
CSC373— Algorithm Design, Analysis, and Complexity — Spring 2016

Solution Sketches for Tutorial Exercise 1: Greedy Algorithms

1. Truck Driver’s Problem. Prove that no optimal solution for the Truck Driver’s Problem (see lecture
notes on Greedy Algorithms, pp 29-32) backtracks to a gas station that it has already been passed.

That is, suppose O is any optimal solution. Assume it uses exactly q stops at gas stations along the way (the
minimum number possible). Suppose these stops are at the distances {fk}

q
k=1

down the road. Prove that
fk+1 > fk for all k = 1, . . . , q − 1.

Solution The point here was just for them to get the practice of clearly formulating (in math) and argument
that should be obvious.

Draw a picture of the general idea (below). Note that a picture isn’t a proof.

Proof by contradiction.

Suppose {fk}
q
k=1

is an optimal solution (i.e., the number of gas station stops q is as small as possible within
the constraints of the problem. And suppose fr+1 < fr for some r with 1 ≤ r < q.

In a student’s proof, ideally they should take care with boundary cases (i.e., r = 1 and r = q−1 or q). Mention
these, but don’t go into detail.

For the case 1 < r < q− 1, consider the alternative set of breakpoints F ′ = {fk}
r
k=1
∪{fk}

q
k=r+2

. Individually
these two subsets of breakpoints satisfy the constraint that fk+1 − fk ≤ C, since the original fk’s satisfy this.

The only remaining step to check is from fr to fr+2. Note fr+2 − fr < fr+2 − fr+1 since, by assumption,
fr+1 < fr. Moreover, fr+2 − fr+1 ≤ C since the the original breakpoints are a feasible solution. Therefore
fr+2 − fr < C. It follows that F ′ is a feasible set of q − 1 breakpoints, but this contradicts the optimality of
F .

2. Certificate for Minimum Max-Lateness. Consider the problem of minimizing the maximum lateness
for a set of jobs, as discussed on pp.17-22 of the lecture notes. Given a general instance of this problem, and
the corresponding optimal solution O that you have computed (say, with the greedy algorithm described in the
lecture notes), imagine that you wish to show your boss (who is intelligent but not technically inclined) that
there is no better solution than your optimal solution O. That is, given the input data for the problem, namely
{(tj , dj)}

n
j=1 where tj indicates the processing time required for the jth job and dj is that job’s deadline, derive

a simple formula to convince your boss that no solution can have a maximum lateness that is less than that
of your optimal solution. Such a formula is called a certificate for the optimality of your solution.

Hint #1: If the maximum lateness for your optimal solution O is bigger than zero, how can you prove to your
boss that no solution can have a maximum lateness of zero?

Hint #2: Make use of your optimal solution O to select your certificate.

Solution

BTW One thing that is important to the problem statement is that the duration of all jobs must all be
non-negative, i.e., tj ≥ 0 for all j.

In your optimal solution O, produced by sorting the jobs by deadline and then using greedy, find the finish
time t at which the maximum lateness is achieved (if there is a tie, then use the first such job). Suppose this
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is the jth job and that it has the deadline dj . The certificate is then

T (dj) ≡
∑

{i|di≤dj}

ti = dj + (maximum lateness of O) (1)

where ≡ denotes a definition.

That is, the total time, T (dj), required by all jobs with deadlines at or sooner than dj is equal to the maximum
lateness found by your solution. T (dj) is clearly a lower bound on the maximum lateness, and your solution
has acheived that lower bound.

3. Greedy Vertex Cover for Trees. Professor Jot has proposed the following algorithm (see the next
page) to solve the minimum vertex cover problem, which is itself described below. Decide whether or not Prof.
Jot’s algorithm is correct when the input graph is a tree. If you believe the algorithm is correct, prove it using
an exchange argument (i.e., show that at each stage it is consistent with some optimal solution). Otherwise
show a counter-example.

Terminology. An undirected graph G = (V,E), consisting of vertices v ∈ V and edges (u, v) ∈ E (with
u 6= v) is a tree if G is connected (i.e., there is a path in G from each vertex u ∈ V to every other vertex
v ∈ V ) and there are no cycles in G (i.e., there is no path from a vertex u back to u without retraversing
an edge in the opposite direction). A vertex v with at most one edge (u, v) ∈ E is called a leaf. Also, an
undirected graph G with no cycles is called a forest (in which each connected set is a tree).

A useful property is that, if G = (V,E) is a tree then the number of edges |E| satisfies |E| = |V | − 1.

A vertex cover is a subset C ⊆ V such that for every edge (u, v) ∈ E either u ∈ C or v ∈ C (or both). That
is, the vertices in C “cover” (at least one end of) every edge in E.

We wish to find a minimum-sized vertex cover C. For example, if G is a simple chain, then the minimum
size vertex cover can be formed by using every other vertex along the chain (skipping the first). Or if G is
star shaped, with one center vertex connected to every other vertex, and these other vertices are all leaves,
then the minimum vertex cover consists of just that center vertex.

2



[S] = MinTreeVertexCover(V, E)
% Return a vertex cover of minimum possible size for
% the input tree T = (V, E).
% Precondition: T is a valid undirected tree

Initialize F ← (V,E) and S ← { }.
While the forest F is not empty:

Find a leaf vertex u in F .
If there is no edge in F which includes u as an endpoint:

Delete u from F.
Else:

Let (u, v) be such an edge in F .
Set S ← S

⋃
{v}.

Remove u, v, (u, v), and all other edges which include v from F .
End if

End while
return S

Solution. Draw a few examples of the execution of the algorithm.

Fortunately for the Prof. his algorithm is correct.

Describe the Loop Invariant below, and you might illustrate the key arguments in the inductive step with an
example. You may not have time to write out the whole proof.

Proof. First note that the algorithm terminates, since it removes either one or two vertices from W each
iteration, and W initially has the finite size |V |.

The key idea is to prove that the algorithm is promising at each stage. That is, after k iterations (including
k = 0, for the start case), we wish to prove that the following loop invariant is true.

Loop Invariant L(k): Let F = (W,EF ) be the current forest in the algorithm (of vertices and edges that are
yet to be processed), and S be the subset of vertices selected so far. Then there exists a minimum sized vertex
cover C, of the original graph T = (V,E), such that S = C ∩ (V \W ). That is, S is promising. Moreover, the
edges that have been removed so far, specifically, edges in E\EF , all have at least one endpoint in S.

Note that, the algorithm terminates on iteration k∗ when the forest F is empty, and the correctness of the
algorithm would follow from L(k∗) for this last iteration.

We are left with proving L(k) by induction, on k = 0, 1, . . . , k∗.

The base case is k = 0. Note L(0) follows from the existence of a minimal cover C.

Assume k is some non-negative integer and the algorithm has completed k iterations, and F is not empty.
Moreover, assume L(k) is true. We need to prove L(k + 1).

It is useful to define W r = V \W , which is the set of vertices removed from V by the end of the kth iteration.
Below, let C denote the optimal solution described in L(k), with C ∩W r = S.

Consider L(k + 1). Since there must be a leaf in a forest, one of the two conditions in the loop body must
hold.

First, suppose that u is an isolated vertex in F . By L(k), all the edges in the original set E that have an
endpoint at u are already covered by vertices in S (their other endpoints must be in W r). Therefore, u can
be safely removed, preserving this edge covering property of S for all edges with on endpoint in W r ∪ {u}.
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Moreover, if C were to include the vertex u, then it can be shown that it could be removed without destroying
the vertex cover property. This is impossible because C is assumed to be a minimal vertex cover. Therefore,
with S remaining unchanged this iteration, we still have S = C ∩ (W r ∪ {u}). Therefore L(k + 1) is true in
this case.

Alternatively, suppose the conditions for the else clause are satisfied. That is, for the leaf u there exists a
unique (because it is a leaf) edge (u, v) in EF which has u as its endpoint. It follows that any other edge
(u,w) ∈ E must have w ∈W r and L(k) ensures that this edge is already covered by S. Therefore it must be
the case that w ∈ S ∩ C for all such edges (w, u) ∈ E with w 6= v .

The edge (u, v) is therefore the only edge in E having u as an endpoint which is not covered already by S.
Note that it must be covered by a vertex in C. Therefore C must contain either u or v.

If v ∈ C, then L(k + 1) follows. Otherwise, as we argued above, we must have u ∈ C. Consider the set
C ′ = (C\{u}) ∪ {v} (which involves “an exchange” of u for v). We saw above that the vertices in C ∩W r

already cover all the edges in E ending at u, except for the one edge (u, v). Since C ∩W r = C ′ ∩W r and
v ∈ C ′, it follows that C ′ covers all the edges in E ending at u. Similarly, since C ′ contains v, it must cover
all edges ending at v. These are the only two types of edges that can change coverage between C and C ′. So
C ′ must also be a vertex cover. Moreover, since it is the same size as C, it must be a minimal vertex cover.

The statement L(k + 1) and the induction step now follow by using the minimum sized vertex cover C ′.
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