Duality in Linear Programming

Learning Goals.

- Introduce the Dual Linear Program.
- Widget Example and Graphical Solution.
- Basic Theory:
 - Mutual Bound Theorem.
 - Duality Theorem.

Readings: Read text section 11.6, and sections 1 and 2 of Tom Ferguson's notes (see course homepage).

Standard Form for Linear Programs: Review

Consider a real-valued, unknown, n-vector $x = (x_1, x_2, ..., x_n)^T$.

A linear programming problem in standard form (A, b, c) has the three components:

onstants: A an m x n matrix, b an m x 1 vector, c an n x 1 vector.

Objective Function: We wish to choose x to maximize:

 $c^{T} x = c_1 x_1 + c_2 x_2 + ... c_n x_n$ with x subject to the following constraints: Linear function of x

Problem Constraints: For an m x n matrix A, and an m x 1 vector b: $A \times \leq b$ Non-negativity Constraints: $x \geq 0$ Linear inequality constraints on x Notation: For two K-vectors x and y, $x \leq y$ iff $x_k \leq y_k$ for each k = 1, 2, ..., K. Other inequalities (\geq , etc.) defined similarly.

Widget Factory Example: Revisited

Widget problem in Standard Form, constants (A, b, c).

Unknowns:

 $x = (x_1, x_2)^T$ number (in thousands) of the two widget types.

Objective function (profit): $c^{T} x = c_1 x_1 + c_2 x_2 = x_1 + 2x_2$, so $c^{T} = (c_1, c_2) = (1, 2)$.

Problem Constraints: $A \times \leq b$

Non-negativity Constraints: $x \ge 0$

Widget Factory Example: Upper Bounds

Maximize profit: $c^T \times$, where $c^T = (c_1, c_2) = (1, 2)$.

Subject to: $Ax \leq b$ and $x \geq 0$.

Notice, for any feasible x and any $y = (y_1, y_2, y_3)^T \ge 0$: $y^T A x = \begin{bmatrix} y^T \begin{pmatrix} 1 & 1 \\ -1 & 1 \\ -3 & 10 \end{bmatrix} x \le y^T b = y^T \begin{pmatrix} 4 \\ 1 \\ 15 \end{bmatrix}$. E.g., $y = (2, 0, 0)^T$ gives $y^T A = (2, 2) \ge c^T$. Therefore: $c^T x \le y^T A x \le y^T b = 2b_1 = 8$, i.e. max profit $c^T x \le 8$.

In general, for any feasible x and any y such that

Defn. Consider the linear programming problem (in standard form): maximize c^T x (1) subject to A x ≤ b and x ≥ 0,
The dual of this LP problem is the LP minimization problem: minimize y^T b (2) subject to y^TA ≥ c^T and y ≥ 0.
These two LP problems are said to be duals of each other.

Mutual Bound Theorem: If x is a feasible solution of LP (1) and y is a feasible solution of LP (2), then $c^T x \le y^T A x \le y^T b$. Pf: See previous slide.

LP Duality Theorem: Consider the linear programming problem:

maximize $c^{\top} x$ (1) subject to $A \times \leq b$ and $x \geq 0$.

The feasible set F for (1) is not empty and $c^{T} x$ is bounded above for $x \in F$ iff the corresponding dual LP (2) (above) has a non-empty feasible set $G = \{y \mid y^{T}A \ge c^{T} \text{ and } y \ge 0\}$ and $y^{T}b$ is bounded below for $y \in G$. Moreover, in this case, max $\{c^{T}x \mid x \in F\} = \min\{y^{T}b \mid y \in G\}$.

Note: For integer linear programming (i.e., x_i , $y_j \in \mathbb{Z}$) there can be a gap.

Consider the Dual LP problem:
minimize
$$y^T b$$
 (2)
subject to $y^T A \ge c^T$ and $y \ge 0$.

We can rewrite the feasibility conditions (2) of the dual as

$$\begin{array}{c} \mathbf{m} \times (\mathbf{n} + \mathbf{m}) \text{ matrix} \\ y^T D \equiv y^T \left(\begin{array}{cc} A & I \end{array} \right) \\ \end{array} \geq d^T \equiv \left(\begin{array}{cc} c^T & 0^T \end{array} \right). \end{array}$$
(3)

The dual LP is an LP, and vertices can be defined the same way as we did before.

Let $t = \{t_1, t_2, ..., t_m\}$ be a selection of m columns of (3), $1 \le t_i \le m+n$. Define E(t) to be the m x m matrix formed from the t-columns of D, and $e^{T}(t)$ the (1 x m)-vector formed from the same columns of d^{T} .

A point v $\in \mathbb{R}^m$ is a vertex of the feasible set (3) iff there exists an t such that E(t) is nonsingular, $v^T = e^T(t)[E(t)]^{-1}$, and v satisfies (3).

Vertices of LP and Dual LP

Define the m+n dimensional binary valued indicator vector $\delta(s)$ where $\delta_j = 1$ if j ϵ s, and $\delta_j = 0$ otherwise. Define $\delta(t)$ similarly.

$$\delta(s) = (\alpha_1, \alpha_2, \dots, \alpha_m, \alpha_{m+1}, \dots, \alpha_{m+n}),$$

$$\delta(t) = (\beta_1, \dots, \beta_n, \beta_{n+1}, \beta_{n+2}, \dots, \beta_{n+m}).$$

Vertex of LP: If the jth coefficient of $\delta(s)$ is one (i.e., $[\delta(s)]_j = 1$) then the jth row below is an equality for vertex x:

$$Px \equiv \left(\begin{array}{c} A \\ -I \end{array}\right) x \le p \equiv \left(\begin{array}{c} b \\ 0 \end{array}\right).$$

Vertex of Dual LP: If the ith coefficient of $\delta(t)$ is one (i.e., $[\delta(t)]_i = 1$) then the ith column below is an equality for vertex y:

$$y^T D \equiv y^T \left(\begin{array}{cc} A & I \end{array} \right) \geq d^T \equiv \left(\begin{array}{cc} c^T & 0^T \end{array} \right).$$

Complementary Slackness: Given feasible solutions x and y of the LP and the dual LP, respectively. Then x and y are optimal iff

$$\sum_{j=1}^{n} A_{i,j} x_j < b_i \text{ implies } y_i = 0,$$

and

$$\sum_{i=1}^{m} y_i A_{i,j} > c_j \text{ implies } x_j = 0.$$

Pf: Follows from $c^T x = y^T A x = y^T b$ as a necessary and sufficient condition for the optimality of the feasible solutions x and y.

Suggests choosing of the sets s and t (defining the vertex x of the LP and the vertex y of the dual LP) such that the bit vectors satisfy:

$$[\delta(s)]_i = \operatorname{not} [\delta(t)]_{i+n},$$

$$[\delta(t)]_j = \operatorname{not} [\delta(s)]_{j+m}.$$

Proposing Vertices for the Dual LP

Spatially, complementary slackness suggests:

Where $\beta_{i+n} = \text{bitFlip}(\alpha_i)$ for i = 1, 2, ..., m. And $\beta_j = \text{bitFlip}(\alpha_{j+m})$ for j = 1, 2, ..., n.

Since sum($\delta(s)$) = n, length($\delta(\cdot)$) = n+m, it follows sum($\delta(t)$) = m.

Given a vertex x of the LP, defined by s, we can use the rule above to try to construct t and the corresponding vertex of the dual LP. We can use the pair to check for optimality. See the following example.

Graphing the Widget Factory Example: Cont.

Example: $x = (x_1, x_2)^T$. Linear Program specified by (A, b, c).

Widget Factory Example: Optimal Dual Solution

E.G. (Cont.): This vertex of the LP was obtained using $s = \{1, 3\}$. Generate corresponding column selection t (possibly a feasible vertex for dual LP):

$$\delta(s) = (1, 0, 1, 0, 0)$$

$$\delta(t) = (1, 1, 0, 1, 0)$$

So $t = \{1, 2, 4\}$ and we select columns 1, 2, and 4 from (3) below.

$$y^T (A \ I) \ge (c^T \ 0^T).$$
 (3)

$$y^{T} \begin{pmatrix} 1 & 1 & 0 \\ -1 & 1 & 1 \\ -3 & 10 & 0 \end{pmatrix} = (1 \ 2 \ 0) \, . \qquad \begin{array}{c} A = \begin{pmatrix} 1 & 1 \\ -1 & 1 \\ -3 & 10 \end{pmatrix}, \ b = \begin{pmatrix} 4 \\ 1 \\ 15 \end{pmatrix}, \\ c^{T} = (1 \ 2) \, . \end{array}$$

Soln: y[⊤] = (16, 0, 1)/13.

Check: $c^{T} x = (1, 2) (25, 27)^{T}/13 = 79/13 = y^{T}b = (16, 0, 1)/13(4, 1, 15)^{T}$ Conclude: y is a feasible vertex of the dual LP, and x, y are optimal.

Extra Slides

Duality in Linear Programming

Learning Goals.

- Introduce the Dual Linear Program.
- Widget Example and Graphical Solution.
- Basic Theory:
 - Mutual Bound Theorem.
 - Duality Theorem.

Readings: Read text section 11.6, and sections 1 and 2 of Tom Ferguson's notes (see course homepage).

Next Lecture: Begin approximation algorithms, Chapter 11.

Graphing the Widget Factory Example: Review

Example: $x = (x_1, x_2)^T$. Linear Program specified by (A, b, c).

The Widget Factory Example Dual

The dual of the widget LP problem is: minimize y[⊤] b subject to y[⊤]A ≥ c[⊤] and y ≥ 0. with the same constants (A, b, c) as above.

For example, using $y^T = (y_1, 0, y_3)$ we can solve $y^T A = c^T$ to find:

Three Dimensional Example: Revisited

