Tutorial Exercise 10: Cliques and Intersection Graphs for Intervals

1. Clique. Given an undirected graph G = (V, E) a clique (pronounced "cleek" in Canadian, heh?) is a subset of vertices $K \subseteq V$ such that, for every pair of distinct vertices $u, v \in K$, the edge (u, v) is in E. See Clique, Graph Theory, Wikipedia.

A second concept that will be useful is the notion of a complement graph G_c . We say G_c is the complement (graph) of G = (V, E) iff $G_c = (V, E_c)$, where $E_c = \{(u, v) \mid u, v \in V, u \neq v, \text{ and } (u, v) \notin E\}$ (see Complement Graph, Wikipedia). That is, the complement graph G_c is the graph over the same set of vertices, but it contains all (and only) the edges that are not in E.

Finally, a clique $K \subset V$ of G = (V, E) is said to be a **maximal clique** iff there is no superset W such that $K \subset W \subseteq V$ and W is a clique of G.

Consider the decision problem:

Clique: Given an undirected graph and an integer k, does there exist a clique K of G with $|K| \ge k$?

Clearly, Clique is in NP. We wish to show that Clique is NP-complete. To do this, it is convenient to first note that the independent set problem IndepSet(G, k) is very closely related to the Clique problem for the complement graph, i.e., $\text{Clique}(G_c, k)$. Use this strategy to show:

IndepSet
$$\equiv_p$$
 Clique. (1)

2. Consider the interval scheduling problem we started this course with (which is also revisited in Assignment 3, Question 1). That is, suppose we are given a set of jobs J(k) which start at time s_k and end at time f_k , where $s_k < f_k$ are non-negative integers for k = 1, 2, ..., K. We assume all the finish times are distinct. We wish to schedule a maximum-size subset of these jobs such that no two scheduled jobs overlap in time (i.e., the open time intervals (s_j, f_j) and (s_k, f_k) do not intersect for any pair of jobs J(j) and J(k) that are scheduled).

Consider the intersection graph for this problem, say G = (V, E), where the vertices, say v_n , are in one to one correspondence with the jobs, J(n), and there is an edge $(v_n, v_m) \in E$ iff $n \neq m$ and jobs J(n) and J(m) intersect (i.e., $(s_n, f_n) \cap (s_m, f_m) \neq \emptyset$). In A3Q1 we show:

IntervalSched(
$$\{J(n)\}_{n=1}^N$$
) \leq_p searchIndepSet(G).

Specifically, we show that finding a solution to the interval scheduling problem is equivalent to finding a maximum-sized independent set for G. Something must be very special about these graphs G to allow for the poly-time greedy solution. We reconsider this issue, this time with the concept of cliques in hand.

- (a) Choose any example of jobs $\{J(k)\}_{k=1}^{K}$ for the interval scheduling problem. Draw the corresponding intersection graph G = (V, E). Find the set of all maximal cliques of G. (To find one maximal clique, you can pick any vertex v and set $T = \{v\}$. Pick any other vertex u such that there are edges from u to all the vertices in T. Add such a u to T, and repeat. When there is no such u, T is a maximal clique. To get the set of all maximal cliques, you need to do this using all possible ways of picking vertices to add to T.)
- (b) Let K = {K₁, K₂,..., K_m} be the set of the maximal cliques found in part (a). Draw the intersection graph H = (K, E_K) where each vertex of H is a maximal clique of G (i.e., an element of K), and (K_i, K_j) ∈ E_K iff K_i ∩ K_j ≠ Ø and K_i ≠ K_j. Then we have the following claim:
 Claim 1: The graph H is a forest. Is this claim true for your example?
- (c) Suppose G = (V, E) is a graph such that H, the intersection graph of the maximal cliques of G, satisfies Claim 1 above. Devise a polynomial time greedy algorithm to find a maximum-sized independent set for G. Do you see why it is correct? (You do not need to prove it.)