
CSC 373H Midterm #1

Spring 2016

St. George Campus

Duration — 50 minutes

SOLUTIONS

Total pages = 5 Page 1 over. . .

CSC 373H Midterm #1 Solutions Spring 2016

Question 1. [30 marks]

Let G = (V,E,w) be a undirected, connected, weighted graph and assume all the following:

(1.1) The weights w(e) are all integers (possibly negative) and distinct, that is, for any e, f ∈ E with
e 6= f , we have w(e) 6= w(f);

(1.2) Suppose T ⊂ E is such that (V, T) is a spanning tree of G;

(1.3) Suppose e = (u, v) ∈ E\T is a particular edge such that the simple path from u to v in T consists of
exactly the two edges f1 = (u, a) and f2 = (a, v) in T (for some a ∈ V);

(1.4) Suppose w(f1) = 1 and w(f2) = 10; and

(1.5) Suppose |V | > 3, that is, there are more than three vertices in G.

Given the above assumptions state whether each of the claims below are true or false. In either case
PROVIDE A SHORT PROOF of your answer.

Part (a) [10 marks]

Claim A: In addition to assumptions (1.1) through (1.5) above, suppose w(e) > w(f2) > w(f1). Then the
edge e is not in any minimum spanning tree (MST) of G.

Solution:
True.

By the strong cycle property of MST’s. Specifically, the Strong Cycle Property states that if f is the edge
with the unique maximum weight in a simple cycle C, the no MST contains f.

In this case e is such an edge in the cycle C = (u, v, a, u).
Alternative Solution: (Sketch) By contradiction. Suppose (V, T) is a MST which contains e. Then
swap e with f1 to find a spanning tree (V, T ′) with value v(T ′) = v(T) − (w(f1) − w(e)) < v(T). To get
full marks the student needs to clearly prove that T ′ is a spanning tree, see part (c) solution below.

Part (b) [10 marks]

Claim B: In addition to assumptions (1.1) through (1.5) above, suppose w(e) < w(f1) < w(f2). Then the
edge e is in some MST of G.

Solution:
False. Show a counter-example. Suppose w(e) = 0, and suppose the graph G consists of V = {s, u, a, v}
and E = {e, f1, f2, (s, u), (s, v), (s, a)}. The weights on the first three edges are as above (i.e., 0, 1, 10,
respectively), while the last three edges all have weight −1. The MST of G is the (V, {(s, u), (s, v), (s, a)}
with value −3. (Marker can take this as the obvious MST.) This MST does not contain e.

Part (c) [10 marks]

Claim C: In addition to assumptions (1.1) through (1.5) above, suppose w(e) < w(f2). Then there exists
a spanning tree T ′ of G with value v(T ′) = v(T)− w(f2) + w(e).
Use only basic facts about spanning trees in your proof. Specifically, use only that spanning trees
are necessarily connected, have |V | − 1 edges, and are acyclic, along with the corresponding sufficient
conditions for a sub-graph to be a spanning tree.

Solution: The claim is true.

Total pages = 5 Page 2 over. . .

CSC 373H Midterm #1 Solutions Spring 2016

Let T ′ = T\{f2} ∪ {e}. We will show (V, T ′) is a spanning tree below.

Then T ′ has the same number of edges as T since f2 ∈ T and e /∈ T . Therefore, |T ′| = |T | = |V | − 1.

Note that, for the same reason as in the previous line, the sum of the weights in T ′, i.e., v(T ′) is
v(T ′) = v(T)− w(f2) + w(e).

Next, we show the graph (V, T ′) is also connected. Let x, y be any pair of vertices in V . Then there
is a simple path P from x to y in (V, T) (since (V, T) is a spanning tree). Any occurrence of the edge
f2 = (a, v) in P can be swapped with the path (a, u, v). And similarly if the reverse direction edge (v, a)
is on P . The result is a path connecting x and y in (V, T ′). Therefore we’ve shown (V, T ′) is connected.

From the lecture notes we know that any connected graph with |V |−1 edges is necessarily a spanning tree.

We’ve therefore proved that (V, T ′) is a spanning tree with the required value.

Total pages = 5 Page 3 over. . .

CSC 373H Midterm #1 Solutions Spring 2016

Question 2. [30 marks]

Suppose we are given a connected, directed and weighted graph G = (V,E,w) of the form sketched below.
Specifically, for some n > 0 we have

(2.1) V = {s, t} ∪ {a(k), b(k)}nk=1
;

(2.2) E = {(s, a(1)), (s, b(1)), (a(n), t), (b(n), t)} ∪ {(a(k − 1), a(k)))}nk=2
∪ {(b(k − 1), a(k)))}nk=2

∪
{(a(k − 1), b(k)))}nk=2

∪ {(b(k − 1), b(k)))}nk=2
(see sketch below); and

(2.3) For any e ∈ E, the weight w(e) is an integer (possibly negative).

s

a(2)

b(2)

a(1)

b(1)

a(3)

b(3)

a(n)

b(n)

t

For any path P in G, define the length of P to be the sum of the weights of the edges in P . The problem
is to find the longest path from s to t using a specific dynamic programming approach.

Part (a) [10 marks]

Consider sub-problems which, for each i = 0, 1, 2, . . . , n + 1, are restricted to finding a longest path from
s that have at most i edges (many of these paths do not reach t). You may consider separating these
sub-problems into further sub-cases, but you must consider sub-problems that consist of sets of
paths which start at s and consist of at most i edges. Clearly define the sub-problems you decide
to use, along with a recurrence relation for the maximum path length in each sub-problem. Explain why
your recurrence relation is correct.
Solution:
Sub-Problems: For 1 ≤ k ≤ n:
a) find the longest path from s to a(k);
b) find the longest path from s to b(k).

Optimal Values: Let O(k, a) and O(k, b) denote the length of the longest path for each of the above two
sub-problems (respectively). Define O(t) to be the maximum length of a path from s to t.

Initial Values: Since the corresponding single edge forms the unique path from s to a (or b), we have
O(1, a) = w((s, a)) and O(1, b) = w((s, b)).

Recurrence Relation: For 1 ≤ k < n:

O(k + 1, a) = max

{

O(k, a) + w((a(k), a(k + 1)),
O(k, b) + w((b(k), a(k + 1)).

(1)

O(k + 1, b) = max

{

O(k, a) + w((a(k), b(k + 1)),
O(k, b) + w((b(k), b(k + 1)).

(2)

And, finally, the longest s-t path has length (see below for explanation):

O(t) = max

{

O(n, a) + w((a(n), t)),
O(n, b) + w((b(n), t)).

(3)

Total pages = 5 Page 4 over. . .

CSC 373H Midterm #1 Solutions Spring 2016

Explanation: Any path from s to a(k+1), for example, must include one of the sub-paths from s to a(k)
or s to b(k), followed by a single edge from the last point to a(k + 1). That is, this is the exhaustive list
of options. The expression in equation (1) above is the maximum over this exhaustive list. Note we only
need consider the length of the longest paths between s to a(k) or s to b(k). A similar argument applies
for equations (2) and (3).

Part (b) [10 marks]

Clearly explain how a longest s-t path can be computed given the optimum values you found in part (a).

Solution:

Set Q← (t)
Set V ← O(t), where O(t) is the length of the longest path (computed above)
for each k = n, n-1, . . . , 1

Let v ← Q(1) (i.e., here Q(1) the first vertex of path Q)
If V == O(k, a) + w(a(k), v),

Q← (a(k), Q) (i.e., prepend a(k) to path Q)
V ← O(k, a)

Else (it must be the case V == O(k, b) + w(b(k), v)),
Q← (b(k), Q)
V ← O(k, b)

end for
Q← (s,Q).
return Q as a longest s-t path.

Part (c) [10 marks]

Consider a similar problem where, in addition to the edges described above, E also includes several edges
of the form (u, v) with u ∈ Sk−2 ≡ {s} ∪ {a(j), b(j)}

k−2

j=1
and v ∈ {a(k), b(k)} for any k ∈ {2, 3, . . . , n}. For

example, the edges (s, a(2)) and (a(1), b(5)) could be added to those already in E. Clearly explain how
your recurrence relation for the maximum path lengths would change from part (a). (You do not need to
explain how to find an actual path of maximal length.)

Solution: The sub-problems are as above, with the same initialization of O(1, a) and O(1, b). The recur-
rence relations are updated as follows:
Recurrence Relation: For 1 ≤ k < n

O(k + 1, a) = max[{w((s, a(k + 1))) | (s, a(k + 1)) ∈ E}∪

{w((a(j), a(k + 1))) +O(j, a) | (a(j), a(k + 1)) ∈ E for 1 ≤ j ≤ k}∪

{w((b(j), a(k + 1))) +O(j, b) | (b(j), a(k + 1)) ∈ E for 1 ≤ j ≤ k}]. (4)

The correpsonding modification should also be made to equation (2) (omitted).
Equation (3) in part (a) remains as it is.
[Notes for tutorial sections] Optional questions, if you have time: i) How to find a maximal length path
in case (c) above; ii) What is the runtime of part (c)?; iii) How does that runtime compare to the worst
case analysis of Bellman-Ford?; or iv) If the weights were all non-negative, would the Dijkstra algorithm
be faster than the algorithm for part (c) plus the runtime to recover the longest path (without using
breadcrumbs)?

Total pages = 5 Page 5 End of Solutions

