
CSC373— Algorithm Design, Analysis, and Complexity — Spring 2018

Suggested Solutions for Tutorial Exercise 2: MST

1. (Part 1) Proving Statements about Trees. Let G = (V,E) be a tree (and therefore an undirected
graph). Here we look at careful proofs about the effect of removing one edge.

Let e = (e1, e2) ∈ E and consider the graph formed by deleting e from G, i.e., the graph Ge ≡ (V,E\{e}).
We wish to carefully prove that, in this case, Ge is a forest consisting of two trees, (V1, E1) and (V2, E2), with
V1 ∩ V2 = ∅ and with V1 ∪ V2 = V . We do this in the following steps.

1a) Intuitively, removing the edge e = (e1, e2) splits the tree into two connected parts, one of which would
contains e1 and the other e2. Suppose we define V1 = {v ∈ V | v is reachable from e1 in Ge}, and define
V2 similarly, as the set reachable from e2. In order to show there are exactly two connected parts, prove
V1 ∪ V2 = V for this definition of V1 and V2.

(Solution 1a) Pf: Let v be any vertex in V and consider the unique simple path P (e1, v) in G (since G is a
tree). Here e1 is as above, a vertex of edge e. We will consider three cases for such a path. First, let’s get rid
of a nuisance case, say case 1, where the number of edges in P (e1, v) is zero. So in this case, v = e1 ∈ V1..

Otherwise in case 2, say, we can assume there is at least one edge in P (e1, v). So P (e1, v) = (e1, p2, . . . , pn)
with n ≥ 2 and pn = v. There are now two subcases. Either (Case 2a) p2 = e2 (i.e., the first edge on P (e1, v)
is e) or (Case 2b) p2 6= e2. Note that these cases are exhaustive.

In case 2a we have P (e1, v) is simple and the second vertex in the path is p2 = e2. So the first edge on the path
P (e1, v) is e. Since P is simple, it cannot revisit either e1 or e2 after this first edge. Therefore the endpoint v
must be reachable from e2 by only using edges in E\{e}. That is, v ∈ V2.

In case 2b, we have p2 6= e2. Again, using the property that P (e1, v) is simple, it must be the case that e1
does not appear anywhere on P except at that first vertex. Therefore, the edge (e1, e2), cannot appear on
P (e1, v) in either order. That is, v is reachable from e1 without using the edge e, so v ∈ V1.

Therefore, in all cases, we have v ∈ V1∪V2. Since v was an arbitrary element of V we have shown V ⊂ V1∪V2.
However, by construction, V1 and V2 must be subsets of V , and so we have V = V1 ∪ V2. �

(Sketch of Soln 1a) Let v be any vertex in V . Since G is a tree, there exists a simple path, P (e1, v), in G.
Here e1 is one of the vertices in the edge (e1, e2) that we remove. Since the path P is simple, there are two
cases, either e is the first edge on the path (and never appears on P again, in either order) or e is not on P at
all (in either order). In the first case, observe that after traversing the first edge (e1, e2) of P , the remainder
of P shows v is reachable from e2 in Ge. Moreover, in the second case, it follows that v is reachable from e1
in Ge. Therefore, v must be in either V1 or V2.

1b) Next prove V1 ∩ V2 = ∅.

(Solution 1b) Pf: By contradiction. Suppose x ∈ V1 ∩ V2. Then by the definition of V1 and V2 there must
be paths from ek to x, say P (ek, x) for k = 1, 2, which do not use the edge e. But this implies that G contains
the cycle C = cat(P (e2, x), reverse(P (e1, x)), (e1, e2)). Here, reverse(P (e1, x)) is the path P (e1, x) in reverse
order, which must be in Ge since all the edges are undirected. Note, by construction, this cycle C contains e
exactly once, so it is not trivial. But this contradicts G being a tree. So there can be no element x ∈ V1 ∩ V2.
�

(Sketch of Soln 1b) Use contradiction. Suppose x ∈ V1 ∩ V2. Then, by the definitions of Vk, k = 1, 2,
there exist simple paths P (e1, x) and P (e2, x) in Ge. Note that e cannot be on either path, so C =
cat(P (e1, x), reverse(P (e2, x)), (e2, e1)) is a cycle which contains e exactly once. So C must contain a sim-
ple cycle, which contradicts G being a tree.
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1c) Prove (Vk, Ek) is acyclic for k = 1, 2.

(Solution 1c) Pf: Note we haven’t yet defined Ek, but the following is the only choice which makes sense.
For k = 1, 2, define Ek = {(u, v) ∈ E | both u and v are in Vk}. Then, by construction, (Vk, Ek), for k = 1, 2,
are subgraphs of both G and Ge.

We show (Vk, Ek) is acyclic using contradiction. Suppose there is a simple cycle in at least one of these two
subgraphs. Without loss of generality (WLOG) we can assume it is for k = 1. However, such a cycle in
(V1, E1) must also be a cycle in G = (V,E) (since (V1, E1) is a subgraph of G). But this contradicts the
assumption that G is a tree and hence acyclic. �

(Sketch of Soln 1c) Note, we need to define Ek = {(u, v) ∈ E | both u and v are in Vk}. Since (Vk, Ek) is
a sub-graph of G, any cycle in (Vk, Ek) would be a cycle in G, which would contradict G being a tree.

1d) Prove (Vk, Ek) is connected for k = 1, 2.

(Solution 1d) Pf: Let k = 1 or 2. Let u, v be any elements of Vk, with u 6= v. We will show u and v must
be connected in the subgraph (Vk, Ek) by first constructing two paths, namely P (ek, u) and P (ek, v), that
connect ek to these two points u and v, where neither of these paths uses the edge e. By the definitions of Vk

and Ek, both of these paths must exist in the subgraph (Vk, Ek). Then the reverse of P (ek, u), say P (u, ek),
must also be in (Vk, Ek) (since E and Ek are undirected). Therefore the concatenation cat(P (u, ek), P (ek, v))
must be a u−v path in the subgraph (Vk, Ek). Since u, v were any vertices in Vk, we have shown that (Vk, Ek)
is connected. �

(Sketch of Soln 1d) Recall (Vk, Ek) is a sub-graph of Ge, where Vk consists of all vertices reachable from
the endpoint ek using edges in Ek. For any u, v ∈ Vk, we therefore have each of u and v are connected to ek
and, by transitivity of connectedness, must be connected to each other within (Vk, Ek).

2. (Part 2) Proving Statements about Trees. Let G = (V,E) be an undirected graph and suppose
(V1, E1) and (V2, E2) are subgraphs that are trees. We assume that V1 ∩ V2 = ∅. Here we look at adding one
edge, e = (e1, e2) ∈ E, with e1 ∈ V1 and e2 ∈ V2 to form a new subgraph (V1 ∪ V2, E1 ∪ E2 ∪ {e}).

Carefully prove that, in this case, the subgraph T ≡ (V1 ∪ V2, E1 ∪ E2 ∪ {e}) is a tree.

2a) First prove T is a subgraph of G.

(Solution 2a) Pf: By construction, we see the vertices of T satisfy V1 ∪ V2 ⊂ V . Moreover, the edges satisfy
E1 ∪ E2 ∪ {e} ⊂ E. What more do we need to argue that T is a subgraph? We just need to show that the
endpoints of the edges in E1 ∪E2 ∪ {e} are all in V1 ∪ V2. But, from above it follows the the endpoints of all
edges in Ek are in Vk (since (Vk, Ek) is assumed to be a subgraph). The only additional edge is e = (e1, e2),
and e1 ∈ V1 while e2 ∈ V2, so the result follows. �

(Sketch of Soln 2a) Clearly all the vertices and edges in T are in G. And all the endpoints of the edges in
T are vertices in T , by construction, so T is a well-formed graph.

2b) Prove T is connected.

(Solution 2b) Pf: Let u, v be any two distinct vertices in V1 ∪ V2. Let k = 1 or 2. If both u and v are in Vk

then, by the connectivity of (Vk, Ek), there must be a (unique simple) path between u and v in (Vk, Ek). The
only other case is when one of u and v is in V1, while the other is in V2.

WLOG assume u ∈ V1 and v ∈ V2. Since e1 ∈ V1 there must be a (unique simple) path P (u, e1) in the
subgraph (V1, E1). Similarly, since e2 ∈ V2, there must be a path P (e2, v) in the subgraph (V2, E2). Therefore,
we can construct a u− v path in T by concatenating P (u, e1), (e1, e2) and P (e2, v).

Since u and v were any elements of V1 ∪ V2, and since the above cases are exhaustive, we conclude that T is
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connected. �

(Sketch of Soln 2b) By construction, every vertex in T is in V1 or V2 and is therefore connected to either e1
or e2. Moreover, these latter two vertices are connected by the edge e in T . Therefore, by transitivity, every
vertex in T is connected to e1, and so every pair of vertices in T must be connected.

2c) Prove T has |V1|+ |V2| vertices and |V1|+ |V2| − 1 edges.

(Solution 2c) Pf: Since (Vk, Ek) are both trees, |Ek| = |Vk|−1 for k = 1, 2. Moreover, since V1∩V2 = ∅, the
number of vertices in T is |V1|+ |V2|. It also follows from V1 ∩V2 = ∅ that E1 ∩E2 = ∅ (i.e., there cannot be a
common edge in E1 and E2 since the subgraphs use distinct sets of vertices V1 and V2). Note that e /∈ E1∪E2.
Therefore we have the number of edges in T is |E1 ∪ E2 ∪ {e}| = |E1| + |E2| + 1. From above, this equals
|V1| − 1 + |V2| − 1 + 1 = |V1|+ |V2| − 1. �

(Sketch of Soln 2c) The number of vertices in T is |V1|+ |V2| (since V1 ∩ V2 = ∅). Similarly, the number of
edges in T is |E1|+ |E2|+ 1. However

|E1|+ |E2|+ 1 = (|V1| − 1) + (|V2| − 1) + 1, since (Vk, Ek) are trees

= |V1|+ |V2| − 1,

which is the desired result.

2d) Prove that T is a tree.

(Solution 2d) Pf: This follows from Property 2 in the lecture notes, along with parts (2a, b, c) above. �

(Sketch of Soln 2d) Same as above.
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