

Vertices of LP and Dual LP
Define the m+n dimensional binary valued indicator vector $\delta(s)$ where δ_j = 1 if $j \in s$, and δ_j = 0 otherwise. Define $\delta(t)$ similarly.
$\delta(s) = (\alpha_1, \alpha_2, \dots, \alpha_m, \alpha_{m+1}, \dots, \alpha_{m+n}), \delta(t) = (\beta_1, \dots, \beta_n, \beta_{n+1}, \beta_{n+2}, \dots, \beta_{n+m}).$
Vertex of LP: If the ith coefficient of $\delta(s)$ is one (i.e. $\lceil \delta(s) \rceil = 1$) then

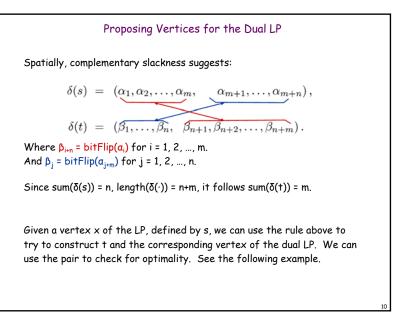
Vertex of LP: If the jth coefficient of $\delta(s)$ is one (i.e., $[\delta(s)]_j = 1$) then the jth row below is an equality for vertex x:

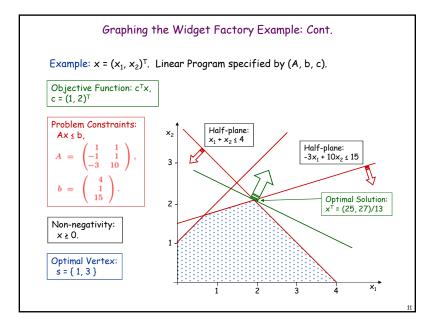
$$Px \equiv \begin{pmatrix} A \\ -I \end{pmatrix} x \le p \equiv \begin{pmatrix} b \\ 0 \end{pmatrix}.$$

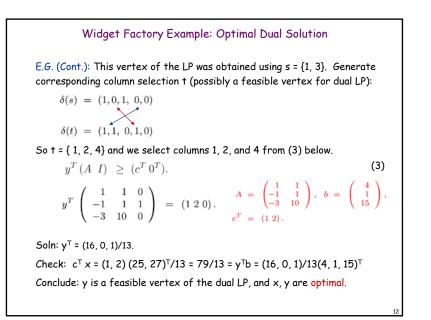
Vertex of Dual LP: If the ith coefficient of $\delta(t)$ is one (i.e., $[\delta(t)]_i = 1$) then the ith column below is an equality for vertex y:

$$y^T D \equiv y^T \left(egin{array}{cc} A & I \end{array}
ight) \ \geq d^T \equiv \left(egin{array}{cc} c^T & 0^T \end{array}
ight)$$

Complementary Slackness


Complementary Slackness: Given feasible solutions x and y of the LP and the dual LP, respectively. Then x and y are optimal iff


and
$$\begin{split} \sum_{j=1}^n A_{i,j} x_j &< b_i \quad \text{implies} \quad y_i = 0, \\ \sum_{i=1}^m y_i A_{i,j} &> c_j \quad \text{implies} \quad x_j = 0. \end{split}$$


Pf: Follows from $c^T x = y^T A x = y^T b$ as a necessary and sufficient condition for the optimality of the feasible solutions x and y.

Suggests choosing of the sets s and t (defining the vertex x of the LP and the vertex y of the dual LP) such that the bit vectors satisfy:

$$\begin{split} & [\delta(s)]_i = \operatorname{not} [\delta(t)]_{i+n}, \\ & [\delta(t)]_j = \operatorname{not} [\delta(s)]_{j+m}. \end{split}$$

