal state would be (0, 0) instead of (A,A).)

Soln 4a, Part 5. A representation for the relevant states. There are many alternatives for
representing the states. For example, we could use a hash table for each i, where the keys are the
distinct integers (A+1)∗T1(i, σ)+T2(i, σ). That is, the i

th hash table has this key iff the corresponding
pair (T1, T2) can be formed by using only the first i elements of X for some choice of σ.

A more direct representation is to use a binary matrix Mi(a, b), with 0 ≤ a, b ≤ A. Here we choose

Mi(a, b) is true iff, for some assignment σ, (T1(i, σ), T2(i, σ)) = (a, b). (11)

Soln 4a, Part 6. Basic dynamic programming alg. For i = 1 we can assign x1 to any one of
the three sets. WLOG we could break some of the symmetry here and choose to assign x1 to set 3
(i.e., σ(1) = 3). For this choice we have M1(a, b) = false for all (a, b) except a = b = 0, for which
M1(0, 0) = true.

The following algorithm then implements the recurrence relation in equation (10). The loop invariant
is as in (11). It follows that the solution of the original problem is now simply given by Mn(A,A).
(The correctness of this algorithm follows from the preceeding argument.)

#00 [b, M] = threeSum(X)
#01 //Output: b = true iff the three sum problem has a solution for X.
#02 // M = (M1,M2, . . . ,Mn) are as in equation (11).
#02 Set n to be length of X, and denote the ith element as xi.
#04 Set all the elements in M1 to be false, except M1(0, 0), which is true.
#05 For each i ∈ {2, . . . , n}
#06 Initialize Mi = Mi−1 // Here we are using σ(i) = 3 in equation (10) above.
#07 Find each element (a, b) s.t. Mi−1(a, b) is true.
#08 // Apply the terms for σ(i) = 1 and σ(i) = 2 in eqn (10) above.
#09 If a+ xi ≤ A
#10 Set Mi(a+ xi, b) = true
#11 If b+ xi ≤ A
#12 Set Mi(a, b+ xi) = true
#13 return Mn(A,A) and list of Mi’s // Note, a solution is possible iff Mn(A,A) is true.

Soln 4a, Part 7. Running time. Each of the matrices Mi(a, b) is (A + 1) × (A + 1). Therefore

9

loop starting on line #07 could be executed O(A2) times, with the loop body executing in O(1)
time. Similarly the matrix copy on line #06 takes O(A2) time. Therefore, the loop starting on line
#05 executes n − 1 times and takes O(A2) time each iteration, for a total runtime of O(nA2). Line
#04 takes no more than O(A2). Therefore the runtime of this algorithm is O(nA2) where A is as in
equation (8).

(b) Assuming your algorithm runs in time Ω(n [
∑n

i=1 xi]
2
), is this considered to be a polynomial time

algorithm? Briefly explain.

Soln 4b, Part 1. No, not polytime. (Nor polyspace.)

Soln 4b, Part 2. Explanation. Suppose we consider problems where each integer xi is represented
in B bits, so the input size of X can be taken as nB bits. We are going to consider the limit at B

goes to infinity. For input problems requiring nB bits, the quantity
[

∑3
k=1 xk

]

could be as large as,

say, any constant fraction f < 1 of n(2B − 1). That is, in the worst case, [
∑n

i=1 xi]
2
= Ω(n222B).

But this is not O((nB)q) as B → ∞ for any constant q > 0 (see solved tutorial exercise Q3 for Feb
5). Therefore Ω(n222B) is exponential in the size of the input, nB, so this is not a polynomial time
algorithm.

(c) In situations where part (a) returns “yes”, that is, when a solution exists, clearly explain how to
compute suitable partition sets, namely Si, i = 1, 2, 3. (You should build on your solution in part
(a).)

Soln 4c. Part 1. How to work backwards. For the matricies Mi(a, b) generated in (4a) Part 6,
we know from (11) that Mi(a, b) is true iff, for some assignment σ, (T1(i, σ), T2(i, σ)) = (a, b). Also
note that, by definition of (T1(i, σ), T2(i, σ)), these sums do not depend on σ(k) for k > i. Therefore,
we can work backwards from i = n, keeping track of a pair (a, b) for which there exists an assignment
such that (T1(i, σ), T2(i, σ)) = (a, b). We can starting this process at (a, b) = (A,A), and i = n. In
this way we can reveal σ(k) for k = n, n− 1, . . ., 1.

For example, starting with (a, b) = (A,A) and taking one step back from n,

• If Mn−1(A,A) is true then we know there exists a solution with σ(n) = 3. Moreover, from (11)
we know there is a solution to the subproblem (T1(n− 1, σ), T2(n− 1, σ)) = (A,A). In this case
we can keep (a, b) = (A,A) for the next step.

• Otherwise, if Mn−1(A,A−xn) is true (being careful not to evaluate a negative index), then there
must be a solution with σ(n) = 2 (see eqn (10)). Moreover, since Mn−1(A,A − xn) is true, we
know from (11) there is a solution to the subproblem (T1(n − 1, σ), T2(n − 1, σ)) = (A,A − xn).
In this case we can reset (a, b) = (A,A− xn) and continue.

• Otherwise, the only other option is σ(n) = 1 and we therefore know there must be a solution
to the subproblem (T1(n − 1, σ), T2(n − 1, σ)) = (A − xn, A) (again, see eqn (10)). That is,
Mn−1(A− xn, A) must be true. In this case we can reset (a, b) = (A− xn, A) and continue.

We can continue in this way to iterate this back to i = 1. Recall we set σ(1) = 3 in the first paragraph
of Q4a Part 5. Indeed the only index at which M1(a, b) is true is (a, b) = (0, 0).

Soln 4c, Part 2. (Optional) This motivates the following algorithm:

#00 [σ] = unpackThreeSum(M)
#01 // Given the list Mi(a, b), i = 1, . . . , n of matrices computed in part (a),
#02 // where Mn(A,A) is true, return a valid assignment σ.
#02 Allocate σ to be an array of length n (indexing of σ is 1-based).
#03 (a, b) = (A,A) // With A the max row/col index of Mi, see eqn (8).
#04 for i ∈ {n− 1, . . . , 1}

10

#05 Invariant: There exists a σ such that (T1(i+ 1, σ), T2(i+ 1, σ)) = (a, b).
#06 if Mi(a, b)
#07 σ(i+ 1) = 3
#08 elif (b− xi+1 ≥ 0) and Mi(a, b− xi+1) // short-circuit “and” evaluation
#09 σ(i+ 1) = 2
#10 b = b− xi+1

#11 else // a definition of confidence...
#12 σ(i+ 1) = 1
#13 a = a− xi+1

#14 σ(1) = 3 // See first paragraph in (Q4a, Part 6) above.
#15 Assert (a, b) == (0, 0)
#16 return σ

11

