
CSC373— Algorithm Design, Analysis, and Complexity — Spring 2018

Suggested Solutions for Tutorial Exercise 1: Greedy Algorithms

1. Interval Scheduling. Make sure you understand the proof of the correctness of the interval scheduling
algorithm given on slides 14 through 18 of the lecture notes. There are two questions on the top of p.18 that
require some details to be filled in, and we look at those questions here.

First prove that, in case (2b), J(k+1) is compatible with {J(jm)|m = 1, . . . , r}. Recall the notation here is that
loop invariant L(k) refers to an optimal solution, O, which has been unpacked as O = {J(jm) | m = 1, . . . , p},
where p > r. Hint: A suitable argument is very short but crystal clear.

In addition, prove that J(k + 1) is compatible with {J(jm) | m = r + 2, . . . , p}. Hint: Recall jobs J(k) have
been sorted by finish time, so f1 ≤ f2 . . . ≤ fn.

Solution For the first question, note that in case (2b) the algorithm has chosen to add J(k + 1) to S(k), so
it must be compatible with all the intervals in S(k). Moreover, recall that S(k) = {J(jm)|m = 1, . . . , r}, so
the result follows. �

For the second question, in order to show J(k + 1) is compatible with the subsequent intervals in O which
come after job J(jr+1), namely J(jm) for m > r+1, first recall that the indices jm of jobs in O are sorted in
increasing order for m = 1, 2, . . . , p. Also recall that the original jobs are sorted by finish time, and therefore
the finish times of the jobs in O, namely, fjm , must also be in non-decreasing order (in terms of m). Since O
is compatible, it must also be the case that the start times satisfy fjm ≤ sjm+1

for m = 1, 2, . . . , p−1. That is,
the next job in O must start sometime on or after the previous job finishes. (Otherwise, it would be the case
that fjm > sjm+1

and the two intervals would intersect over the open interval (sjm+1
, fjm), which contradicts

the compatibility of O.)

Currently we are in case (2b) on the lecture slides, so we have k + 1 < jr+1 and therefore the corresponding
finish times satisfy fk+1 ≤ fjr+1

. Using the above relationship between the start and finish times of jobs in
O, we find fk+1 ≤ fjr+1

≤ sjm for all m > r + 1. Specifically, this shows that J(k + 1) is compatible with the
remaining jobs in O, i.e., {J(jm) | m = r + 2, . . . , p}. �

2. Certificate for Minimum Max-Lateness. Consider the problem of minimizing the maximum lateness
for a set of jobs, as discussed on pp.20-24 of the lecture notes. The input data has the form {(ti, di)}

n
i=1. Here

we assume ti and di are all strictly positive integers. Consider the following function,

T (dj) ≡
∑

{i | di≤dj}

ti, (1)

where “≡” denotes a definition. That is, T (di) is simply the total of the execution times of all the jobs that
have deadlines no later than di. Moreover, define L∗ ≡ max{0,max{T (dj)− dj | j = 1, . . . , n}}. Note that L∗

can be easily computed given the data; it does not depend on first finding a suitable schedule.

2a) Let P denote any feasible schedule of the given jobs (that is, P specifies the order all jobs are scheduled
and no two jobs overlap in time). Show the maximum lateness of this schedule, say L(P ), satisfies

L(P ) ≥ L∗. (2)

2b) Use part (2a) to prove that the greedy algorithm on p. 24 of the lecture notes is correct. Hint: Consider
the lower bound you obtained in part (2a) in relation to the schedule P generated by the greedy algorithm.

Solution 2a) Let P be a feasible schedule. We can assume, without loss of generality, that P does not include
gaps in the processing, that is, all the jobs are scheduled with one starting immediately after another finishes,
as is illustrated by the schedules sketched in the lecture notes (and copied below). (Since otherwise we could

1



construct a new schedule by simply removing these gaps, and this modification must either decrease the max
lateness or leave it the same.)

Any such schedule P can be represented by the appropriate permutation (σ(1), σ(2), . . . , σ(n)), where job σ(k)
is the kth job to be run in execution order specified by the schedule. We define S(k), for k = 1, . . . , n to be
the set of the first k jobs scheduled in P , that is

S(k) = {i | i = σ(j)for j = 1, . . . k}. (3)

It is also useful to use F (k) to denote the finish time t of these first k jobs, that is,

F (k) =
∑

i∈S(k)

ti. (4)

Note the deadline for this kth job in the schedule is dσ(k) and the lateness will be

max(0, F (k)− dσ(k)). (5)

The schedule shown in class provides a concrete example (see below). Here (σ(1), . . . σ(6)) = (3, 2, 6, 1, 5, 4).

Let dj be any deadline given in the problem data. Define K(dj) to be the position of the last job in the
schedule P which has a deadline of dj or less. That is,

K(dj) = max{k | dσ(k) ≤ dj}. (6)

By construction of K(dj) it follows that each of the jobs with deadlines less than or equal to dj must be
scheduled within the first K(dj) jobs, that is

{i | di ≤ dj} ⊆ S(K(dj)). (7)

Since ti > 0 for all i, we then find

T (dj) ≡





∑

{i | di≤dj}

ti



 ≤





∑

{i∈S(K(dj))}

ti



 ≡ F (K(dj)). (8)

The reason for this inequality is that, by (7), every term on the left hand side appears on the right, and every
term on the right is non-negative. That is, extra terms can only appear on the right and these will all be
positive.

2



Next consider the lateness of the job scheduled in position K(dj), which corresponds to job i = σ(K(dj)),
that is, it has the runtime ti and the deadline di. Note, by construction of K(dj) (as the last job scheduled
with deadline less than or equal to dj), this last job i, with data (ti, di), must itself have the property that
di ≤ dj . From this we can conclude the difference in finish time and deadline at the end of this job satisfies

F (K(dj))− dσ(K(dj)) = F (K(dj))− di since i = σ(K(dj)) , (9)

≥ F (K(dj))− dj , since di ≤ dj , (10)

≥ T (dj)− dj by (8). (11)

Since L(P ) is the maximum lateness over all n intervals, and the above gives us a lower bound just for the
K(dj)

th, we can maximize this lower bound over j. That is, we find

L(P ) ≥ max{0,max{T (dj)− dj | 1 ≤ j ≤ n}} ≡ L∗, (12)

where the threshold at zero comes from the definition of lateness.

Since P was an arbitrary schedule, this is what we were asked to show. �

Solution 2b) Suppose we run the greedy algorithm. The algorithm is straight forward, it clearly stops and
outputs a feasible schedule, say G. In this computed solution find the finish time t at which the maximum
lateness, say M = L(G), is achieved (if there is a tie, then use the first such job). Suppose the deadline of the
job finishing at t is dj , so the max lateness is

L(G) = M = max{0, t− dj}. (13)

That is, we have used the greedy algorithm to pick out a suitable M , t and j for this instance of the problem,
and we will use these quantities in the remainder of the proof.

Due to the sorting done in the greedy algorithm, any jobs with an earlier deadline di < dj must have been
scheduled before any job with deadline dj , and therefore they must be scheduled before time t. Moreover, if
there are more than one jobs with deadline equal to dj , then all these jobs are scheduled one after the other in
G, and the latenesses of successive jobs increases by each of these jobs’ durations (since ti > 0 for all i). Since
we picked the maximum lateness, we would have picked the last job with deadline equal to dj . Therefore we
find that all jobs with deadlines less than or equal to dj must be completed on or before time t.

Moreover, by the design of the algorithm, it is only the jobs with deadlines less than or equal to dj that can be
scheduled before t in G. (Use contradiction, and the specification of the sorting used in the greedy algorithm.)
Therefore, t must be the sum of the times taken by exactly these jobs, that is, t = T (dj). Moreover, we have

M = max{0, t− dj} from (13), (14)

= max(0, T (dj)− dj) since t = T (dj), (15)

≤ max(0,max{T (di)− di | 1 ≤ i ≤ n}), since j ∈ {1, 2, . . . , n}, (16)

≡ L∗. (17)

That is, we have shown that the maximum lateness produced by the greedy algorithm, L(G), which equals
M , satisfies L(G) = M ≤ L∗.

But in part (2a) we showed that, for any schedule P , L(P ) ≥ L∗ for any schedule. Therefore, it must be the
case that L(G) = L∗. That is, no schedule can achieve a smaller lateness. Therefore the greedy algorithm
produces a schedule that minimizes the maximum lateness, which is what we set out to show. �

3. Cell Phone Towers Consider the problem of choosing cell phone tower locations on a long straight road.
We are giving a list of distances along the road at which there are customers’ houses, say {xk}

K
k=1. No towers

have yet been built (so no customers currently have service). However, a survey of the road has provided a
set of J possible tower locations, {tj}

J
j=1, where these potential tower locations are also measured in terms of

3



the distance along the road. (These indexed lists of house and tower locations might be in any order. You
can assume that all these distances are integers.)

Each customer will get service (at home) if and only if they are within a range R > 0 of at least one cell phone
tower that gets built, that is, the house at xk will have service iff there exists a tower that has been built at
some tj with |xk − tj | ≤ R.

You can assume that if all the towers were built then every home would get service. However, such a solution
could be overly expensive for the phone company. How can we minimize the number of towers that need to
be built but still provide service at every house? Note that a suitable solution may still leave some parts of
the road without cell service, even though each custormers’ house will have service.

3a) Describe a plausible greedy algorithm for choosing the minimum number M of cell phone towers required,
along with a suitable set of locations, say T = {tj(m)}

M
m=1, such that every house has service. That is, for

each k = 1, . . . ,K, there must exist an m ∈ {1, 2, . . .M} such that xk ∈ [tj(m) −R, tj(m) +R] (i.e, xk can get
service from tower tj(m)).

3b) Prove that your algorithm in (a) is correct. That is, it will select the minimum possible number of towers
to be built and identify an appropriate set of locations for these towers.

Solution 3a

sort (and replace) {x_k | k=1...K} and {t_j | j=1...J} so that they

are in increasing order.

T = {}

Loop through the (sorted) house locations, with increasing k.

If x_k is not covered by any tower in T:

Find tower t_j such that x_k in [t_j-R, t_j+R] and t_j is as

large as possible.

If such a t_j exists, set T = T U {t_j}

else report error "No Solution’’

end if

end loop

return T

Solution 3b We use a proof that is similar to the one for the truck driver algorithm that was given in the
lecture notes. Note that we have assumed that all the towers would cover all the houses, so we know an
optimum solution exists, although it may not be unique.

After each execution of the loop the house xk is either covered by towers in the resulting set T , or an error
has been reported. The algorithm visits each house xk in order and clearly terminates.

First, we show a simple property for any feasible solution that will be useful to have later in the proof.

Claim 1. Let F = {tf(n)}
N
n=1 denote any feasible solution, where we have sorted the indices such that

tf(1) < tf(2) < · · · < tf(N). Then for any j ∈ {1, 2, . . . , N}, the set of houses left uncovered by the first j

towers, i.e., at {tf(i)}
j
i=1 has the form U(j) = xs|s ≥ a. That is, the uncovered set U(j) is the set of houses at

or beyond a particular house xa. That is, the uncovered set U(j) is a suffix of the sorted tuple (x1, x2, . . . , xK).

Pf: By contradiction. Suppose xa is the minimum in the uncovered set U(j), and assume there exists an
xb > xa such that xb /∈ U(j). For this to be true there must exist a tower tf(j) with 1 ≤ j ≤ i that covers
xb. So xb ∈ [tf(i) −R, tf(i) +R]. But since xa is uncovered by the first j towers it cannot be covered by tf(i).
Therefore either xa > tf(i) +R (which would contradict xa < xb) or xa < tf(i) −R. But this latter inequality,
and the sorting of the tf(m) in F then implies that xa would not be covered by any tower tf(m) for m ≥ i.
However, we chose xa as a point that was not covered by any tower tf(m) for m ≤ j. Since j ≥ i we conclude
that xa is not covered by any tower in F . Which contradicts F being a feasible solution. Therefore such an

4



xa and xb cannot exist and the claim follows. �

Let T = {tg(m)}
M
m=1 be the tower locations provided by the greedy algorithm.

Claim 2. The algorithm returns tg(1) < tg(2) < · · · < tg(M). and does not report a “No Solution” error

Pf: If the alg did produce a “No Solution” error, just before returning this error, the house position xk must be
such that there is no possible tower location from the given set {tj}

J
j=1 that provides service. This contradicts

our assumption about the set of possible tower locations.

Next, the ordering of the towers tg(m) provided by the greedy algorithm follows from the property that we
have sorted the xk’s. Specifically, it can be shown that if xk is uncovered and k > 1 then the previous tower
location, say tg(m), must satisfy xk > tg(m) +R. (See Claim 1 above.) That is, xk is out of range and further
down the road than the previous tower tg(m). In order for xk to get service we must choose the next tower
location such that |xk − tg(m+1)| ≤ R. So, in particular xk − tg(m+1) ≤ R. Combining these two inequalities
gives tg(m) +R < xk ≤ tg(m+1) +R, which implies tg(m) < tg(m+1), as desired. �

Claim 3. Let F = {tf(n)}
N
n=1 denote any solution, where we assume the tower locations have been sorted

such that tf(1) < tf(2) < · · · < tf(N). Then tf(j) ≤ tg(j) for each j ∈ {1, 2, . . . ,min(M,N). That is, the jth

tower chosen by the greedy algorithm is at least as far down the road than the jth tower in F .

Pf: The proof is similar to that of the Claim given in the lecture notes for the Truck Driver problem.

Suppose Claim 3 is not true. Then there must be an F for which tf(j) > tg(j) for some j. Let j be the first
time F “gets ahead”.

Note that on the first iteration (j = k = 1) the algorithm chooses tg(1) = tj where tj is the largest tower
location such that x1 ∈ [tj − R, tj + R], which is equivalent to tj ∈ [x1 − R, x1 + R]. If F is already ahead
at k = 1, then it must have chosen a tower location tf(1) = tk, with tk > tj . Also, in order for the greedy
algorithm not to have chosen tk, it must be the case that tk > x1 + R. That is the first house will not get
service from tower tf(1). But since all the other towers in F are even further down the road, x1 will not get
service from any of them either. But this contradicts F being a feasible solution. Therefore, the solution F
cannot be ahead on the first tower, that is, tf(1) ≤ tg(1), and the first index for this to happen must be some
j > 1.

Suppose the first time F “gets ahead” is for j > 1. Due to the increasing order to the towers tf(i), we can
consider the first house xa that is left uncovered by the previous towers in F , but gets covered by tf(j). That
is,

tf(j−1) +R < xa and tf(j) −R ≤ xa. (18)

Since tf(j−1) ≤ tg(j−1) we have tf(j−1) + R ≤ tg(j−1) + R and,from above, we have tf(j−1) + R < xa. So
there are two possible orderings for these three numbers, either (1) tf(j−1) + R < xa ≤ tg(j−1) + R, or (2)
tf(j−1) +R ≤ tg(j−1) +R < xa. In the first case xa is already covered by the first j − 1 greedy towers. While
in the second case xa is not already covered by the first j − 1 greedy towers.

In case (1), the first house that is left uncovered by the first j − 1 greedy towers, say xb, must be further
down the road than xa (since xa is already covered). That is, xb > xa. However, tower tf(j) covers xa, so
tf(j) − xa ≤ R. But this implies tf(j) − xb ≤ R, which implies that the greedy algorithm could have chosen
the tower at tf(j) instead, or towers that are still further down the road than tf(j), which are all further down
the road than tg(j). This contradicts the specification of the algorithm.

In case (2), the house xa is left uncovered by the first j − 1 towers in both F and G, and is the first house
left uncovered by these towers in F . It follows from tf(j−1) ≤ tg(j−1) that it must also be the first tower left
uncovered by these towers in G. (Any house, xb, left uncovered by the first j − 1 towers in G must have
xb > tg(j−1) +R ≥ tf(j−1) +R, so it must also left uncovered by the first j − 1 towers in F .) That is, in this
case, xa = xb. This situation is similar to that for the very first iteration, but now with xa playing the role of

5



the “first” house on the road. A similar argument shows that it must be the case that tg(j) ≥ tf(j). But this
contradicts the assumption that j is the first index for F gets ahead.

Therefore, both cases (1) and (2) lead to contradictions. Therefore there cannot be any j at which F first gets
ahead of G. This proves Claim 3. �

Finally, we need to show the greedy algorithm produces a minimum number of towers, G = {tg(j)}
q
j=1. We

do this using contradiction and Claim 3. Assume there exists a suitable set of towers F = {tf(j)}
p
j=1 with

fewer towers, i.e., p < q. Then, after all the towers in F have been built, the last house must be covered, so
tf(p) + R ≥ xK . But Claim 3 ensures that tg(p) ≥ tf(p), so tg(p) + R ≥ tf(p) + R ≥ xK . That is, the first p
towers in G already cover all the houses. The assumption that the algorithm continues to select towers beyond
this contradicts the algorithm specification. Therefore there cannot be any such F . And therefore the greedy
algorithm must produce a set of towers with the minimun number of towers. �

6


