
CSC373— Algorithm Design, Analysis, and Complexity — Spring 2018

Assignment 1: Greedy Algorithms Due: 9am, Thurs, Jan 25, 2018

Submit answers to the course MarkUs page, https://markus.teach.cs.toronto.edu/csc373-2018-01.
Your solutions must be in one PDF file named A1.pdf. Your solutions can be neatly hand-written and
scanned. You do not need to repeat the questions themselves.

You are encouraged to work in groups of size at most five. If you do work in a group then you must, of course,
submit this work to MarkUs as a group.

1. Schedule Blocking. The input information for this problem is the same as the interval scheduling
problem considered in class. That is, suppose you are given a set of jobs, {J(k)}Kk=1

where each job J(k)
must run in the (real-valued) time interval (sk, fk) ⊂ R. Here we assume that these interval endpoints satisfy
0 ≤ sk < fk where sk and fk are non-negative integers for all k.

We will refer to these jobs simply by their indicies 1, 2, . . . K. We will abuse this notation slightly and simply
refer to J(k) as “job k”.

A subset of jobs C ⊆ {1, 2, . . . K} is said to be compatible iff for each pair k, j ∈ C, with k 6= j, we have
(sk, fk) ∩ (sj , fj) = ∅. Otherwise C is said to be incompatible. A subset C ⊆ {1, 2, . . . K} is said to be a
blocking subset iff C is compatible and, for each k /∈ C with 1 ≤ k ≤ K, the set C ∪ {k} is incompatible.
That is, for a blocking subset C, no additional job k can added to the set C to form a larger compatible set
(i.e., after scheduling the jobs in C, all other jobs are blocked from being scheduled).

Problem. Given input intervals of the above form {J(k)}Kk=1
, find a minimimum-sized blocking subset B.

For the example above we have K = 10 input intervals. Note that, since we consider the jobs to be executed
in open time intervals, the two jobs J(7) and J(9) are compatible even though one starts and the other ends
at time 10. Observe that C = {3, 7, 10} forms a blocking subset since: a) C is compatible and, b) there is no
additional job that is compatible with jobs already in C. Can we find a blocking subset that has size less than
|C| = 3? Indeed, B = {2, 9} is such a blocking subset of size two, and this turns out to be of the minimum
possible size for this example. So a possible solution for this case would be B = {2, 9}.

[5pts] 1a) Your instructor, Professor Jot, suggests you investigate using a greedy algorithm that first sorts
the jobs by the number of conflicts, and then processes the jobs in that order. He points out that jobs 2, 7
and 9 in the above example each conflict with four other jobs (e.g., job 2 conflicts with jobs 1, 3, 4 and 7),
while all the other jobs just conflict with two other jobs. He suggests that perhaps a greedy solution can be
developed from this idea, although he also notes that, even on the current example, you still need to figure
out how to break the tie between the maximally conflicting jobs 2, 7 and 9.

After you try this idea at home for awhile you realize that such an approach cannot work.

1

https://markus.teach.cs.toronto.edu/csc373-2018-01


To clearly demonstrate this to Prof. Jot, show an example where there is only one job with the maximum
number of conflicts (so any such greedy-by-conflict approach would have to choose this job first), yet this job
is not in any minimum-sized blocking subset for that example.

[10pts] 1b) Specify a greedy algorithm for solving the minimum-sized blocking subset problem. Your algo-
rithm must have the following general form.

Input: The intervals J(k) = (sk, fk), where 0 ≤ sk < fk are integers for 1 ≤ k ≤ K.
Preprocessing requiring at most O(K2) time, e.g., perhaps sorting.
B ← {} # B is the set of indicies for the blocking set so far.
U ← {1, 2, . . . , k} # U is the set of unprocessed job indicies.
Loop Invariant: L(B,U) (see part 1c) must be true.
while U 6= ∅:

Greedily decide how to update B and U in a way that does not typically require
looking at all the elements in U (since that’s what makes it greedy).

Remove at least one element from U and possibly update B.
Loop Invariant: L(B,U) (see part 1c) must be true.

end while
Assertion: The set B is a minimum-sized blocking subset.
Return B

Here ← denotes an assignment operation.

[5pts] 1c) Specify the loop invariant L(B,U), noted in the code above, that is true for your algorithm and is
key to proving your algorithm is correct (i.e., it terminates with the last assertion above being true). Briefly
explain why you think this loop invariant is true and how it can be used to prove your algorithm is correct.
(You do not need to hand in a detailed proof, just the key ideas for proving your loop invariant. These must
be sufficiently clear so the marker believes that you could fill in the details.)

2. Minimum Spanning Tree. Given a weighted, undirected, and connected graph G = (V,E,w), where
the weights w(e) are all distinct integers (i.e., for any two different edges e and f in E we have w(e) 6= w(f)),
consider the following algorithm for computing an MST:

Input (G,V,w) as above.
Let F = {(v, ∅) | v ∈ V }, which is the set of all trees

formed by a single vertex. So F is a forest with size |F | = |V |.
Assertion 0: The loop invariant L(F ) is true (see question 2b)
while |F | > 1:

Set J ← ∅.
For each tree T ∈ F :

Let S be the set of vertices in T .
Let D be the set of edges e = (u, v) ∈ E such that u ∈ S and v /∈ S.
Let e = (u, v) be the edge in D with the minimum weight w(e).
Set J ← J ∪ {e}.

end for
Define F ′ to be the new set of connected subgraphs formed by adding all the edges in J

to the forest F . This will join trees in F together. See example below.
Assertion 1: |F ′| < |F | and F ′ is a forest (see question 2a)
Set F ← F ′

Loop Invariant: L(F ) is true (see question 2b)
end while
Assertion 2: F = {T} where T is an MST for (G,V,w) (see question 2a)
Return the tree T ∈ F .

Here again ← denotes an assignment operation.
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An example graph (G,V,w) is shown below. The initial forest is simply F = {T = ({v}, ∅) | v ∈ V }. The
edges in red are added after the first pass through the loop. For example, the edge (a, b) is included in J on
this first pass because it is the edge with the smallest weight between the tree ({a}, ∅) ∈ F and other vertices.
(The same edge is also selected when the tree ({b}, ∅) ∈ F is considered.) The edge (b, c) is selected when the
tree ({c}, ∅) ∈ F is considered, and so on. After this first pass, F ′ = {Ti | Ti = (Vi, Ei), 1 ≤ i ≤ 3}, where

V1 ={a, b, c}, E1 = {(a, b), (b, c)},

V2 ={d, e, g}, E2 = {(d, g), (d, e)},

V3 ={f, h}, E3 = {(f, h)}.

These trees are denoted by the components connected by just the red edges in the figure above. On the next
pass through the loop, the edge (a, d) is added to J since it is the minimum weight edge leaving T1 = (V1, E1)
(and also T2), while (e, f) is added to J as the minimum weight edge leaving T3. These edges in J after the
second pass through the loop are shown in green in the above figure. The construction of F ′ now results in
just one connected component, say F ′ = {(V,ET )}, where ET consists of exactly the red and green edges
above. The claim is that this subgraph, T = (V,ET ), is the MST for this example.

[5pts] 2a) Sketch the proof of Assertion 1 above. You may assume that the current F is a forest (and you
should probably note this in your loop invariant in part (2b)). You should include the key steps in your proof
but you do not need to provide all the details. That is, you need to be clear enough that the marker believes
you could complete a detailed proof.

[5pts] 2b) Precisely specify the loop invariant, L(F ). in the algorithm above such that it provides the key
information necessary to prove that the algorithm eventually returns an MST. Note that your choice must
also make Assertion 0 true. (Here you don’t need to prove that this loop invariant must be true, just state it
clearly. You use this loop invariant in parts 2c and 2d below.)

[5pts] 2c) Sketch a proof by induction that shows the loop invariant L(F ) is true initially and also after each
iteration of the loop. Explain the major steps but omit the details, as described in part (2a).

[2pts] 2d) Given that your loop invariant, L(F ), is true after the last iteration of the algorithm, carefully
prove Assertion 2, that is, the returned T is an MST for the input graph G. (Hint: This proof should be very
short since if you have an appropriate loop invariant.)
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