
CSC373— Algorithm Design, Analysis, and Complexity — Spring 2018

Tutorial Exercise 1: Minimum Spanning Trees

The first two questions gives you practice proving statements about trees. (And it might help with Assignment
1.) The third question simply involves reading and understanding a detailed proof of Prim’s algorithm.

Bring any questions you may have to the next tutorial where you will get a chance to discuss these with TAs
and other student groups.

1. (Part 1) Proving Statements about Trees. Let G = (V,E) be a tree (and therefore an undirected
graph). Here we look at careful proofs about the effect of removing one edge.

Let e = (e1, e2) ∈ E and consider the graph formed by deleting e from G, i.e., the graph Ge ≡ (V,E\{e}).
We wish to carefully prove that, in this case, Ge is a forest consisting of two trees, (V1, E1) and (V2, E2), with
V1 ∩ V2 = ∅ and with V1 ∪ V2 = V . We do this in the following steps.

1a) Intuitively, removing the edge e = (e1, e2) splits the tree into two connected parts, one of which would
contains e1 and the other e2. Suppose we define V1 = {v ∈ V | v is reachable from e1 in Ge}, and define
V2 similarly, as the set reachable from e2. In order to show there are exactly two connected parts, prove
V1 ∪ V2 = V for this definition of V1 and V2.

1b) Next prove V1 ∩ V2 = ∅.

1c) Prove (Vk, Ek) is acyclic for k = 1, 2.

1d) Prove (Vk, Ek) is connected for k = 1, 2.

2. (Part 2) Proving Statements about Trees. Let G = (V,E) be an undirected graph and suppose
(V1, E1) and (V2, E2) are subgraphs that are trees. We assume that V1 ∩ V2 = ∅. Here we look at adding one
edge, e = (e1, e2) ∈ E, with e1 ∈ V1 and e2 ∈ V2 to form a new subgraph (V1 ∪ V2, E1 ∪ E2 ∪ {e}).

Carefully prove that, in this case, the subgraph T ≡ (V1 ∪ V2, E1 ∪ E2 ∪ {e}) is a tree.

2a) First prove T is a subgraph of G.

2b) Prove T is connected.

2c) Prove T has |V1|+ |V2| vertices and |V1|+ |V2| − 1 edges.

(Sketch of Soln 2c) The number of vertices in T is |V1|+ |V2| (since V1 ∩ V2 = ∅). Similarly, the number of
edges in T is |E1|+ |E2|+ 1. However

|E1|+ |E2|+ 1 = (|V1| − 1) + (|V2| − 1) + 1, since (Vk, Ek) are trees

= |V1|+ |V2| − 1,

which is the desired result.

2d) Prove that T is a tree.

3. Read a proof that Prim’s algorithm generates an MST.

Your task is simply to read and understand the following proof.

A proof of Prim’s algorithm showing that each step "is promising".

Theorem: Given a connected undirected graph G = (V, E), with

1

edge weights w(e), Prim’s algorithm constructs a MST of G.

Proof: We use the loop invariant:

L(k): Let T_k = (S_k, F_k) be the subgraph that Prim has constructed

with k = |S_k| (after the execution of the loop (k-1) times). Then

there exists an MST T=(V,F) of G=(V, E) s.t. T_k is a subgraph of T.

That is, T_k "is promising".

We prove L(k) is true for k = 1 to |V| using induction.

For the base case, k=1, T_1 = ({v}, {}). Given the

existence of an MST T for G, T_1 must be a subgraph of T.

We leave the existence of an MST for G to the reader.

Let 1< k <= |V|.

Assume L(k-1) is true. We need to prove L(k) is true.

Since L(k-1) is assumed true, let T_(k-1) = (S_(k-1), F_(k-1)) be

the subgraph generated during the execution of the algorithm

with |S_(k-1)| = k-1. And let T be an MST of G which contains T_(k-1).

(Such a T exists according to L(k-1).)

Let e = (u, v), with u in S_(k-1) and v in V \ S_{k-1), be

the k-th edge added by Prim.

If edge e is in the MST T = (V, F), then L(k) follows.

So we are left with considering the case e is not in F.

Suppose e = (u,v) is not in F. Since T is a spanning tree,

there exists a simple path P = (u, a1, a2, ... an, v) in T,

from u to v. Let f = (a,b) = (a(i), a(i+1)) be the first edge

on this path that has a(i) in S_(k-1) and a(i+1) in V\S_(k-1).

Note u in S_(k-1) and v is in the complement, so such an edge

must exist. Also, all the edges in P are in T and e

is not in T, so f does not equal e.

Claim: The graph Tp = (V, (F\{f})U{e})) is a tree.

Pf Omitted: Left to reader to show: 1) Tp has the right number

of edges, namely |V|-1, and 2) Tp is connected.

Together these imply Tp is a tree (Property 2 in the MST slides.)

Hint: To show Tp is connected, let x and y be any elements in V, and

construct a x-y path in Tp. To do this use part of the simple cycle

C = (u, a1, a2, ... an, v, u) in the graph A=(V, F U {e}),

where P = (u, a1, ... an, v) is as constructed above.

Finally consider the weight of this tree Tp,

(*) w(Tp) = w(T) - w(f) + w(e)

There are three cases:

a) w(f) < w(e): Impossible, since Prim’s alg would not have chosen

2

e in the presence of the edge , for which f = (a, b) with w(f) < w(e),

a is in S_(k-1), and b in V\S_(k-1).

b) w(f) = w(e): Then (*) implies w(Tp) = w(T) and, since we

know T is a MST, then Tp must be an MST too. Therefore L(k) holds

with this modified MST Tp.

c) w(f) > w(e): Impossible, since in this case (*) implies

w(Tp) < w(T), but this contradicts T being a MST.

Therefore L(k) must be true.

It follows by induction that L(k) is true for k = 1 to |V|.

Finally, L(|V|) implies that the computed subgraph is an MST for G.

=====

Note: At each stage of Prim’s algorithm T_k is a subtree. We

carefully didn’t make use of this above (and we didn’t prove it).

Because of this, the same loop invariant (with "Prim" replaced by Kruskal)

applies to Kruskal’s algorithm. The proof of Kruskal’s algorithm then

requires only a small modification.

3

