Duality in Linear Programming

Learning Goals.
= Introduce the Dual Linear Program.
= Widget Example and Graphical Solution.
= Basic Theory:
* Mutual Bound Theorem.
* Duality Theorem.

Readings: Read text section 11.6, and sections 1 and 2 of Tom
Ferguson's notes (see course homepage).



Standard Form for Linear Programs: Review

Consider a real-valued, unknown, n-vector x = (x;, X5, ... , X)".

A linear programming problem in standard form (A, b, ¢) has the three

componen‘rs: \ Constants:

A an m x n matrix,
b anm x 1 vector,
Objective Function: We wish to choose x to maximize: cann x 1 vector.

CT X = Xy + CoXp + ... CpX,,
with x subject to the following constraints:

Linear function of x

Problem Constraints: For an m x n matrix A, and an m x 1 vector b:

Axc<b \
Non-negativity CW
x>0

Notation: For two K-vectors x and y,
X<yiff x <y, foreachk=1,2,. . K
Other inequalities (2, etc.) defined similarly.

Linear inequality constraints on x




Widget Factory Example: Revisited

Widget problem in Standard Form, constants (A, b, c).

Unknowns:
X = (X4, X,)T number (in thousands) of the two widget types.

Objective function (profit):
CT X = CXy + CoX,= X +2X,, S0 €' =(cq, C) = (1, 2).

Problem Constraints: A x<b

r1 + x2 < 4, 1 1 4
—x1 + 22 < 1, so A = —1 1 , b = 1
—3x1 + 10z < 15. -3 10 15

Non-negativity Constraints:
x>0



Widget Factory Example: Upper Bounds

Maximize profit: cT x, where c' = (¢4, ¢,) = (1, 2).

Subject fo: Ax<band x 2 0.

Notice, for any feasible x and any y = (y;, ¥,, y3)' 2 O: Could choose

4  yTA2candy>0.

1 1 4
yi Az =yt [-1 1 r < y'b =yt 1 ].
-3 10 15

Eg..y=(2,0,0)" gives y" A=(2,2)2c". Therefore: _{ Upper bound!

c'™x<yTAx <y = 2b; = 8, i.e|/max profit c'x < 8.

In general, for any feasible x and any y such that
y>20andyT" Az cT,

Feasibley =" —n Sual LP
ua

e

we have the inequality: minimize y'b
A—

c™x < yTAx <|yTb.




Duality in Linear Programming

Defn. Consider the linear programming problem (in standard form):
maximize ¢’ x
subject to Ax<band x>0,

The dual of this LP problem is the LP minimization problem:
minimize y' b )
subject toy™A >cTandy 2 0.

These two LP problems are said to be duals of each other.

(1)

Mutual Bound Theorem: If x is a feasible solution of LP (1)andy isa
feasible solution of LP (2), then c™ x < yTAx < yTb.
Pf: See previous slide.
Gap?
¢ Xy | | (yp'b

/ I/'I AN : \ >z (profit)

¢’ x for feasible x max ¢ x miny'b y'b for feasible y




Duality Theorem of Linear Programming

LP Duality Theorem: Consider the linear programming problem:

maximize c' X
subject to A x < b and x 2 0.

(1)

The feasible set F for (1) is not empty and cT x is bounded above for

x € F iff the corresponding dual LP (2) (above) has a non-empty feasible
setG={y|y"A2cTandy >0} and y'b is bounded below fory € G.
Moreover, in this case, max {c™x | xe F}=min{y™b | ye G }.

Note: For integer linear programming (i.e., X;, y; € Z) there can be a gap.

No Gap!

/

=

cTxforxeF

max c' X = miny'b

'\ >z (profit)

y'b forye 6




Vertices of Dual Linear Program

Consider the Dual LP problem:
minimize yT b (2)
subject toy™A >cTandy 2 0.

We can rewrite the feasibility conditions (2) of the dual as

m x (n + m) matrix

yTDEyT(A I) szE(CT OT). (3)

The dual LP is an LP, and vertices can be defined the same way as we did
before.

Let t = {t,, T,, .., 1.} be a selection of m columns of (3), 1< 1, < m+n.
Define E(t) to be the m x m matrix formed from the t-columns of D, and
e’(t) the (1 x m)-vector formed from the same columns of dT.

A point v e[R" is a vertex of the feasible set (3) iff there exists an t
such that E(t) is nonsingular, vT = eT(t)[E(1)]?, and v satisfies (3).



Vertices of LP and Dual LP

Define the m+n dimensional binary valued indicator vector 8(s) where 3, = 1
if j€s,and §; = 0 otherwise. Define 3(t) similarly.

5(3) — (Oflg 2, ..., 0m, 41y -y Oé’m,—|—fn,) ;

5(t) — (/Blv vy /Bna B’rl—I—la BTH-Qa I Bn—I—frn) .

Vertex of LP: If the j™ coefficient of 3(s) is one (i.e., [8(s)]; = 1) then
the jt™ row below is an equality for vertex x:

P:I:Z(jlj>x§p=(8).

Vertex of Dual LP: If the ith coefficient of (1) is one (i.e., [8(1)] = 1)
then the it column below is an equality for vertex y:

yTDEyT(A I) ZdTE(CT OT).



Complementary Slackness

Complementary Slackness: Given feasible solutions x and y of the LP and
the dual LP, respectively. Then x and y are optimal iff

ZA,,;,J-:CJ- < b; implies y; =0,

j=1
and

m
Z yiA;; > c; implies z; = 0.
i=1
Pf: Follows from c™x = yTAx = y'b as a necessary and sufficient condition
for the optimality of the feasible solutions x and y.

Suggests choosing of the sets s and t (defining the vertex x of the LP
and the vertex y of the dual LP) such that the bit vectors satisfy:

0(s)]i = mot [0()]iyn,
9(t)]; = not [6(s)]j4m-



Proposing Vertices for the Dual LP

Spatially, complementary slackness suggests:

d(s) = (a1,qo,...,0u, Ot 1s - - s Umtn ) s
N Ve /

o(t) = (B%waﬁmt?n)-

Where p,,, = bitFlip(a;) fori=1,2, .., m.
And p; = bitFlip(a,) for j=1,2, .., n

Since sum(d(s)) = n, length(3(-)) = n+m, it follows sum(8(t)) = m.

Given a vertex x of the LP, defined by s, we can use the rule above to
try to construct t and the corresponding vertex of the dual LP. We can
use the pair to check for optimality. See the following example.

10



Graphing the Widget Factory Example: Cont.

Example: x = (x4, x,)T. Linear Program specified by (A, b, c).

Objective Function: c'x,

c=(1,2)7
Problem Constraints: A .
Ax < b X, Half-plane:
- X1+ X5¢ 4
ol > Half-plane:
A= [-1 1], i 10k < 1
—3 10 3. 1 3%, + 10x, ¢ 15

—

\

Optimal Solution:

xT = (25, 27)/13

Non-negativity:
x20.

Optimal Vertex:
s={1,3}

1



Widget Factory Example: Optimal Dual Solution

E.G. (Cont.): This vertex of the LP was obtained using s = {1, 3}. Generate
corresponding column selection t (possibly a feasible vertex for dual LP):

5(s) = (1,0,1, 0,0)

<

5(t) = (1,1, 0,1,0)

Sot={1,2,4}and we select columns 1, 2, and 4 from (3) below.
y' (A I) > (¢! oh). (3)

1
y' | -1
3 1

Soln: yT = (16, 0, 1)/13.
Check: ¢c"x=(1,2)(25,27)"/13=79/13 =y'b = (16, 0, 1)/13(4, 1, 15)7

Conclude: y is a feasible vertex of the dual LP, and x, y are optimal.

[ Y S gy

1 1 4
0 A = (1 1),19 ( 1),
1 = (120). -3 10 15
0 :

12



Extra Slides




Duality in Linear Programming

Learning Goals.
= Introduce the Dual Linear Program.
= Widget Example and Graphical Solution.
= Basic Theory:
* Mutual Bound Theorem.
* Duality Theorem.

Readings: Read text section 11.6, and sections 1 and 2 of Tom
Ferguson's notes (see course homepage).

Next Lecture: Begin approximation algorithms, Chapter 11.
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Graphing the Widget Factory Example: Review

Example: x = (x4, x,)T. Linear Program specified by (A, b, c).

Objective Function: c'x,
c=(12)T

Problem Constraints:
AXx < b,

cTx = constant

Non-negativity:

X>

N4

Half-plane:
X1+ X, ¢4

x> 0.

Half-plane:
=X+ X, ¢ 1

—

x Half-plane:
-3x;, + 10x, < 15

Optimal Solution:
xT = (25, 27)/13
c'™x =79/13

Direction of

increasing profit c.

15



The Widget Factory Example Dual

The dual of the widget LP problem is:
minimize yT b
subject toy™A >cTandy 2 0.
with the same constants (A, b, ¢) as above.
For example, using y™ = (y;, O, y3) we can solve yTA = cT to find:

yT — (16’0, 1)/13’ < yTA:CCdeZO.
11 /
ylA =47 [-1 1 = ((16 — 3), (16 + 10))/13 =|(1,2),
—3 10

Equals max cT x.

4 Upper bound,
yTb = yT( 1 ) — (64+15)/13 =|79/13. c'x<y'b = 79/13.

No Gap!

|
/ /d '\ >z (profit)

Ty = mi Th =
cTx for feasible x LM X=mny b= 75/13 y'b for feasible y




Three Dimensional Example: Revisited

Feasible set Fis |
this closed polytope.

150 /]

100 < 1

50 -

200~ i

| Xy +3%x3<600
/ X, + X3¢ 300
X1+ X, + X3 <400

Problem Constraints:

X, ¢ 250

/-

Maximize cTx,
c'=(2,3,4),

c'x gives shading.

Multiple solns iff
c is perpendicular
to an edge or face

of F.
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